1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15""" 16Testing soft dvpp SoftDvppDecodeResizeJpeg and SoftDvppDecodeRandomCropResizeJpeg in DE 17""" 18import mindspore.dataset as ds 19import mindspore.dataset.vision.c_transforms as vision 20from mindspore import log as logger 21from util import diff_mse, visualize_image 22 23DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] 24SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" 25 26 27def test_soft_dvpp_decode_resize_jpeg(plot=False): 28 """ 29 Test SoftDvppDecodeResizeJpeg op 30 """ 31 logger.info("test_random_decode_resize_op") 32 33 # First dataset 34 data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 35 decode_op = vision.Decode() 36 resize_op = vision.Resize((256, 512)) 37 data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"]) 38 39 # Second dataset 40 data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 41 soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg((256, 512)) 42 data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"]) 43 44 num_iter = 0 45 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), 46 data2.create_dict_iterator(num_epochs=1, output_numpy=True)): 47 if num_iter > 0: 48 break 49 image1 = item1["image"] 50 image2 = item2["image"] 51 mse = diff_mse(image1, image2) 52 assert mse <= 0.02 53 logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse)) 54 if plot: 55 visualize_image(image1, image2, mse) 56 num_iter += 1 57 58 59def test_soft_dvpp_decode_random_crop_resize_jpeg(plot=False): 60 """ 61 Test SoftDvppDecodeRandomCropResizeJpeg op 62 """ 63 logger.info("test_random_decode_resize_op") 64 65 # First dataset 66 data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 67 random_crop_decode_resize_op = vision.RandomCropDecodeResize((256, 512), (1, 1), (0.5, 0.5)) 68 data1 = data1.map(operations=random_crop_decode_resize_op, input_columns=["image"]) 69 70 # Second dataset 71 data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 72 soft_dvpp_random_crop_decode_resize_op = vision.SoftDvppDecodeRandomCropResizeJpeg((256, 512), (1, 1), (0.5, 0.5)) 73 data2 = data2.map(operations=soft_dvpp_random_crop_decode_resize_op, input_columns=["image"]) 74 75 num_iter = 0 76 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), 77 data2.create_dict_iterator(num_epochs=1, output_numpy=True)): 78 if num_iter > 0: 79 break 80 image1 = item1["image"] 81 image2 = item2["image"] 82 mse = diff_mse(image1, image2) 83 assert mse <= 0.06 84 logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse)) 85 if plot: 86 visualize_image(image1, image2, mse) 87 num_iter += 1 88 89 90def test_soft_dvpp_decode_resize_jpeg_supplement(plot=False): 91 """ 92 Test SoftDvppDecodeResizeJpeg op 93 """ 94 logger.info("test_random_decode_resize_op") 95 96 # First dataset 97 data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 98 decode_op = vision.Decode() 99 resize_op = vision.Resize(1134) 100 data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"]) 101 102 # Second dataset 103 data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) 104 soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg(1134) 105 data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"]) 106 107 num_iter = 0 108 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), 109 data2.create_dict_iterator(num_epochs=1, output_numpy=True)): 110 if num_iter > 0: 111 break 112 image1 = item1["image"] 113 image2 = item2["image"] 114 mse = diff_mse(image1, image2) 115 assert mse <= 0.02 116 logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse)) 117 if plot: 118 visualize_image(image1, image2, mse) 119 num_iter += 1 120 121 122if __name__ == "__main__": 123 test_soft_dvpp_decode_resize_jpeg(plot=True) 124 test_soft_dvpp_decode_random_crop_resize_jpeg(plot=True) 125 test_soft_dvpp_decode_resize_jpeg_supplement(plot=True) 126