• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/fusion/full_connection.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestFullConnection : public UT::Common {
28  public:
TestFullConnection()29   TestFullConnection() {}
SetUp()30   void SetUp() {}
TearDown()31   void TearDown() {}
32 };
33 
TEST_F(TestFullConnection,test_full_connection_1)34 TEST_F(TestFullConnection, test_full_connection_1) {
35   auto op = std::make_shared<FullConnection>();
36   bool has_bias = false;
37   bool use_axis = false;
38   int64_t axis = 3;
39   op->Init(has_bias, axis, use_axis, NO_ACTIVATION);
40   auto tensor_1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{2, 3});
41   auto tensor_2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{2, 3});
42   auto abstract = op->Infer({tensor_1->ToAbstract(), tensor_2->ToAbstract()});
43   MS_EXCEPTION_IF_NULL(abstract);
44   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
45   auto shape_ptr = abstract->BuildShape();
46   MS_EXCEPTION_IF_NULL(shape_ptr);
47   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
48   auto shape = shape_ptr->cast<abstract::ShapePtr>();
49   MS_EXCEPTION_IF_NULL(shape);
50   auto shape_vec = shape->shape();
51   auto type = abstract->BuildType();
52   MS_EXCEPTION_IF_NULL(type);
53   EXPECT_EQ(type->isa<TensorType>(), true);
54   auto tensor_type = type->cast<TensorTypePtr>();
55   MS_EXCEPTION_IF_NULL(tensor_type);
56   auto data_type = tensor_type->element();
57   MS_EXCEPTION_IF_NULL(data_type);
58   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
59   EXPECT_EQ(shape_vec.size(), 2);
60   EXPECT_EQ(shape_vec[0], 2);
61   EXPECT_EQ(shape_vec[1], 2);
62 }
63 
TEST_F(TestFullConnection,test_full_connection_2)64 TEST_F(TestFullConnection, test_full_connection_2) {
65   auto op = std::make_shared<FullConnection>();
66   bool has_bias = true;
67   bool use_axis = false;
68   int64_t axis = 1;
69   op->Init(has_bias, axis, use_axis, NO_ACTIVATION);
70   auto tensor_1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{2, 3});
71   auto tensor_2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{2, 3});
72   auto tensor_3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{2, 2});
73   auto abstract = op->Infer({tensor_1->ToAbstract(), tensor_2->ToAbstract(), tensor_3->ToAbstract()});
74   MS_EXCEPTION_IF_NULL(abstract);
75   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
76   auto shape_ptr = abstract->BuildShape();
77   MS_EXCEPTION_IF_NULL(shape_ptr);
78   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
79   auto shape = shape_ptr->cast<abstract::ShapePtr>();
80   MS_EXCEPTION_IF_NULL(shape);
81   auto shape_vec = shape->shape();
82   auto type = abstract->BuildType();
83   MS_EXCEPTION_IF_NULL(type);
84   EXPECT_EQ(type->isa<TensorType>(), true);
85   auto tensor_type = type->cast<TensorTypePtr>();
86   MS_EXCEPTION_IF_NULL(tensor_type);
87   auto data_type = tensor_type->element();
88   MS_EXCEPTION_IF_NULL(data_type);
89   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
90   EXPECT_EQ(shape_vec.size(), 2);
91   EXPECT_EQ(shape_vec[0], 2);
92   EXPECT_EQ(shape_vec[1], 2);
93 }
94 
TEST_F(TestFullConnection,test_full_connection_3)95 TEST_F(TestFullConnection, test_full_connection_3) {
96   auto op = std::make_shared<FullConnection>();
97   bool has_bias = false;
98   bool use_axis = true;
99   int64_t axis = 1;
100   op->Init(has_bias, axis, use_axis, NO_ACTIVATION);
101   auto tensor_1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{2, 3});
102   auto tensor_2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{2, 3});
103   auto abstract = op->Infer({tensor_1->ToAbstract(), tensor_2->ToAbstract()});
104   MS_EXCEPTION_IF_NULL(abstract);
105   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
106   auto shape_ptr = abstract->BuildShape();
107   MS_EXCEPTION_IF_NULL(shape_ptr);
108   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
109   auto shape = shape_ptr->cast<abstract::ShapePtr>();
110   MS_EXCEPTION_IF_NULL(shape);
111   auto shape_vec = shape->shape();
112   auto type = abstract->BuildType();
113   MS_EXCEPTION_IF_NULL(type);
114   EXPECT_EQ(type->isa<TensorType>(), true);
115   auto tensor_type = type->cast<TensorTypePtr>();
116   MS_EXCEPTION_IF_NULL(tensor_type);
117   auto data_type = tensor_type->element();
118   MS_EXCEPTION_IF_NULL(data_type);
119   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
120   EXPECT_EQ(shape_vec.size(), 2);
121   EXPECT_EQ(shape_vec[0], 2);
122   EXPECT_EQ(shape_vec[1], 2);
123 }
124 }  // namespace ops
125 }  // namespace mindspore
126