1 /**
2 * Copyright 2019-2021 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "common.h"
17 #include <algorithm>
18 #include <fstream>
19 #include <string>
20 #include <vector>
21 #include "minddata/dataset/core/client.h"
22 #include "minddata/dataset/core/config_manager.h"
23 #include "minddata/dataset/core/pybind_support.h"
24 #include "minddata/dataset/core/tensor.h"
25 #include "minddata/dataset/core/tensor_shape.h"
26 #include "minddata/dataset/engine/datasetops/batch_op.h"
27 #include "minddata/dataset/engine/datasetops/repeat_op.h"
28 #include "minddata/dataset/engine/datasetops/source/tf_reader_op.h"
29
30 namespace UT {
31 #ifdef __cplusplus
32 #if __cplusplus
33 extern "C" {
34 #endif
35 #endif
36
SetUp()37 void DatasetOpTesting::SetUp() {
38 std::string install_home = "data/dataset";
39 datasets_root_path_ = install_home;
40 mindrecord_root_path_ = "data/mindrecord";
41 }
42
ToTensorShapeVec(const std::vector<std::vector<int64_t>> & v)43 std::vector<mindspore::dataset::TensorShape> DatasetOpTesting::ToTensorShapeVec(
44 const std::vector<std::vector<int64_t>> &v) {
45 std::vector<mindspore::dataset::TensorShape> ret_v;
46 std::transform(v.begin(), v.end(), std::back_inserter(ret_v),
47 [](const auto &s) { return mindspore::dataset::TensorShape(s); });
48 return ret_v;
49 }
50
ToDETypes(const std::vector<mindspore::DataType> & t)51 std::vector<mindspore::dataset::DataType> DatasetOpTesting::ToDETypes(const std::vector<mindspore::DataType> &t) {
52 std::vector<mindspore::dataset::DataType> ret_t;
53 std::transform(t.begin(), t.end(), std::back_inserter(ret_t), [](const mindspore::DataType &t) {
54 return mindspore::dataset::MSTypeToDEType(static_cast<mindspore::TypeId>(t));
55 });
56 return ret_t;
57 }
58
59 // Function to read a file into an MSTensor
60 // Note: This provides the analogous support for DETensor's CreateFromFile.
ReadFileToTensor(const std::string & file)61 mindspore::MSTensor DatasetOpTesting::ReadFileToTensor(const std::string &file) {
62 if (file.empty()) {
63 MS_LOG(ERROR) << "Pointer file is nullptr; return an empty Tensor.";
64 return mindspore::MSTensor();
65 }
66 std::ifstream ifs(file);
67 if (!ifs.good()) {
68 MS_LOG(ERROR) << "File: " << file << " does not exist; return an empty Tensor.";
69 return mindspore::MSTensor();
70 }
71 if (!ifs.is_open()) {
72 MS_LOG(ERROR) << "File: " << file << " open failed; return an empty Tensor.";
73 return mindspore::MSTensor();
74 }
75
76 ifs.seekg(0, std::ios::end);
77 size_t size = ifs.tellg();
78 mindspore::MSTensor buf("file", mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
79
80 ifs.seekg(0, std::ios::beg);
81 ifs.read(reinterpret_cast<char *>(buf.MutableData()), size);
82 ifs.close();
83
84 return buf;
85 }
86
87 // Helper function to create a batch op
Batch(int32_t batch_size,bool drop,mindspore::dataset::PadInfo pad_map)88 std::shared_ptr<mindspore::dataset::BatchOp> DatasetOpTesting::Batch(int32_t batch_size, bool drop,
89 mindspore::dataset::PadInfo pad_map) {
90 /*
91 std::shared_ptr<mindspore::dataset::ConfigManager> cfg = mindspore::dataset::GlobalContext::config_manager();
92 int32_t num_workers = cfg->num_parallel_workers();
93 int32_t op_connector_size = cfg->op_connector_size();
94 std::vector<std::string> output_columns = {};
95 std::vector<std::string> input_columns = {};
96 mindspore::dataset::py::function batch_size_func;
97 mindspore::dataset::py::function batch_map_func;
98 bool pad = false;
99 if (!pad_map.empty()) {
100 pad = true;
101 }
102 std::shared_ptr<mindspore::dataset::BatchOp> op =
103 std::make_shared<mindspore::dataset::BatchOp>(batch_size, drop, pad, op_connector_size, num_workers, input_columns,
104 output_columns, batch_size_func, batch_map_func, pad_map); return op;
105 */
106 Status rc;
107 std::shared_ptr<mindspore::dataset::BatchOp> op;
108 rc = mindspore::dataset::BatchOp::Builder(batch_size).SetDrop(drop).SetPaddingMap(pad_map).Build(&op);
109 EXPECT_TRUE(rc.IsOk());
110 return std::move(op);
111 }
112
Repeat(int repeat_cnt)113 std::shared_ptr<mindspore::dataset::RepeatOp> DatasetOpTesting::Repeat(int repeat_cnt) {
114 std::shared_ptr<mindspore::dataset::RepeatOp> op = std::make_shared<mindspore::dataset::RepeatOp>(repeat_cnt);
115 return std::move(op);
116 }
117
TFReader(std::string file,int num_works)118 std::shared_ptr<mindspore::dataset::TFReaderOp> DatasetOpTesting::TFReader(std::string file, int num_works) {
119 std::shared_ptr<mindspore::dataset::ConfigManager> config_manager =
120 mindspore::dataset::GlobalContext::config_manager();
121 auto op_connector_size = config_manager->op_connector_size();
122 auto worker_connector_size = config_manager->worker_connector_size();
123 std::vector<std::string> columns_to_load = {};
124 std::vector<std::string> files = {file};
125 std::shared_ptr<mindspore::dataset::TFReaderOp> so = std::make_shared<mindspore::dataset::TFReaderOp>(
126 num_works, worker_connector_size, 0, files, std::make_unique<mindspore::dataset::DataSchema>(), op_connector_size,
127 columns_to_load, false, 1, 0, false);
128 (void)so->Init();
129 return std::move(so);
130 }
131
Build(std::vector<std::shared_ptr<mindspore::dataset::DatasetOp>> ops)132 std::shared_ptr<mindspore::dataset::ExecutionTree> DatasetOpTesting::Build(
133 std::vector<std::shared_ptr<mindspore::dataset::DatasetOp>> ops) {
134 std::shared_ptr<mindspore::dataset::ExecutionTree> tree = std::make_shared<mindspore::dataset::ExecutionTree>();
135 for (int i = 0; i < ops.size(); i++) {
136 tree->AssociateNode(ops[i]);
137 if (i > 0) {
138 ops[i]->AddChild(std::move(ops[i - 1]));
139 }
140 if (i == ops.size() - 1) {
141 tree->AssignRoot(ops[i]);
142 }
143 }
144 return std::move(tree);
145 }
146
147 #ifdef __cplusplus
148 #if __cplusplus
149 }
150 #endif
151 #endif
152 } // namespace UT
153