1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15""" create train dataset. """ 16 17from functools import partial 18 19import mindspore.common.dtype as mstype 20import mindspore.dataset as ds 21import mindspore.dataset.transforms.c_transforms as C2 22import mindspore.dataset.vision.c_transforms as C 23 24 25def create_dataset(dataset_path, config, repeat_num=1, batch_size=32): 26 """ 27 create a train dataset 28 29 Args: 30 dataset_path(string): the path of dataset. 31 config(EasyDict):the basic config for training 32 repeat_num(int): the repeat times of dataset. Default: 1. 33 batch_size(int): the batch size of dataset. Default: 32. 34 35 Returns: 36 dataset 37 """ 38 39 load_func = partial(ds.Cifar10Dataset, dataset_path) 40 data_set = load_func(num_parallel_workers=8, shuffle=False) 41 42 resize_height = config.image_height 43 resize_width = config.image_width 44 45 mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] 46 std = [0.229 * 255, 0.224 * 255, 0.225 * 255] 47 48 # define map operations 49 resize_op = C.Resize((resize_height, resize_width)) 50 normalize_op = C.Normalize(mean=mean, std=std) 51 changeswap_op = C.HWC2CHW() 52 c_trans = [resize_op, normalize_op, changeswap_op] 53 54 type_cast_op = C2.TypeCast(mstype.int32) 55 56 data_set = data_set.map(operations=c_trans, input_columns="image", 57 num_parallel_workers=8) 58 data_set = data_set.map(operations=type_cast_op, 59 input_columns="label", num_parallel_workers=8) 60 61 # apply batch operations 62 data_set = data_set.batch(batch_size, drop_remainder=True) 63 64 # apply dataset repeat operation 65 data_set = data_set.repeat(repeat_num) 66 67 return data_set 68