1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.ops import operations as P 23from mindspore.ops import composite as C 24 25def maskedselect(): 26 x = np.array([1, 2, 3, 4]).astype(np.int32) 27 mask = np.array([[[0], [1], [0], [1]], [[0], [1], [0], [1]]]).astype(np.bool) 28 net = P.MaskedSelect() 29 return net(Tensor(x), Tensor(mask)) 30 31@pytest.mark.level0 32@pytest.mark.platform_x86_cpu 33@pytest.mark.env_onecard 34def test_maskedselect(): 35 context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 36 y = maskedselect() 37 expect = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4] 38 assert (y.asnumpy() == expect).all() 39 40 41class Grad(nn.Cell): 42 def __init__(self, network): 43 super(Grad, self).__init__() 44 self.grad = C.GradOperation(get_all=True, sens_param=True) 45 self.network = network 46 47 def construct(self, x, mask, grad): 48 gout = self.grad(self.network)(x, mask, grad) 49 return gout 50 51class Net(nn.Cell): 52 def __init__(self): 53 super(Net, self).__init__() 54 self.op = P.MaskedSelect() 55 56 def construct(self, x, mask): 57 return self.op(x, mask) 58 59def masked_select_grad(): 60 x = np.array([1, 2, 3, 4]).astype(np.int32) 61 mask = np.array([[0], [1], [0], [1]]).astype(np.bool) 62 dy = np.array([i for i in range(8)]).astype(np.int32) 63 grad = Grad(Net()) 64 return grad(Tensor(x), Tensor(mask), Tensor(dy))[0] 65 66 67@pytest.mark.level0 68@pytest.mark.platform_x86_cpu 69@pytest.mark.env_onecard 70def test_masked_select_grad(): 71 context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 72 dx = masked_select_grad() 73 expect = [4, 6, 8, 10] 74 assert (dx.asnumpy() == expect).all() 75