• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" test VAE interface """
16import numpy as np
17
18import mindspore.common.dtype as mstype
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.common.api import _cell_graph_executor
22from mindspore.nn.probability.dpn import VAE
23
24
25class Encoder(nn.Cell):
26    def __init__(self):
27        super(Encoder, self).__init__()
28        self.fc1 = nn.Dense(6, 3)
29        self.relu = nn.ReLU()
30
31    def construct(self, x):
32        x = self.fc1(x)
33        x = self.relu(x)
34        return x
35
36
37class Decoder(nn.Cell):
38    def __init__(self):
39        super(Decoder, self).__init__()
40        self.fc1 = nn.Dense(3, 6)
41        self.sigmoid = nn.Sigmoid()
42
43    def construct(self, z):
44        z = self.fc1(z)
45        z = self.sigmoid(z)
46        return z
47
48
49def test_vae():
50    """
51    Test the vae interface with the DNN model.
52    """
53    encoder = Encoder()
54    decoder = Decoder()
55    net = VAE(encoder, decoder, hidden_size=3, latent_size=2)
56    input_data = Tensor(np.random.rand(32, 6), dtype=mstype.float32)
57    _cell_graph_executor.compile(net, input_data)
58