• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" create train dataset. """
16
17from functools import partial
18import mindspore.dataset as ds
19import mindspore.common.dtype as mstype
20import mindspore.dataset.vision.c_transforms as C
21import mindspore.dataset.transforms.c_transforms as C2
22
23
24def create_dataset(dataset_path, config, repeat_num=1, batch_size=32):
25    """
26    create a train dataset
27
28    Args:
29        dataset_path(string): the path of dataset.
30        config(EasyDict):the basic config for training
31        repeat_num(int): the repeat times of dataset. Default: 1.
32        batch_size(int): the batch size of dataset. Default: 32.
33
34    Returns:
35        dataset
36    """
37
38    load_func = partial(ds.Cifar10Dataset, dataset_path)
39    cifar_ds = load_func(num_parallel_workers=8, shuffle=False)
40
41    resize_height = config.image_height
42    resize_width = config.image_width
43    rescale = 1.0 / 255.0
44    shift = 0.0
45
46    # define map operations
47    # interpolation default BILINEAR
48    resize_op = C.Resize((resize_height, resize_width))
49    rescale_op = C.Rescale(rescale, shift)
50    normalize_op = C.Normalize(
51        (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
52    changeswap_op = C.HWC2CHW()
53    type_cast_op = C2.TypeCast(mstype.int32)
54
55    c_trans = [resize_op, rescale_op, normalize_op, changeswap_op]
56
57    # apply map operations on images
58    cifar_ds = cifar_ds.map(input_columns="label", operations=type_cast_op)
59    cifar_ds = cifar_ds.map(input_columns="image", operations=c_trans)
60
61    # apply batch operations
62    cifar_ds = cifar_ds.batch(batch_size, drop_remainder=True)
63
64    # apply dataset repeat operation
65    cifar_ds = cifar_ds.repeat(repeat_num)
66
67    return cifar_ds
68