1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "Debug.hpp"
16 #include "EmulatedIntrinsics.hpp"
17 #include "OptimalIntrinsics.hpp"
18 #include "Print.hpp"
19 #include "Reactor.hpp"
20 #include "ReactorDebugInfo.hpp"
21
22 #include "ExecutableMemory.hpp"
23 #include "Optimizer.hpp"
24
25 #include "src/IceCfg.h"
26 #include "src/IceCfgNode.h"
27 #include "src/IceELFObjectWriter.h"
28 #include "src/IceELFStreamer.h"
29 #include "src/IceGlobalContext.h"
30 #include "src/IceGlobalInits.h"
31 #include "src/IceTypes.h"
32
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/FileSystem.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/raw_os_ostream.h"
37
38 #include "marl/event.h"
39
40 #if __has_feature(memory_sanitizer)
41 # include <sanitizer/msan_interface.h>
42 #endif
43
44 #if defined(_WIN32)
45 # ifndef WIN32_LEAN_AND_MEAN
46 # define WIN32_LEAN_AND_MEAN
47 # endif // !WIN32_LEAN_AND_MEAN
48 # ifndef NOMINMAX
49 # define NOMINMAX
50 # endif // !NOMINMAX
51 # include <Windows.h>
52 #endif
53
54 #include <array>
55 #include <iostream>
56 #include <limits>
57 #include <mutex>
58
59 // Subzero utility functions
60 // These functions only accept and return Subzero (Ice) types, and do not access any globals.
61 namespace {
62 namespace sz {
63
createFunction(Ice::GlobalContext * context,Ice::Type returnType,const std::vector<Ice::Type> & paramTypes)64 Ice::Cfg *createFunction(Ice::GlobalContext *context, Ice::Type returnType, const std::vector<Ice::Type> ¶mTypes)
65 {
66 uint32_t sequenceNumber = 0;
67 auto *function = Ice::Cfg::create(context, sequenceNumber).release();
68
69 function->setStackSizeLimit(512 * 1024); // 512 KiB
70
71 Ice::CfgLocalAllocatorScope allocScope{ function };
72
73 for(auto type : paramTypes)
74 {
75 Ice::Variable *arg = function->makeVariable(type);
76 function->addArg(arg);
77 }
78
79 Ice::CfgNode *node = function->makeNode();
80 function->setEntryNode(node);
81
82 return function;
83 }
84
getPointerType(Ice::Type elementType)85 Ice::Type getPointerType(Ice::Type elementType)
86 {
87 if(sizeof(void *) == 8)
88 {
89 return Ice::IceType_i64;
90 }
91 else
92 {
93 return Ice::IceType_i32;
94 }
95 }
96
allocateStackVariable(Ice::Cfg * function,Ice::Type type,int arraySize=0)97 Ice::Variable *allocateStackVariable(Ice::Cfg *function, Ice::Type type, int arraySize = 0)
98 {
99 int typeSize = Ice::typeWidthInBytes(type);
100 int totalSize = typeSize * (arraySize ? arraySize : 1);
101
102 auto bytes = Ice::ConstantInteger32::create(function->getContext(), Ice::IceType_i32, totalSize);
103 auto address = function->makeVariable(getPointerType(type));
104 auto alloca = Ice::InstAlloca::create(function, address, bytes, typeSize); // SRoA depends on the alignment to match the type size.
105 function->getEntryNode()->getInsts().push_front(alloca);
106
107 return address;
108 }
109
getConstantPointer(Ice::GlobalContext * context,void const * ptr)110 Ice::Constant *getConstantPointer(Ice::GlobalContext *context, void const *ptr)
111 {
112 if(sizeof(void *) == 8)
113 {
114 return context->getConstantInt64(reinterpret_cast<intptr_t>(ptr));
115 }
116 else
117 {
118 return context->getConstantInt32(reinterpret_cast<intptr_t>(ptr));
119 }
120 }
121
122 // TODO(amaiorano): remove this prototype once these are moved to separate header/cpp
123 Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType);
124
125 // Wrapper for calls on C functions with Ice types
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Type retTy,Ice::Operand * callTarget,const std::vector<Ice::Operand * > & iceArgs,bool isVariadic)126 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, Ice::Operand *callTarget, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic)
127 {
128 Ice::Variable *ret = nullptr;
129
130 // Subzero doesn't support boolean return values. Replace with an i32 temporarily,
131 // then truncate result to bool.
132 // TODO(b/151158858): Add support to Subzero's InstCall for bool-returning functions
133 const bool returningBool = (retTy == Ice::IceType_i1);
134 if(returningBool)
135 {
136 ret = function->makeVariable(Ice::IceType_i32);
137 }
138 else if(retTy != Ice::IceType_void)
139 {
140 ret = function->makeVariable(retTy);
141 }
142
143 auto call = Ice::InstCall::create(function, iceArgs.size(), ret, callTarget, false, false, isVariadic);
144 for(auto arg : iceArgs)
145 {
146 call->addArg(arg);
147 }
148
149 basicBlock->appendInst(call);
150
151 if(returningBool)
152 {
153 // Truncate result to bool so that if any (lsb) bits were set, result will be true
154 ret = createTruncate(function, basicBlock, ret, Ice::IceType_i1);
155 }
156
157 return ret;
158 }
159
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Type retTy,void const * fptr,const std::vector<Ice::Operand * > & iceArgs,bool isVariadic)160 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, void const *fptr, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic)
161 {
162 Ice::Operand *callTarget = getConstantPointer(function->getContext(), fptr);
163 return Call(function, basicBlock, retTy, callTarget, iceArgs, isVariadic);
164 }
165
166 // Wrapper for calls on C functions with Ice types
167 template<typename Return, typename... CArgs, typename... RArgs>
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Return (fptr)(CArgs...),RArgs &&...args)168 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Return(fptr)(CArgs...), RArgs &&... args)
169 {
170 static_assert(sizeof...(CArgs) == sizeof...(RArgs), "Expected number of args don't match");
171
172 Ice::Type retTy = T(rr::CToReactorT<Return>::type());
173 std::vector<Ice::Operand *> iceArgs{ std::forward<RArgs>(args)... };
174 return Call(function, basicBlock, retTy, reinterpret_cast<void const *>(fptr), iceArgs, false);
175 }
176
createTruncate(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Operand * from,Ice::Type toType)177 Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType)
178 {
179 Ice::Variable *to = function->makeVariable(toType);
180 Ice::InstCast *cast = Ice::InstCast::create(function, Ice::InstCast::Trunc, to, from);
181 basicBlock->appendInst(cast);
182 return to;
183 }
184
createLoad(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Operand * ptr,Ice::Type type,unsigned int align)185 Ice::Variable *createLoad(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *ptr, Ice::Type type, unsigned int align)
186 {
187 Ice::Variable *result = function->makeVariable(type);
188 auto load = Ice::InstLoad::create(function, result, ptr, align);
189 basicBlock->appendInst(load);
190
191 return result;
192 }
193
194 } // namespace sz
195 } // namespace
196
197 namespace rr {
198 class ELFMemoryStreamer;
199 class CoroutineGenerator;
200 } // namespace rr
201
202 namespace {
203
204 // Used to automatically invoke llvm_shutdown() when driver is unloaded
205 llvm::llvm_shutdown_obj llvmShutdownObj;
206
207 // Default configuration settings. Must be accessed under mutex lock.
