• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #ifndef DOUBLE_CONVERSION_UTILS_H_
38 #define DOUBLE_CONVERSION_UTILS_H_
39 
40 #include <cstdlib>
41 #include <cstring>
42 
43 // ICU PATCH: Use U_ASSERT instead of <assert.h>
44 #include "uassert.h"
45 #ifndef DOUBLE_CONVERSION_ASSERT
46 #define DOUBLE_CONVERSION_ASSERT(condition)         \
47     U_ASSERT(condition)
48 #endif
49 #ifndef DOUBLE_CONVERSION_UNIMPLEMENTED
50 #define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort())
51 #endif
52 #ifndef DOUBLE_CONVERSION_NO_RETURN
53 #ifdef _MSC_VER
54 #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn)
55 #else
56 #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
57 #endif
58 #endif
59 #ifndef DOUBLE_CONVERSION_UNREACHABLE
60 #ifdef _MSC_VER
61 void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
abort_noreturn()62 inline void abort_noreturn() { abort(); }
63 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort_noreturn())
64 #else
65 #define DOUBLE_CONVERSION_UNREACHABLE()   (abort())
66 #endif
67 #endif
68 
69 // Not all compilers support __has_attribute and combining a check for both
70 // ifdef and __has_attribute on the same preprocessor line isn't portable.
71 #ifdef __has_attribute
72 #   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) __has_attribute(x)
73 #else
74 #   define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) 0
75 #endif
76 
77 #ifndef DOUBLE_CONVERSION_UNUSED
78 #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(unused)
79 #define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
80 #else
81 #define DOUBLE_CONVERSION_UNUSED
82 #endif
83 #endif
84 
85 #if DOUBLE_CONVERSION_HAS_ATTRIBUTE(uninitialized)
86 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED __attribute__((uninitialized))
87 #else
88 #define DOUBLE_CONVERSION_STACK_UNINITIALIZED
89 #endif
90 
91 // Double operations detection based on target architecture.
92 // Linux uses a 80bit wide floating point stack on x86. This induces double
93 // rounding, which in turn leads to wrong results.
94 // An easy way to test if the floating-point operations are correct is to
95 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
96 // the result is equal to 89255e-22.
97 // The best way to test this, is to create a division-function and to compare
98 // the output of the division with the expected result. (Inlining must be
99 // disabled.)
100 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
101 //
102 // For example:
103 /*
104 // -- in div.c
105 double Div_double(double x, double y) { return x / y; }
106 
107 // -- in main.c
108 double Div_double(double x, double y);  // Forward declaration.
109 
110 int main(int argc, char** argv) {
111   return Div_double(89255.0, 1e22) == 89255e-22;
112 }
113 */
114 // Run as follows ./main || echo "correct"
115 //
116 // If it prints "correct" then the architecture should be here, in the "correct" section.
117 #if defined(_M_X64) || defined(__x86_64__) || \
118     defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
119     defined(__hppa__) || defined(__ia64__) || \
120     defined(__mips__) || \
121     defined(__loongarch__) || \
122     defined(__nios2__) || defined(__ghs) || \
123     defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
124     defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
125     defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
126     defined(__SH4__) || defined(__alpha__) || \
127     defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
128     defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
129     defined(__riscv) || defined(__e2k__) || \
130     defined(__or1k__) || defined(__arc__) || \
131     defined(__microblaze__) || defined(__XTENSA__) || \
132     defined(__EMSCRIPTEN__) || defined(__wasm32__)
133 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
134 #elif defined(__mc68000__) || \
135     defined(__pnacl__) || defined(__native_client__)
136 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
137 #elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
138 #if defined(_WIN32)
139 // Windows uses a 64bit wide floating point stack.
140 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
141 #else
142 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
143 #endif  // _WIN32
144 #else
145 #error Target architecture was not detected as supported by Double-Conversion.
