1# Copyright 2019 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.common.initializer import initializer 23from mindspore.common.parameter import Parameter 24from mindspore.ops.operations import _grad_ops as G 25 26context.set_context(mode=context.GRAPH_MODE, device_target='CPU') 27 28 29class Net_Pool_Grad(nn.Cell): 30 def __init__(self): 31 super(Net_Pool_Grad, self).__init__() 32 self.maxpool_grad_fun = G.MaxPoolGrad(pad_mode="VALID", 33 kernel_size=2, 34 strides=2) 35 36 self.x = Parameter(initializer( 37 Tensor(np.array([[[ 38 [0, 1, 2, 3, 4, 5], 39 [6, 7, 8, 9, 10, 11], 40 [12, 13, 14, 15, 16, 17], 41 [18, 19, 20, 21, 22, 23], 42 [24, 25, 26, 27, 28, 29], 43 [30, 31, 32, 33, 34, 35] 44 ]]]).astype(np.float32)), [1, 1, 6, 6]), name='x') 45 46 self.a = Parameter(initializer( 47 Tensor(np.array([[[ 48 [3, 3, 3], 49 [3, 3, 3], 50 [3, 3, 3] 51 ]]]).astype(np.float32)), [1, 1, 3, 3]), name='a') 52 53 self.d = Parameter(initializer( 54 Tensor(np.array([[[ 55 [7, 9, 11], 56 [19, 21, 23], 57 [31, 33, 35] 58 ]]]).astype(np.float32)), [1, 1, 3, 3]), name='d') 59 60 def construct(self): 61 return self.maxpool_grad_fun(self.x, self.a, self.d) 62 63 64@pytest.mark.level0 65@pytest.mark.platform_x86_cpu 66@pytest.mark.env_onecard 67def test_maxpool2d_grad(): 68 maxpool2d_grad = Net_Pool_Grad() 69 output = maxpool2d_grad() 70 print(output) 71 72 expect_result = (np.array([[[ 73 [0, 0, 0, 0, 0, 0], 74 [0, 7, 0, 9, 0, 11], 75 [0, 0, 0, 0, 0, 0], 76 [0, 19, 0, 21, 0, 23], 77 [0, 0, 0, 0, 0, 0], 78 [0, 31, 0, 33, 0, 35] 79 ]]])) 80 assert (output.asnumpy() == expect_result).all() 81