208 std::mutex defaultConfigLock;
defaultConfig()209 rr::Config &defaultConfig()
210 {
211 // This uses a static in a function to avoid the cost of a global static
212 // initializer. See http://neugierig.org/software/chromium/notes/2011/08/static-initializers.html
213 static rr::Config config = rr::Config::Edit()
214 .apply({});
215 return config;
216 }
217
218 Ice::GlobalContext *context = nullptr;
219 Ice::Cfg *function = nullptr;
220 Ice::CfgNode *entryBlock = nullptr;
221 Ice::CfgNode *basicBlockTop = nullptr;
222 Ice::CfgNode *basicBlock = nullptr;
223 Ice::CfgLocalAllocatorScope *allocator = nullptr;
224 rr::ELFMemoryStreamer *routine = nullptr;
225
226 std::mutex codegenMutex;
227
228 Ice::ELFFileStreamer *elfFile = nullptr;
229 Ice::Fdstream *out = nullptr;
230
231 // Coroutine globals
232 rr::Type *coroYieldType = nullptr;
233 std::shared_ptr<rr::CoroutineGenerator> coroGen;
getOrCreateScheduler()234 marl::Scheduler &getOrCreateScheduler()
235 {
236 static auto scheduler = [] {
237 marl::Scheduler::Config cfg;
238 cfg.setWorkerThreadCount(8);
239 return std::make_unique<marl::Scheduler>(cfg);
240 }();
241
242 return *scheduler;
243 }
244
245 rr::Nucleus::OptimizerCallback *optimizerCallback = nullptr;
246
247 } // Anonymous namespace
248
249 namespace {
250
251 #if !defined(__i386__) && defined(_M_IX86)
252 # define __i386__ 1
253 #endif
254
255 #if !defined(__x86_64__) && (defined(_M_AMD64) || defined(_M_X64))
256 # define __x86_64__ 1
257 #endif
258
toIce(rr::Optimization::Level level)259 Ice::OptLevel toIce(rr::Optimization::Level level)
260 {
261 switch(level)
262 {
263 // Note that Opt_0 and Opt_1 are not implemented by Subzero
264 case rr::Optimization::Level::None: return Ice::Opt_m1;
265 case rr::Optimization::Level::Less: return Ice::Opt_m1;
266 case rr::Optimization::Level::Default: return Ice::Opt_2;
267 case rr::Optimization::Level::Aggressive: return Ice::Opt_2;
268 default: UNREACHABLE("Unknown Optimization Level %d", int(level));
269 }
270 return Ice::Opt_2;
271 }
272
stdToIceMemoryOrder(std::memory_order memoryOrder)273 Ice::Intrinsics::MemoryOrder stdToIceMemoryOrder(std::memory_order memoryOrder)
274 {
275 switch(memoryOrder)
276 {
277 case std::memory_order_relaxed: return Ice::Intrinsics::MemoryOrderRelaxed;
278 case std::memory_order_consume: return Ice::Intrinsics::MemoryOrderConsume;
279 case std::memory_order_acquire: return Ice::Intrinsics::MemoryOrderAcquire;
280 case std::memory_order_release: return Ice::Intrinsics::MemoryOrderRelease;
281 case std::memory_order_acq_rel: return Ice::Intrinsics::MemoryOrderAcquireRelease;
282 case std::memory_order_seq_cst: return Ice::Intrinsics::MemoryOrderSequentiallyConsistent;
283 }
284 return Ice::Intrinsics::MemoryOrderInvalid;
285 }
286
287 class CPUID
288 {
289 public:
290 const static bool ARM;
291 const static bool SSE4_1;
292
293 private:
cpuid(int registers[4],int info)294 static void cpuid(int registers[4], int info)
295 {
296 #if defined(__i386__) || defined(__x86_64__)
297 # if defined(_WIN32)
298 __cpuid(registers, info);
299 # else
300 __asm volatile("cpuid"
301 : "=a"(registers[0]), "=b"(registers[1]), "=c"(registers[2]), "=d"(registers[3])
302 : "a"(info));
303 # endif
304 #else
305 registers[0] = 0;
306 registers[1] = 0;
307 registers[2] = 0;
308 registers[3] = 0;
309 #endif
310 }
311
detectARM()312 constexpr static bool detectARM()
313 {
314 #if defined(__arm__) || defined(__aarch64__)
315 return true;
316 #elif defined(__i386__) || defined(__x86_64__)
317 return false;
318 #elif defined(__mips__)
319 return false;
320 #else
321 # error "Unknown architecture"
322 #endif
323 }
324
detectSSE4_1()325 static bool detectSSE4_1()
326 {
327 #if defined(__i386__) || defined(__x86_64__)
328 int registers[4];
329 cpuid(registers, 1);
330 return (registers[2] & 0x00080000) != 0;
331 #else
332 return false;
333 #endif
334 }
335 };
336
337 constexpr bool CPUID::ARM = CPUID::detectARM();
338 const bool CPUID::SSE4_1 = CPUID::detectSSE4_1();
339 constexpr bool emulateIntrinsics = false;
340 constexpr bool emulateMismatchedBitCast = CPUID::ARM;
341
342 constexpr bool subzeroDumpEnabled = false;
343 constexpr bool subzeroEmitTextAsm = false;
344
345 #if !ALLOW_DUMP
346 static_assert(!subzeroDumpEnabled, "Compile Subzero with ALLOW_DUMP=1 for subzeroDumpEnabled");
347 static_assert(!subzeroEmitTextAsm, "Compile Subzero with ALLOW_DUMP=1 for subzeroEmitTextAsm");