146 #endif
147 
148 #if defined(_WIN32) && !defined(__MINGW32__)
149 
150 typedef signed char int8_t;
151 typedef unsigned char uint8_t;
152 typedef short int16_t;  // NOLINT
153 typedef unsigned short uint16_t;  // NOLINT
154 typedef int int32_t;
155 typedef unsigned int uint32_t;
156 typedef __int64 int64_t;
157 typedef unsigned __int64 uint64_t;
158 // intptr_t and friends are defined in crtdefs.h through stdio.h.
159 
160 #else
161 
162 #include <stdint.h>
163 
164 #endif
165 
166 typedef uint16_t uc16;
167 
168 // The following macro works on both 32 and 64-bit platforms.
169 // Usage: instead of writing 0x1234567890123456
170 //      write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456);
171 #define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
172 
173 
174 // The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type
175 // size_t which represents the number of elements of the given
176 // array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated
177 // arrays.
178 #ifndef DOUBLE_CONVERSION_ARRAY_SIZE
179 #define DOUBLE_CONVERSION_ARRAY_SIZE(a)                                   \
180   ((sizeof(a) / sizeof(*(a))) /                         \
181   static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
182 #endif
183 
184 // A macro to disallow the evil copy constructor and operator= functions
185 // This should be used in the private: declarations for a class
186 #ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
187 #define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)      \
188   TypeName(const TypeName&);                    \
189   void operator=(const TypeName&)
190 #endif
191 
192 // A macro to disallow all the implicit constructors, namely the
193 // default constructor, copy constructor and operator= functions.
194 //
195 // This should be used in the private: declarations for a class
196 // that wants to prevent anyone from instantiating it. This is
197 // especially useful for classes containing only static methods.
198 #ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
199 #define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
200   TypeName();                                    \
201   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)
202 #endif
203 
204 // ICU PATCH: Wrap in ICU namespace
205 U_NAMESPACE_BEGIN
206 
207 namespace double_conversion {
208 
StrLength(const char * string)209 inline int StrLength(const char* string) {
210   size_t length = strlen(string);
211   DOUBLE_CONVERSION_ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
212   return static_cast<int>(length);
213 }
214 
215 // This is a simplified version of V8's Vector class.
216 template <typename T>
217 class Vector {
218  public:
Vector()219   Vector() : start_(NULL), length_(0) {}
Vector(T * data,int len)220   Vector(T* data, int len) : start_(data), length_(len) {
221     DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL));
222   }
223 
224   // Returns a vector using the same backing storage as this one,
225   // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)226   Vector<T> SubVector(int from, int to) {
227     DOUBLE_CONVERSION_ASSERT(to <= length_);
228     DOUBLE_CONVERSION_ASSERT(from < to);
229     DOUBLE_CONVERSION_ASSERT(0 <= from);
230     return Vector<T>(start() + from, to - from);
231   }
232 
233   // Returns the length of the vector.
length()234   int length() const { return length_; }
235 
236   // Returns whether or not the vector is empty.
is_empty()237   bool is_empty() const { return length_ == 0; }
238 
239   // Returns the pointer to the start of the data in the vector.
start()240   T* start() const { return start_; }
241 
242   // Access individual vector elements - checks bounds in debug mode.
243   T& operator[](int index) const {
244     DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_);
245     return start_[index];
246   }
247 
first()248   T& first() { return start_[0]; }
249 
last()250   T& last() { return start_[length_ - 1]; }
251 
pop_back()252   void pop_back() {
253     DOUBLE_CONVERSION_ASSERT(!is_empty());
254     --length_;
255   }
256 
257  private:
258   T* start_;
259   int length_;
260 };
261 
262 
263 // Helper class for building result strings in a character buffer. The
264 // purpose of the class is to use safe operations that checks the
265 // buffer bounds on all operations in debug mode.
266 class StringBuilder {
267  public:
StringBuilder(char * buffer,int buffer_size)268   StringBuilder(char* buffer, int buffer_size)
269       : buffer_(buffer, buffer_size), position_(0) { }
270 
~StringBuilder()271   ~StringBuilder() { if (!is_finalized()) Finalize(); }
272 
size()273   int size() const { return buffer_.length(); }
274 
275   // Get the current position in the builder.
position()276   int position() const {
277     DOUBLE_CONVERSION_ASSERT(!is_finalized());
278     return position_;
279   }
280 
281   // Reset the position.
