1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20from mindspore.common.tensor import Tensor 21from mindspore import dtype as mstype 22from mindspore.nn import Cell 23from mindspore.ops import operations as P 24context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 25 26 27class Net(Cell): 28 def __init__(self, axis=0, epsilon=1e-4): 29 super(Net, self).__init__() 30 self.norm = P.L2Normalize(axis=axis, epsilon=epsilon) 31 32 def construct(self, x): 33 return self.norm(x) 34 35 36@pytest.mark.level0 37@pytest.mark.platform_x86_cpu 38@pytest.mark.env_onecard 39def test_l2normalize_float32(): 40 x = np.arange(20*20*20*20).astype(np.float32).reshape(20, 20, 20, 20) 41 expect = x / np.sqrt(np.sum(x**2, axis=0, keepdims=True)) 42 x = Tensor(x) 43 error = np.ones(shape=[20, 20, 20, 20]) * 1.0e-5 44 45 norm_op = Net(axis=0) 46 output = norm_op(x) 47 diff = output.asnumpy() - expect 48 assert np.all(diff < error) 49 assert np.all(-diff < error) 50 51 52@pytest.mark.level0 53@pytest.mark.platform_x86_cpu 54@pytest.mark.env_onecard 55def test_l2normalize_float16(): 56 x = np.arange(96).astype(np.float16).reshape(2, 3, 4, 4) 57 expect = x / np.sqrt(np.sum(x**2, axis=0, keepdims=True)) 58 x = Tensor(x, dtype=mstype.float16) 59 error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-3 60 61 norm_op = Net(axis=0) 62 output = norm_op(x) 63 diff = output.asnumpy() - expect 64 assert np.all(diff < error) 65 assert np.all(-diff < error) 66 67 68@pytest.mark.level0 69@pytest.mark.platform_x86_cpu 70@pytest.mark.env_onecard 71def test_l2normalize_axis(): 72 axis = -2 73 x = np.arange(96).astype(np.float32).reshape(2, 3, 4, 4) 74 expect = x / np.sqrt(np.sum(x**2, axis=axis, keepdims=True)) 75 x = Tensor(x) 76 error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5 77 78 norm_op = Net(axis=axis) 79 output = norm_op(x) 80 diff = output.asnumpy() - expect 81 assert np.all(diff < error) 82 assert np.all(-diff < error) 83 84 85@pytest.mark.level0 86@pytest.mark.platform_x86_cpu 87@pytest.mark.env_onecard 88def test_l2normalize_epsilon(): 89 axis = -1 90 epsilon = 900000.0 91 x = np.arange(96).astype(np.float32).reshape(2, 3, 4, 4) 92 expect = x / np.sqrt(epsilon) 93 x = Tensor(x) 94 error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5 95 96 norm_op = Net(axis=axis, epsilon=epsilon) 97 output = norm_op(x) 98 diff = output.asnumpy() - expect 99 assert np.all(diff < error) 100 assert np.all(-diff < error) 101