348 #endif
349
350 } // anonymous namespace
351
352 namespace rr {
353
BackendName()354 std::string BackendName()
355 {
356 return "Subzero";
357 }
358
359 const Capabilities Caps = {
360 true, // CoroutinesSupported
361 };
362
363 enum EmulatedType
364 {
365 EmulatedShift = 16,
366 EmulatedV2 = 2 << EmulatedShift,
367 EmulatedV4 = 4 << EmulatedShift,
368 EmulatedV8 = 8 << EmulatedShift,
369 EmulatedBits = EmulatedV2 | EmulatedV4 | EmulatedV8,
370
371 Type_v2i32 = Ice::IceType_v4i32 | EmulatedV2,
372 Type_v4i16 = Ice::IceType_v8i16 | EmulatedV4,
373 Type_v2i16 = Ice::IceType_v8i16 | EmulatedV2,
374 Type_v8i8 = Ice::IceType_v16i8 | EmulatedV8,
375 Type_v4i8 = Ice::IceType_v16i8 | EmulatedV4,
376 Type_v2f32 = Ice::IceType_v4f32 | EmulatedV2,
377 };
378
379 class Value : public Ice::Operand
380 {};
381 class SwitchCases : public Ice::InstSwitch
382 {};
383 class BasicBlock : public Ice::CfgNode
384 {};
385
T(Type * t)386 Ice::Type T(Type *t)
387 {
388 static_assert(static_cast<unsigned int>(Ice::IceType_NUM) < static_cast<unsigned int>(EmulatedBits), "Ice::Type overlaps with our emulated types!");
389 return (Ice::Type)(reinterpret_cast<std::intptr_t>(t) & ~EmulatedBits);
390 }
391
T(Ice::Type t)392 Type *T(Ice::Type t)
393 {
394 return reinterpret_cast<Type *>(t);
395 }
396
T(EmulatedType t)397 Type *T(EmulatedType t)
398 {
399 return reinterpret_cast<Type *>(t);
400 }
401
T(const std::vector<Type * > & types)402 std::vector<Ice::Type> T(const std::vector<Type *> &types)
403 {
404 std::vector<Ice::Type> result;
405 result.reserve(types.size());
406 for(auto &t : types)
407 {
408 result.push_back(T(t));
409 }
410 return result;
411 }
412
V(Ice::Operand * v)413 Value *V(Ice::Operand *v)
414 {
415 return reinterpret_cast<Value *>(v);
416 }
417
V(Value * v)418 Ice::Operand *V(Value *v)
419 {
420 return reinterpret_cast<Ice::Operand *>(v);
421 }
422
V(const std::vector<Value * > & values)423 std::vector<Ice::Operand *> V(const std::vector<Value *> &values)
424 {
425 std::vector<Ice::Operand *> result;
426 result.reserve(values.size());
427 for(auto &v : values)
428 {
429 result.push_back(V(v));
430 }
431 return result;
432 }
433
B(Ice::CfgNode * b)434 BasicBlock *B(Ice::CfgNode *b)
435 {
436 return reinterpret_cast<BasicBlock *>(b);
437 }
438
typeSize(Type * type)439 static size_t typeSize(Type *type)
440 {
441 if(reinterpret_cast<std::intptr_t>(type) & EmulatedBits)
442 {
443 switch(reinterpret_cast<std::intptr_t>(type))
444 {
445 case Type_v2i32: return 8;
446 case Type_v4i16: return 8;
447 case Type_v2i16: return 4;
448 case Type_v8i8: return 8;
449 case Type_v4i8: return 4;
450 case Type_v2f32: return 8;
451 default: ASSERT(false);
452 }
453 }
454
455 return Ice::typeWidthInBytes(T(type));
456 }
457
finalizeFunction()458 static void finalizeFunction()
459 {
460 // Create a return if none was added
461 if(::basicBlock->getInsts().empty() || ::basicBlock->getInsts().back().getKind() != Ice::Inst::Ret)
462 {
463 Nucleus::createRetVoid();
464 }
465
466 // Connect the entry block to the top of the initial basic block
467 auto br = Ice::InstBr::create(::function, ::basicBlockTop);
468 ::entryBlock->appendInst(br);
469 }
470
471 using ElfHeader = std::conditional<sizeof(void *) == 8, Elf64_Ehdr, Elf32_Ehdr>::type;
472 using SectionHeader = std::conditional<sizeof(void *) == 8, Elf64_Shdr, Elf32_Shdr>::type;
473
sectionHeader(const ElfHeader * elfHeader)474 inline const SectionHeader *sectionHeader(const ElfHeader *elfHeader)
475 {
476 return reinterpret_cast<const SectionHeader *>((intptr_t)elfHeader + elfHeader->e_shoff);
477 }
478
elfSection(const ElfHeader * elfHeader,int index)479 inline const SectionHeader *elfSection(const ElfHeader *elfHeader, int index)
480 {
481 return §ionHeader(elfHeader)[index];
482 }
483
relocateSymbol(const ElfHeader * elfHeader,const Elf32_Rel & relocation,const SectionHeader & relocationTable)484 static void *relocateSymbol(const ElfHeader *elfHeader, const Elf32_Rel &relocation, const SectionHeader &relocationTable)
485 {
486 const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info);
487
488 uint32_t index = relocation.getSymbol();
489 int table = relocationTable.sh_link;
490 void *symbolValue = nullptr;
491
492 if(index != SHN_UNDEF)
493 {
494 if(table == SHN_UNDEF) return nullptr;
495 const SectionHeader *symbolTable = elfSection(elfHeader, table);
496
