1# Copyright 2019 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15""" 16Testing RandomErasing op in DE 17""" 18import numpy as np 19 20import mindspore.dataset as ds 21import mindspore.dataset.transforms.py_transforms 22import mindspore.dataset.vision.py_transforms as vision 23from mindspore import log as logger 24from util import diff_mse, visualize_image, save_and_check_md5, \ 25 config_get_set_seed, config_get_set_num_parallel_workers 26 27DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] 28SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" 29 30GENERATE_GOLDEN = False 31 32 33def test_random_erasing_op(plot=False): 34 """ 35 Test RandomErasing and Cutout 36 """ 37 logger.info("test_random_erasing") 38 39 # First dataset 40 data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 41 transforms_1 = [ 42 vision.Decode(), 43 vision.ToTensor(), 44 vision.RandomErasing(value='random') 45 ] 46 transform_1 = mindspore.dataset.transforms.py_transforms.Compose(transforms_1) 47 data1 = data1.map(operations=transform_1, input_columns=["image"]) 48 49 # Second dataset 50 data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 51 transforms_2 = [ 52 vision.Decode(), 53 vision.ToTensor(), 54 vision.Cutout(80) 55 ] 56 transform_2 = mindspore.dataset.transforms.py_transforms.Compose(transforms_2) 57 data2 = data2.map(operations=transform_2, input_columns=["image"]) 58 59 num_iter = 0 60 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), 61 data2.create_dict_iterator(num_epochs=1, output_numpy=True)): 62 num_iter += 1 63 image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) 64 image_2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) 65 66 logger.info("shape of image_1: {}".format(image_1.shape)) 67 logger.info("shape of image_2: {}".format(image_2.shape)) 68 69 logger.info("dtype of image_1: {}".format(image_1.dtype)) 70 logger.info("dtype of image_2: {}".format(image_2.dtype)) 71 72 mse = diff_mse(image_1, image_2) 73 if plot: 74 visualize_image(image_1, image_2, mse) 75 76 77def test_random_erasing_md5(): 78 """ 79 Test RandomErasing with md5 check 80 """ 81 logger.info("Test RandomErasing with md5 check") 82 original_seed = config_get_set_seed(5) 83 original_num_parallel_workers = config_get_set_num_parallel_workers(1) 84 85 # Generate dataset 86 data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 87 transforms_1 = [ 88 vision.Decode(), 89 vision.ToTensor(), 90 vision.RandomErasing(value='random') 91 ] 92 transform_1 = mindspore.dataset.transforms.py_transforms.Compose(transforms_1) 93 data = data.map(operations=transform_1, input_columns=["image"]) 94 # Compare with expected md5 from images 95 filename = "random_erasing_01_result.npz" 96 save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) 97 98 # Restore configuration 99 ds.config.set_seed(original_seed) 100 ds.config.set_num_parallel_workers((original_num_parallel_workers)) 101 102 103if __name__ == "__main__": 104 test_random_erasing_op(plot=True) 105 test_random_erasing_md5() 106