1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16"""test bert thor performance with 8p on mlperf dataset""" 17 18import os 19from multiprocessing import Process, Queue 20import pytest 21import numpy as np 22import mindspore.nn as nn 23from mindspore import Tensor 24from mindspore import dtype as mstype 25from mindspore.ops import operations as P 26import mindspore.communication.management as D 27from mindspore import context 28from mindspore.context import ParallelMode 29 30MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_table_8p.json" 31 32np.random.seed(1) 33os.environ['GLOG_v'] = str(2) 34 35class AllReduceNet(nn.Cell): 36 def __init__(self): 37 super(AllReduceNet, self).__init__() 38 self.all_reduce = P.AllReduce() 39 40 def construct(self, x): 41 return self.all_reduce(x) 42 43def train_allreduce_8p(q, device_id, device_num): 44 os.system("mkdir " + str(device_id)) 45 os.chdir(str(device_id)) 46 context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend", device_id=device_id) 47 os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH 48 os.environ['RANK_ID'] = str(device_id) 49 os.environ['RANK_SIZE'] = str(device_num) 50 D.init() 51 context.reset_auto_parallel_context() 52 context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True, 53 device_num=device_num) 54 55 net = AllReduceNet() 56 input_x = np.ones([32, 255, 255, 3]).astype(np.float32) 57 except_output = input_x * 8 58 output = net(Tensor(input_x, mstype.float32)) 59 q.put(np.allclose(output.asnumpy(), except_output)) 60 61@pytest.mark.level0 62@pytest.mark.platform_arm_ascend_training 63@pytest.mark.platform_x86_ascend_training 64@pytest.mark.env_single 65def test_pynative_hccl_8p(): 66 device_num = 8 67 process = [] 68 q = Queue() 69 for i in range(device_num): 70 device_id = i 71 process.append(Process(target=train_allreduce_8p, args=(q, device_id, device_num))) 72 73 for i in range(device_num): 74 process[i].start() 75 76 print("Waiting for all subprocesses done...") 77 78 for i in range(device_num): 79 process[i].join() 80 81 # check result 82 for i in range(device_num): 83 assert not q.empty() 84 assert q.get() 85 86 for i in range(device_num): 87 os.system("rm -rf " + str(i)) 88 89 print("End training...") 90 91@pytest.mark.level1 92@pytest.mark.platform_arm_ascend_training 93@pytest.mark.platform_x86_ascend_training 94@pytest.mark.env_single 95def test_pynative_hccl_8pv2(): 96 os.environ['GRAPH_OP_RUN'] = str(1) 97 device_num = 8 98 process = [] 99 q = Queue() 100 for i in range(device_num): 101 device_id = i 102 process.append(Process(target=train_allreduce_8p, args=(q, device_id, device_num))) 103 104 for i in range(device_num): 105 process[i].start() 106 107 print("Waiting for all subprocesses done...") 108 109 for i in range(device_num): 110 process[i].join() 111 112 # check result 113 for i in range(device_num): 114 assert not q.empty() 115 assert q.get() 116 117 for i in range(device_num): 118 os.system("rm -rf " + str(i)) 119 120 print("End training...") 121