497 uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize;
498 if(index >= symtab_entries)
499 {
500 ASSERT(index < symtab_entries && "Symbol Index out of range");
501 return nullptr;
502 }
503
504 intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset;
505 Elf32_Sym &symbol = ((Elf32_Sym *)symbolAddress)[index];
506 uint16_t section = symbol.st_shndx;
507
508 if(section != SHN_UNDEF && section < SHN_LORESERVE)
509 {
510 const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx);
511 symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset);
512 }
513 else
514 {
515 return nullptr;
516 }
517 }
518
519 intptr_t address = (intptr_t)elfHeader + target->sh_offset;
520 unaligned_ptr<int32_t> patchSite = (int32_t *)(address + relocation.r_offset);
521
522 if(CPUID::ARM)
523 {
524 switch(relocation.getType())
525 {
526 case R_ARM_NONE:
527 // No relocation
528 break;
529 case R_ARM_MOVW_ABS_NC:
530 {
531 uint32_t thumb = 0; // Calls to Thumb code not supported.
532 uint32_t lo = (uint32_t)(intptr_t)symbolValue | thumb;
533 *patchSite = (*patchSite & 0xFFF0F000) | ((lo & 0xF000) << 4) | (lo & 0x0FFF);
534 }
535 break;
536 case R_ARM_MOVT_ABS:
537 {
538 uint32_t hi = (uint32_t)(intptr_t)(symbolValue) >> 16;
539 *patchSite = (*patchSite & 0xFFF0F000) | ((hi & 0xF000) << 4) | (hi & 0x0FFF);
540 }
541 break;
542 default:
543 ASSERT(false && "Unsupported relocation type");
544 return nullptr;
545 }
546 }
547 else
548 {
549 switch(relocation.getType())
550 {
551 case R_386_NONE:
552 // No relocation
553 break;
554 case R_386_32:
555 *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite);
556 break;
557 case R_386_PC32:
558 *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite - (intptr_t)patchSite);
559 break;
560 default:
561 ASSERT(false && "Unsupported relocation type");
562 return nullptr;
563 }
564 }
565
566 return symbolValue;
567 }
568
relocateSymbol(const ElfHeader * elfHeader,const Elf64_Rela & relocation,const SectionHeader & relocationTable)569 static void *relocateSymbol(const ElfHeader *elfHeader, const Elf64_Rela &relocation, const SectionHeader &relocationTable)
570 {
571 const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info);
572
573 uint32_t index = relocation.getSymbol();
574 int table = relocationTable.sh_link;
575 void *symbolValue = nullptr;
576
577 if(index != SHN_UNDEF)
578 {
579 if(table == SHN_UNDEF) return nullptr;
580 const SectionHeader *symbolTable = elfSection(elfHeader, table);
581
582 uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize;
583 if(index >= symtab_entries)
584 {
585 ASSERT(index < symtab_entries && "Symbol Index out of range");
586 return nullptr;
587 }
588
589 intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset;
590 Elf64_Sym &symbol = ((Elf64_Sym *)symbolAddress)[index];
591 uint16_t section = symbol.st_shndx;
592
593 if(section != SHN_UNDEF && section < SHN_LORESERVE)
594 {
595 const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx);
596 symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset);
597 }
598 else
599 {
600 return nullptr;
601 }
602 }
603
604 intptr_t address = (intptr_t)elfHeader + target->sh_offset;
605 unaligned_ptr<int32_t> patchSite32 = (int32_t *)(address + relocation.r_offset);
606 unaligned_ptr<int64_t> patchSite64 = (int64_t *)(address + relocation.r_offset);
607
608 switch(relocation.getType())
609 {
610 case R_X86_64_NONE:
611 // No relocation
612 break;
613 case R_X86_64_64:
614 *patchSite64 = (int64_t)((intptr_t)symbolValue + *patchSite64 + relocation.r_addend);
615 break;
616 case R_X86_64_PC32:
617 *patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 - (intptr_t)patchSite32 + relocation.r_addend);
618 break;
619 case R_X86_64_32S:
620 *patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 + relocation.r_addend);
621 break;
622 default:
623 ASSERT(false && "Unsupported relocation type");
624 return nullptr;
625 }
626
627 return symbolValue;
628 }
629
630 struct EntryPoint
631 {
632 const void *entry;
633 size_t codeSize = 0;
634 };
635
loadImage(uint8_t * const elfImage,const std::vector<const char * > & functionNames)636 std::vector<EntryPoint> loadImage(uint8_t *const elfImage, const std::vector<const char *> &functionNames)
637 {
638 ASSERT(functionNames.size() > 0);
639 std::vector<EntryPoint> entryPoints(functionNames.size());
640
641 ElfHeader *elfHeader = (ElfHeader *)elfImage;
642
643 // TODO: assert?
