1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.common.dtype as mstype 21import mindspore.nn as nn 22from mindspore import Tensor 23from mindspore.ops import operations as P 24 25context.set_context(mode=context.GRAPH_MODE, device_target='CPU') 26 27 28class Net(nn.Cell): 29 def __init__(self): 30 super(Net, self).__init__() 31 self.ops = P.SquaredDifference() 32 33 def construct(self, x, y): 34 return self.ops(x, y) 35 36 37@pytest.mark.level0 38@pytest.mark.platform_x86_cpu 39@pytest.mark.env_onecard 40def test_net01(): 41 net = Net() 42 np.random.seed(1) 43 x1 = np.random.randn(2, 3).astype(np.int32) 44 y1 = np.random.randn(2, 3).astype(np.int32) 45 output1 = net(Tensor(x1), Tensor(y1)).asnumpy() 46 diff = x1 - y1 47 expect1 = diff * diff 48 assert np.all(expect1 == output1) 49 assert output1.shape == expect1.shape 50 51 x2 = np.random.randn(2, 3).astype(np.float32) 52 y2 = np.random.randn(2, 3).astype(np.float32) 53 output2 = net(Tensor(x2), Tensor(y2)).asnumpy() 54 diff = x2 - y2 55 expect2 = diff * diff 56 assert np.all(expect2 == output2) 57 assert output2.shape == expect2.shape 58 59 x3 = np.random.randn(2, 3).astype(np.bool) 60 y3 = np.random.randn(2, 3).astype(np.bool) 61 try: 62 net(Tensor(x3), Tensor(y3)).asnumpy() 63 except TypeError: 64 assert True 65 66 67@pytest.mark.level0 68@pytest.mark.platform_x86_cpu 69@pytest.mark.env_onecard 70def test_net02(): 71 net = Net() 72 x1 = Tensor(1, mstype.float32) 73 y1 = Tensor(np.array([[3, 3], [3, 3]]).astype(np.float32)) 74 expect1 = np.array([[4, 4], [4, 4]]).astype(np.float32) 75 output1 = net(x1, y1).asnumpy() 76 assert np.all(expect1 == output1) 77 assert output1.shape == expect1.shape 78 79 np.random.seed(1) 80 x2 = np.random.randn(2, 3).astype(np.float32) 81 y2 = np.random.randn(2, 2, 3).astype(np.float32) 82 output2 = net(Tensor(x2), Tensor(y2)).asnumpy() 83 diff = x2 - y2 84 expect2 = diff * diff 85 assert np.all(expect2 == output2) 86 assert output2.shape == expect2.shape 87 88 x3 = np.random.randn(1, 2).astype(np.float32) 89 y3 = np.random.randn(3, 1).astype(np.float32) 90 output3 = net(Tensor(x3), Tensor(y3)).asnumpy() 91 diff = x3 - y3 92 expect3 = diff * diff 93 assert np.all(expect3 == output3) 94 assert output3.shape == expect3.shape 95 96 x4 = np.random.randn(2, 3).astype(np.float32) 97 y4 = np.random.randn(1, 2).astype(np.float32) 98 try: 99 net(Tensor(x4), Tensor(y4)).asnumpy() 100 except ValueError: 101 assert True 102 103 x5 = np.random.randn(2, 3, 2, 3, 4, 5, 6, 7).astype(np.float32) 104 y5 = np.random.randn(2, 3, 2, 3, 4, 5, 6, 7).astype(np.float32) 105 output5 = net(Tensor(x5), Tensor(y5)).asnumpy() 106 diff = x5 - y5 107 expect5 = diff * diff 108 assert np.all(expect5 == output5) 109 assert output5.shape == expect5.shape 110