• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17from cus_add3 import CusAdd3
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22
23context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
24
25
26class Net(nn.Cell):
27    """Net definition"""
28
29    def __init__(self):
30        super(Net, self).__init__()
31        self.add3 = CusAdd3(1.0)
32
33    def construct(self, input1, input2):
34        return self.add3(input1, input2)
35
36
37@pytest.mark.level0
38@pytest.mark.platform_x86_ascend_training
39@pytest.mark.platform_arm_ascend_training
40@pytest.mark.env_onecard
41def test_net():
42    input1 = np.array([1.0, 4.0, 9.0]).astype(np.float32)
43    input2 = np.array([1.0, 2.0, 3.0]).astype(np.float32)
44    add3_net = Net()
45    output = add3_net(Tensor(input1), Tensor(input2))
46    expect = np.array([3.0, 7.0, 13.0]).astype(np.float32)
47    assert (output.asnumpy() == expect).all()
48