644 if(!elfHeader->checkMagic())
645 {
646 return {};
647 }
648
649 // Expect ELF bitness to match platform
650 ASSERT(sizeof(void *) == 8 ? elfHeader->getFileClass() == ELFCLASS64 : elfHeader->getFileClass() == ELFCLASS32);
651 #if defined(__i386__)
652 ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_386);
653 #elif defined(__x86_64__)
654 ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_X86_64);
655 #elif defined(__arm__)
656 ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_ARM);
657 #elif defined(__aarch64__)
658 ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_AARCH64);
659 #elif defined(__mips__)
660 ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_MIPS);
661 #else
662 # error "Unsupported platform"
663 #endif
664
665 SectionHeader *sectionHeader = (SectionHeader *)(elfImage + elfHeader->e_shoff);
666
667 for(int i = 0; i < elfHeader->e_shnum; i++)
668 {
669 if(sectionHeader[i].sh_type == SHT_PROGBITS)
670 {
671 if(sectionHeader[i].sh_flags & SHF_EXECINSTR)
672 {
673 auto findSectionNameEntryIndex = [&]() -> size_t {
674 auto sectionNameOffset = sectionHeader[elfHeader->e_shstrndx].sh_offset + sectionHeader[i].sh_name;
675 const char *sectionName = reinterpret_cast<const char *>(elfImage + sectionNameOffset);
676
677 for(size_t j = 0; j < functionNames.size(); ++j)
678 {
679 if(strstr(sectionName, functionNames[j]) != nullptr)
680 {
681 return j;
682 }
683 }
684
685 UNREACHABLE("Failed to find executable section that matches input function names");
686 return static_cast<size_t>(-1);
687 };
688
689 size_t index = findSectionNameEntryIndex();
690 entryPoints[index].entry = elfImage + sectionHeader[i].sh_offset;
691 entryPoints[index].codeSize = sectionHeader[i].sh_size;
692 }
693 }
694 else if(sectionHeader[i].sh_type == SHT_REL)
695 {
696 ASSERT(sizeof(void *) == 4 && "UNIMPLEMENTED"); // Only expected/implemented for 32-bit code
697
698 for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++)
699 {
700 const Elf32_Rel &relocation = ((const Elf32_Rel *)(elfImage + sectionHeader[i].sh_offset))[index];
701 relocateSymbol(elfHeader, relocation, sectionHeader[i]);
702 }
703 }
704 else if(sectionHeader[i].sh_type == SHT_RELA)
705 {
706 ASSERT(sizeof(void *) == 8 && "UNIMPLEMENTED"); // Only expected/implemented for 64-bit code
707
708 for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++)
709 {
710 const Elf64_Rela &relocation = ((const Elf64_Rela *)(elfImage + sectionHeader[i].sh_offset))[index];
711 relocateSymbol(elfHeader, relocation, sectionHeader[i]);
712 }
713 }
714 }
715
716 return entryPoints;
717 }
718
719 template<typename T>
720 struct ExecutableAllocator
721 {
ExecutableAllocatorrr::ExecutableAllocator722 ExecutableAllocator() {}
723 template<class U>
ExecutableAllocatorrr::ExecutableAllocator724 ExecutableAllocator(const ExecutableAllocator<U> &other)
725 {}
726
727 using value_type = T;
728 using size_type = std::size_t;
729
allocaterr::ExecutableAllocator730 T *allocate(size_type n)
731 {
732 return (T *)allocateMemoryPages(
733 sizeof(T) * n, PERMISSION_READ | PERMISSION_WRITE, true);
734 }
735
deallocaterr::ExecutableAllocator736 void deallocate(T *p, size_type n)
737 {
738 deallocateMemoryPages(p, sizeof(T) * n);
739 }
740 };
741
742 class ELFMemoryStreamer : public Ice::ELFStreamer, public Routine
743 {
744 ELFMemoryStreamer(const ELFMemoryStreamer &) = delete;
745 ELFMemoryStreamer &operator=(const ELFMemoryStreamer &) = delete;
746
747 public:
ELFMemoryStreamer()748 ELFMemoryStreamer()
749 : Routine()
750 {
751 position = 0;
752 buffer.reserve(0x1000);
753 }
754
~ELFMemoryStreamer()755 ~ELFMemoryStreamer() override
756 {
757 }
758
write8(uint8_t Value)759 void write8(uint8_t Value) override
760 {
761 if(position == (uint64_t)buffer.size())
762 {
763 buffer.push_back(Value);
764 position++;
765 }
766 else if(position < (uint64_t)buffer.size())
767 {
768 buffer[position] = Value;
769 position++;
770 }
771 else
772 ASSERT(false && "UNIMPLEMENTED");
773 }
774
writeBytes(llvm::StringRef Bytes)775 void writeBytes(llvm::StringRef Bytes) override
776 {
777 std::size_t oldSize = buffer.size();
778 buffer.resize(oldSize + Bytes.size());
779 memcpy(&buffer[oldSize], Bytes.begin(), Bytes.size());
780 position += Bytes.size();
781 }
782
tell() const783 uint64_t tell() const override { return position; }
784
seek(uint64_t Off)785 void seek(uint64_t Off) override { position = Off; }
786
loadImageAndGetEntryPoints(const std::vector<const char * > & functionNames)787 std::vector<EntryPoint> loadImageAndGetEntryPoints(const std::vector<const char *> &functionNames)
788 {
789 auto entryPoints = loadImage(&buffer[0], functionNames);
790
791 #if defined(_WIN32)
792 FlushInstructionCache(GetCurrentProcess(), NULL, 0);
793 #else
794 for(auto &entryPoint : entryPoints)
795 {
796 __builtin___clear_cache((char *)entryPoint.entry, (char *)entryPoint.entry + entryPoint.codeSize);
797 }
798 #endif
799
800 return entryPoints;
801 }
802
finalize()803 void finalize()
804 {
805 position = std::numeric_limits<std::size_t>::max(); // Can't stream more data after this
806
807 protectMemoryPages(&buffer[0], buffer.size(), PERMISSION_READ | PERMISSION_EXECUTE);
808 }
809
setEntry(int index,const void * func)810 void setEntry(int index, const void *func)
811 {
812 ASSERT(func);
813 funcs[index] = func;
814 }
815
getEntry(int index) const816 const void *getEntry(int index) const override
817 {
818 ASSERT(funcs[index]);
819 return funcs[index];
820 }
821
addConstantData(const void * data,size_t size,size_t alignment=1)822 const void *addConstantData(const void *data, size_t size, size_t alignment = 1)
823 {
824 // Check if we already have a suitable constant.