Reset()282   void Reset() { position_ = 0; }
283 
284   // Add a single character to the builder. It is not allowed to add
285   // 0-characters; use the Finalize() method to terminate the string
286   // instead.
AddCharacter(char c)287   void AddCharacter(char c) {
288     DOUBLE_CONVERSION_ASSERT(c != '\0');
289     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
290     buffer_[position_++] = c;
291   }
292 
293   // Add an entire string to the builder. Uses strlen() internally to
294   // compute the length of the input string.
AddString(const char * s)295   void AddString(const char* s) {
296     AddSubstring(s, StrLength(s));
297   }
298 
299   // Add the first 'n' characters of the given string 's' to the
300   // builder. The input string must have enough characters.
AddSubstring(const char * s,int n)301   void AddSubstring(const char* s, int n) {
302     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length());
303     DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s));
304     memmove(&buffer_[position_], s, n);
305     position_ += n;
306   }
307 
308 
309   // Add character padding to the builder. If count is non-positive,
310   // nothing is added to the builder.
AddPadding(char c,int count)311   void AddPadding(char c, int count) {
312     for (int i = 0; i < count; i++) {
313       AddCharacter(c);
314     }
315   }
316 
317   // Finalize the string by 0-terminating it and returning the buffer.
Finalize()318   char* Finalize() {
319     DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
320     buffer_[position_] = '\0';
321     // Make sure nobody managed to add a 0-character to the
322     // buffer while building the string.
323     DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
324     position_ = -1;
325     DOUBLE_CONVERSION_ASSERT(is_finalized());
326     return buffer_.start();
327   }
328 
329  private:
330   Vector<char> buffer_;
331   int position_;
332 
is_finalized()333   bool is_finalized() const { return position_ < 0; }
334 
335   DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
336 };
337 
338 // The type-based aliasing rule allows the compiler to assume that pointers of
339 // different types (for some definition of different) never alias each other.
340 // Thus the following code does not work:
341 //
342 // float f = foo();
343 // int fbits = *(int*)(&f);
344 //
345 // The compiler 'knows' that the int pointer can't refer to f since the types
346 // don't match, so the compiler may cache f in a register, leaving random data
347 // in fbits.  Using C++ style casts makes no difference, however a pointer to
348 // char data is assumed to alias any other pointer.  This is the 'memcpy
349 // exception'.
350 //
351 // Bit_cast uses the memcpy exception to move the bits from a variable of one
352 // type of a variable of another type.  Of course the end result is likely to
353 // be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
354 // will completely optimize BitCast away.
355 //
356 // There is an additional use for BitCast.
357 // Recent gccs will warn when they see casts that may result in breakage due to
358 // the type-based aliasing rule.  If you have checked that there is no breakage
359 // you can use BitCast to cast one pointer type to another.  This confuses gcc
360 // enough that it can no longer see that you have cast one pointer type to
361 // another thus avoiding the warning.
362 template <class Dest, class Source>
BitCast(const Source & source)363 Dest BitCast(const Source& source) {
364   // Compile time assertion: sizeof(Dest) == sizeof(Source)
365   // A compile error here means your Dest and Source have different sizes.
366 #if __cplusplus >= 201103L
367   static_assert(sizeof(Dest) == sizeof(Source),
368                 "source and destination size mismatch");
369 #else
370   DOUBLE_CONVERSION_UNUSED
371   typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
372 #endif
373 
374   Dest dest;
375   memmove(&dest, &source, sizeof(dest));
376   return dest;
377 }
378 
379 template <class Dest, class Source>
BitCast(Source * source)380 Dest BitCast(Source* source) {
381   return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
382 }
383 
384 }  // namespace double_conversion
385 
386 // ICU PATCH: Close ICU namespace
387 U_NAMESPACE_END
388 
389 #endif  // DOUBLE_CONVERSION_UTILS_H_
390 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
391