1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15""" test_tensor_slice """ 16import numpy as np 17import pytest 18 19from mindspore import Tensor 20from mindspore import context 21from mindspore import dtype as mstype 22from mindspore.nn import Cell 23from ....mindspore_test_framework.mindspore_test import mindspore_test 24from ....mindspore_test_framework.pipeline.forward.compile_forward \ 25 import pipeline_for_compile_forward_ge_graph_for_case_by_case_config, \ 26 pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception 27 28 29class NetWorkFancyIndex(Cell): 30 def __init__(self, index): 31 super(NetWorkFancyIndex, self).__init__() 32 self.index = index 33 34 def construct(self, tensor): 35 return tensor[self.index] 36 37 38class TensorItemByNone(Cell): 39 def construct(self, tensor): 40 ret = tensor.item() 41 return ret 42 43 44class TensorItemByItem(Cell): 45 def construct(self, tensor, index): 46 ret = tensor.item(index) 47 return ret 48 49 50def test_tensor_fancy_index_integer_list(): 51 context.set_context(mode=context.GRAPH_MODE) 52 index = [0, 2, 1] 53 net = NetWorkFancyIndex(index) 54 input_np = np.arange(60).reshape(3, 4, 5) 55 input_me = Tensor(input_np, dtype=mstype.float32) 56 net(input_me) 57 58 59def test_tensor_fancy_index_boolean_list(): 60 context.set_context(mode=context.GRAPH_MODE) 61 index = [True, True, False] 62 net = NetWorkFancyIndex(index) 63 input_np = np.arange(60).reshape(3, 4, 5) 64 input_me = Tensor(input_np, dtype=mstype.float32) 65 net(input_me) 66 67 68def test_tensor_fancy_index_integer_boolean_list_graph(): 69 context.set_context(mode=context.GRAPH_MODE) 70 index = [1, 2, True, False] 71 net = NetWorkFancyIndex(index) 72 input_np = np.arange(60).reshape(3, 4, 5) 73 input_me = Tensor(input_np, dtype=mstype.float32) 74 net(input_me) 75 76 77def test_tensor_fancy_index_integer_list_mixed(): 78 context.set_context(mode=context.GRAPH_MODE) 79 index = (1, [2, 1, 3], slice(1, 3, 1), ..., 4) 80 net = NetWorkFancyIndex(index) 81 input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) 82 input_me = Tensor(input_np, dtype=mstype.float32) 83 net(input_me) 84 85 86def test_tensor_fancy_index_integer_tuple_mixed(): 87 context.set_context(mode=context.GRAPH_MODE) 88 index = (1, (2, 1, 3), slice(1, 3, 1), ..., 4) 89 net = NetWorkFancyIndex(index) 90 input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) 91 input_me = Tensor(input_np, dtype=mstype.float32) 92 net(input_me) 93 94 95def test_tensor_fancy_index_integer_list_tuple_mixed(): 96 context.set_context(mode=context.GRAPH_MODE) 97 index = (1, [2, 1, 3], (3, 2, 1), slice(1, 3, 1), ..., 4) 98 net = NetWorkFancyIndex(index) 99 input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) 100 input_me = Tensor(input_np, dtype=mstype.float32) 101 net(input_me) 102 103 104def test_tensor_fancy_index_integer_list_tuple_bool_mixed(): 105 context.set_context(mode=context.GRAPH_MODE) 106 index = (1, [2, 1, 3], True, (3, 2, 1), slice(1, 3, 1), ..., True, 4) 107 net = NetWorkFancyIndex(index) 108 input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) 109 input_me = Tensor(input_np, dtype=mstype.float32) 110 net(input_me) 111 112 113def test_tensor_fancy_index_integer_list_tuple_bool_mixed_error(): 114 context.set_context(mode=context.GRAPH_MODE) 115 index = (1, [2, 1, 3], True, (3, 2, 1), slice(1, 3, 1), ..., False, 4) 116 net = NetWorkFancyIndex(index) 117 input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) 118 input_me = Tensor(input_np, dtype=mstype.float32) 119 with pytest.raises(IndexError): 120 net(input_me) 121 122 123input_1d_np = np.ndarray([1]).astype(np.float32) 124input_1d_ms = Tensor(input_1d_np, mstype.float32) 125input_3d_np = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) 126input_3d_ms = Tensor(input_3d_np, mstype.float32) 127index_np_1, index_np_2, index_np_3, index_np_4 = 0, 1.0, 30, 60 128tuple_index_np_1, tuple_index_np_2, tuple_index_np_3, tuple_index_np_4, tuple_index_np_5 = \ 129 (0,), (1, 2), (1, 2, 3), (3, 4, 4), (1, 2, 3, 4) 130 131test_cases = [ 132 ('TensorItemByNone', {'block': TensorItemByNone(), 'desc_inputs': [input_1d_ms],}), 133 ('1dTensorItemByInt', {'block': TensorItemByItem(), 'desc_inputs': [input_1d_ms, index_np_1],}), 134 ('3dTensorItemByInt', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, index_np_1],}), 135 ('3dTensorItemByInt2', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, index_np_3],}), 136 ('1dTensorItemByTuple', {'block': TensorItemByItem(), 'desc_inputs': [input_1d_ms, tuple_index_np_1],}), 137 ('3dTensorItemByTuple', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, tuple_index_np_3],}), 138] 139 140 141test_error_cases = [ 142 ('TensorItemByNoneForMulDimsTensor', { 143 'block': (TensorItemByNone(), {'exception': ValueError}), 144 'desc_inputs': [input_3d_ms] 145 }), 146 ('TensorItemByFloatError', { 147 'block': (TensorItemByItem(), {'exception': TypeError}), 148 'desc_inputs': [input_1d_ms, index_np_2] 149 }), 150 ('TensorItemByFloatError2', { 151 'block': (TensorItemByItem(), {'exception': TypeError}), 152 'desc_inputs': [input_3d_ms, index_np_2] 153 }), 154 ('TensorItemByIntOverBoundary', { 155 'block': (TensorItemByItem(), {'exception': IndexError}), 156 'desc_inputs': [input_1d_ms, index_np_3] 157 }), 158 ('TensorItemByIntOverBoundary2', { 159 'block': (TensorItemByItem(), {'exception': IndexError}), 160 'desc_inputs': [input_3d_ms, index_np_4] 161 }), 162 ('1dTensorItemBy2dTuple', { 163 'block': (TensorItemByItem(), {'exception': ValueError}), 164 'desc_inputs': [input_1d_ms, tuple_index_np_2] 165 }), 166 ('3dTensorItemBy2dTuple', { 167 'block': (TensorItemByItem(), {'exception': ValueError}), 168 'desc_inputs': [input_3d_ms, tuple_index_np_2] 169 }), 170 ('3dTensorItemBy3dTupleOutOfBoundary', { 171 'block': (TensorItemByItem(), {'exception': IndexError}), 172 'desc_inputs': [input_3d_ms, tuple_index_np_4] 173 }), 174 ('3dTensorItemBy4dTuple', { 175 'block': (TensorItemByItem(), {'exception': ValueError}), 176 'desc_inputs': [input_3d_ms, tuple_index_np_5] 177 }) 178] 179 180 181@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) 182def test_exec(): 183 context.set_context(mode=context.GRAPH_MODE) 184 return test_cases 185 186 187@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) 188def test_check_exception(): 189 return test_error_cases 190