825 for(const auto &c : constantsPool)
826 {
827 void *ptr = c.data.get();
828 size_t space = c.space;
829
830 void *alignedPtr = std::align(alignment, size, ptr, space);
831
832 if(space < size)
833 {
834 continue;
835 }
836
837 if(memcmp(data, alignedPtr, size) == 0)
838 {
839 return alignedPtr;
840 }
841 }
842
843 // TODO(b/148086935): Replace with a buffer allocator.
844 size_t space = size + alignment;
845 auto buf = std::unique_ptr<uint8_t[]>(new uint8_t[space]);
846 void *ptr = buf.get();
847 void *alignedPtr = std::align(alignment, size, ptr, space);
848 ASSERT(alignedPtr);
849 memcpy(alignedPtr, data, size);
850 constantsPool.emplace_back(std::move(buf), space);
851
852 return alignedPtr;
853 }
854
855 private:
856 struct Constant
857 {
Constantrr::ELFMemoryStreamer::Constant858 Constant(std::unique_ptr<uint8_t[]> data, size_t space)
859 : data(std::move(data))
860 , space(space)
861 {}
862
863 std::unique_ptr<uint8_t[]> data;
864 size_t space;
865 };
866
867 std::array<const void *, Nucleus::CoroutineEntryCount> funcs = {};
868 std::vector<uint8_t, ExecutableAllocator<uint8_t>> buffer;
869 std::size_t position;
870 std::vector<Constant> constantsPool;
871 };
872
873 #ifdef ENABLE_RR_PRINT
VPrintf(const std::vector<Value * > & vals)874 void VPrintf(const std::vector<Value *> &vals)
875 {
876 sz::Call(::function, ::basicBlock, Ice::IceType_i32, reinterpret_cast<const void *>(rr::DebugPrintf), V(vals), true);
877 }
878 #endif // ENABLE_RR_PRINT
879
Nucleus()880 Nucleus::Nucleus()
881 {
882 ::codegenMutex.lock(); // SubzeroReactor is currently not thread safe
883
884 Ice::ClFlags &Flags = Ice::ClFlags::Flags;
885 Ice::ClFlags::getParsedClFlags(Flags);
886
887 #if defined(__arm__)
888 Flags.setTargetArch(Ice::Target_ARM32);
889 Flags.setTargetInstructionSet(Ice::ARM32InstructionSet_HWDivArm);
890 #elif defined(__mips__)
891 Flags.setTargetArch(Ice::Target_MIPS32);
892 Flags.setTargetInstructionSet(Ice::BaseInstructionSet);
893 #else // x86
894 Flags.setTargetArch(sizeof(void *) == 8 ? Ice::Target_X8664 : Ice::Target_X8632);
895 Flags.setTargetInstructionSet(CPUID::SSE4_1 ? Ice::X86InstructionSet_SSE4_1 : Ice::X86InstructionSet_SSE2);
896 #endif
897 Flags.setOutFileType(Ice::FT_Elf);
898 Flags.setOptLevel(toIce(getDefaultConfig().getOptimization().getLevel()));
899 Flags.setVerbose(subzeroDumpEnabled ? Ice::IceV_Most : Ice::IceV_None);
900 Flags.setDisableHybridAssembly(true);
901
902 // Emit functions into separate sections in the ELF so we can find them by name
903 Flags.setFunctionSections(true);
904
905 static llvm::raw_os_ostream cout(std::cout);
906 static llvm::raw_os_ostream cerr(std::cerr);
907
908 if(subzeroEmitTextAsm)
909 {
910 // Decorate text asm with liveness info
911 Flags.setDecorateAsm(true);
912 }
913
914 if(false) // Write out to a file
915 {
916 std::error_code errorCode;
917 ::out = new Ice::Fdstream("out.o", errorCode, llvm::sys::fs::F_None);
918 ::elfFile = new Ice::ELFFileStreamer(*out);
919 ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfFile);
920 }
921 else
922 {
923 ELFMemoryStreamer *elfMemory = new ELFMemoryStreamer();
924 ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfMemory);
925 ::routine = elfMemory;
926 }
927
928 #if !__has_feature(memory_sanitizer)
929 // thread_local variables in shared libraries are initialized at load-time,
930 // but this is not observed by MemorySanitizer if the loader itself was not
931 // instrumented, leading to false-positive uninitialized variable errors.
932 ASSERT(Variable::unmaterializedVariables == nullptr);
933 #endif
934 Variable::unmaterializedVariables = new Variable::UnmaterializedVariables{};
935 }
936
~Nucleus()937 Nucleus::~Nucleus()
938 {
939 delete Variable::unmaterializedVariables;
940 Variable::unmaterializedVariables = nullptr;
941
942 delete ::routine;
943 ::routine = nullptr;
944
945 delete ::allocator;
946 ::allocator = nullptr;
947
948 delete ::function;
949 ::function = nullptr;
950
951 delete ::context;
952 ::context = nullptr;
953
954 delete ::elfFile;
955 ::elfFile = nullptr;
956
957 delete ::out;
958 ::out = nullptr;
959
960 ::entryBlock = nullptr;
961 ::basicBlock = nullptr;
962 ::basicBlockTop = nullptr;
963
964 ::codegenMutex.unlock();
965 }
966
setDefaultConfig(const Config & cfg)967 void Nucleus::setDefaultConfig(const Config &cfg)
968 {
969 std::unique_lock<std::mutex> lock(::defaultConfigLock);
970 ::defaultConfig() = cfg;
971 }
972
adjustDefaultConfig(const Config::Edit & cfgEdit)973 void Nucleus::adjustDefaultConfig(const Config::Edit &cfgEdit)
974 {
975 std::unique_lock<std::mutex> lock(::defaultConfigLock);
976 auto &config = ::defaultConfig();
977 config = cfgEdit.apply(config);
978 }
979
getDefaultConfig()980 Config Nucleus::getDefaultConfig()
981 {
982 std::unique_lock<std::mutex> lock(::defaultConfigLock);
983 return ::defaultConfig();
984 }
985
986 // This function lowers and produces executable binary code in memory for the input functions,
987 // and returns a Routine with the entry points to these functions.
988 template<size_t Count>
acquireRoutine(Ice::Cfg * const (& functions)[Count],const char * const (& names)[Count],const Config::Edit * cfgEdit)989 static std::shared_ptr<Routine> acquireRoutine(Ice::Cfg *const (&functions)[Count], const char *const (&names)[Count], const Config::Edit *cfgEdit)
990 {
991 // This logic is modeled after the IceCompiler, as well as GlobalContext::translateFunctions
992 // and GlobalContext::emitItems.
993
994 if(subzeroDumpEnabled)
995 {
996 // Output dump strings immediately, rather than once buffer is full. Useful for debugging.
997 ::context->getStrDump().SetUnbuffered();
998 }
999
1000 ::context->emitFileHeader();
1001
1002 // Translate
1003
1004 for(size_t i = 0; i < Count; ++i)
1005 {
1006 Ice::Cfg *currFunc = functions[i];
1007
1008 // Install function allocator in TLS for Cfg-specific container allocators
1009 Ice::CfgLocalAllocatorScope allocScope(currFunc);
1010
1011 currFunc->setFunctionName(Ice::GlobalString::createWithString(::context, names[i]));
1012
1013 if(::optimizerCallback)
1014 {
1015 Nucleus::OptimizerReport report;
1016 rr::optimize(currFunc, &report);
1017 ::optimizerCallback(&report);
1018 ::optimizerCallback = nullptr;
1019 }
1020 else
1021 {
1022 rr::optimize(currFunc);
1023 }
1024
1025 currFunc->computeInOutEdges();
1026 ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str());
1027
1028 currFunc->translate();
1029 ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str());
1030
1031 currFunc->getAssembler<>()->setInternal(currFunc->getInternal());
1032
1033 if(subzeroEmitTextAsm)
1034 {
1035 currFunc->emit();
1036 }
1037
1038 currFunc->emitIAS();
1039
1040 if(currFunc->hasError())
1041 {
1042 return nullptr;
1043 }
1044 }
1045
1046 // Emit items
1047
1048 ::context->lowerGlobals("");
1049
1050 auto objectWriter = ::context->getObjectWriter();
1051
1052 for(size_t i = 0; i < Count; ++i)
1053 {
1054 Ice::Cfg *currFunc = functions[i];
1055
1056 // Accumulate globals from functions to emit into the "last" section at the end
1057 auto globals = currFunc->getGlobalInits();
1058 if(globals && !globals->empty())
1059 {
1060 ::context->getGlobals()->merge(globals.get());
1061 }
1062
1063 auto assembler = currFunc->releaseAssembler();
1064 assembler->alignFunction();
1065 objectWriter->writeFunctionCode(currFunc->getFunctionName(), currFunc->getInternal(), assembler.get());
1066 }
1067
1068 ::context->lowerGlobals("last");
1069 ::context->lowerConstants();
1070 ::context->lowerJumpTables();
1071
1072 objectWriter->setUndefinedSyms(::context->getConstantExternSyms());
1073 ::context->emitTargetRODataSections();
1074 objectWriter->writeNonUserSections();
1075
1076 // Done compiling functions, get entry pointers to each of them
1077 auto entryPoints = ::routine->loadImageAndGetEntryPoints({ names, names + Count });
1078 ASSERT(entryPoints.size() == Count);
1079 for(size_t i = 0; i < entryPoints.size(); ++i)
1080 {
1081 ::routine->setEntry(i, entryPoints[i].entry);
1082 }
1083
1084 ::routine->finalize();
1085
1086 Routine *handoffRoutine = ::routine;
1087 ::routine = nullptr;
1088
1089 return std::shared_ptr<Routine>(handoffRoutine);
1090 }
1091
acquireRoutine(const char * name,const Config::Edit * cfgEdit)1092 std::shared_ptr<Routine> Nucleus::acquireRoutine(const char *name, const Config::Edit *cfgEdit /* = nullptr */)
1093 {
1094 finalizeFunction();
1095 return rr::acquireRoutine({ ::function }, { name }, cfgEdit);
1096 }
1097
allocateStackVariable(Type * t,int arraySize)1098 Value *Nucleus::allocateStackVariable(Type *t, int arraySize)
1099 {
1100 Ice::Type type = T(t);
1101 int typeSize = Ice::typeWidthInBytes(type);
1102 int totalSize = typeSize * (arraySize ? arraySize : 1);
1103
1104 auto bytes = Ice::ConstantInteger32::create(::context, Ice::IceType_i32, totalSize);
1105 auto address = ::function->makeVariable(T(getPointerType(t)));
1106 auto alloca = Ice::InstAlloca::create(::function, address, bytes, typeSize); // SRoA depends on the alignment to match the type size.
1107 ::function->getEntryNode()->getInsts().push_front(alloca);
1108
1109 return V(address);
1110 }
1111
createBasicBlock()1112 BasicBlock *Nucleus::createBasicBlock()
1113 {
1114 return B(::function->makeNode());
1115 }
1116
getInsertBlock()1117 BasicBlock *Nucleus::getInsertBlock()
1118 {
1119 return B(::basicBlock);
1120 }
1121
setInsertBlock(BasicBlock * basicBlock)1122 void Nucleus::setInsertBlock(BasicBlock *basicBlock)
1123 {
1124 // ASSERT(::basicBlock->getInsts().back().getTerminatorEdges().size() >= 0 && "Previous basic block must have a terminator");
1125
1126 ::basicBlock = basicBlock;
1127 }
1128
createFunction(Type * returnType,const std::vector<Type * > & paramTypes)1129 void Nucleus::createFunction(Type *returnType, const std::vector<Type *> ¶mTypes)
1130 {
1131 ASSERT(::function == nullptr);
1132 ASSERT(::allocator == nullptr);
1133 ASSERT(::entryBlock == nullptr);
1134 ASSERT(::basicBlock == nullptr);
1135 ASSERT(::basicBlockTop == nullptr);
1136
1137 ::function = sz::createFunction(::context, T(returnType), T(paramTypes));
1138
1139 // NOTE: The scoped allocator sets the TLS allocator to the one in the function. This global one
1140 // becomes invalid if another one is created; for example, when creating await and destroy functions
1141 // for coroutines, in which case, we must make sure to create a new scoped allocator for ::function again.
1142 // TODO: Get rid of this as a global, and create scoped allocs in every Nucleus function instead.
1143 ::allocator = new Ice::CfgLocalAllocatorScope(::function);
1144
1145 ::entryBlock = ::function->getEntryNode();
1146 ::basicBlock = ::function->makeNode();
1147 ::basicBlockTop = ::basicBlock;
1148 }
1149
getArgument(unsigned int index)1150 Value *Nucleus::getArgument(unsigned int index)
1151 {
1152 return V(::function->getArgs()[index]);
1153 }
1154
createRetVoid()1155 void Nucleus::createRetVoid()
1156 {
1157 RR_DEBUG_INFO_UPDATE_LOC();
1158
1159 // Code generated after this point is unreachable, so any variables
1160 // being read can safely return an undefined value. We have to avoid
1161 // materializing variables after the terminator ret instruction.
1162 Variable::killUnmaterialized();
1163
1164 Ice::InstRet *ret = Ice::InstRet::create(::function);
1165 ::basicBlock->appendInst(ret);
1166 }
1167
createRet(Value * v)1168 void Nucleus::createRet(Value *v)
1169 {
1170 RR_DEBUG_INFO_UPDATE_LOC();
1171
1172 // Code generated after this point is unreachable, so any variables
1173 // being read can safely return an undefined value. We have to avoid
1174 // materializing variables after the terminator ret instruction.
1175 Variable::killUnmaterialized();
1176
1177 Ice::InstRet *ret = Ice::InstRet::create(::function, v);
1178 ::basicBlock->appendInst(ret);
1179 }
1180
createBr(BasicBlock * dest)1181 void Nucleus::createBr(BasicBlock *dest)
1182 {
1183 RR_DEBUG_INFO_UPDATE_LOC();
1184 Variable::materializeAll();
1185
1186 auto br = Ice::InstBr::create(::function, dest);
1187 ::basicBlock->appendInst(br);
1188 }
1189
createCondBr(Value * cond,BasicBlock * ifTrue,BasicBlock * ifFalse)1190 void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse)
1191 {
1192 RR_DEBUG_INFO_UPDATE_LOC();
1193 Variable::materializeAll();
1194
1195 auto br = Ice::InstBr::create(::function, cond, ifTrue, ifFalse);
1196 ::basicBlock->appendInst(br);
1197 }
1198
isCommutative(Ice::InstArithmetic::OpKind op)1199 static bool isCommutative(Ice::InstArithmetic::OpKind op)
1200 {
1201 switch(op)
1202 {
1203 case Ice::InstArithmetic::Add:
1204 case Ice::InstArithmetic::Fadd:
1205 case Ice::InstArithmetic::Mul:
1206 case Ice::InstArithmetic::Fmul:
1207 case Ice::InstArithmetic::And:
1208 case Ice::InstArithmetic::Or:
1209 case Ice::InstArithmetic::Xor:
1210 return true;
1211 default:
1212 return false;
1213 }
1214 }
1215
createArithmetic(Ice::InstArithmetic::OpKind op,Value * lhs,Value * rhs)1216 static Value *createArithmetic(Ice::InstArithmetic::OpKind op, Value *lhs, Value *rhs)
1217 {
1218 ASSERT(lhs->getType() == rhs->getType() || llvm::isa<Ice::Constant>(rhs));
1219
1220 bool swapOperands = llvm::isa<Ice::Constant>(lhs) && isCommutative(op);
1221
1222 Ice::Variable *result = ::function->makeVariable(lhs->getType());
1223 Ice::InstArithmetic *arithmetic = Ice::InstArithmetic::create(::function, op, result, swapOperands ? rhs : lhs, swapOperands ? lhs : rhs);
1224 ::basicBlock->appendInst(arithmetic);
1225
1226 return V(result);
1227 }
1228
createAdd(Value * lhs,Value * rhs)1229 Value *Nucleus::createAdd(Value *lhs, Value *rhs)
1230 {
1231 RR_DEBUG_INFO_UPDATE_LOC();
1232 return createArithmetic(Ice::InstArithmetic::Add, lhs, rhs);
1233 }
1234
createSub(Value * lhs,Value * rhs)1235 Value *Nucleus::createSub(Value *lhs, Value *rhs)
1236 {
1237 RR_DEBUG_INFO_UPDATE_LOC();
1238 return createArithmetic(Ice::InstArithmetic::Sub, lhs, rhs);
1239 }
1240
createMul(Value * lhs,Value * rhs)1241 Value *Nucleus::createMul(Value *lhs, Value *rhs)
1242 {
1243 RR_DEBUG_INFO_UPDATE_LOC();
1244 return createArithmetic(Ice::InstArithmetic::Mul, lhs, rhs);
1245 }
1246
createUDiv(Value * lhs,Value * rhs)1247 Value *Nucleus::createUDiv(Value *lhs, Value *rhs)
1248 {
1249 RR_DEBUG_INFO_UPDATE_LOC();
1250 return createArithmetic(Ice::InstArithmetic::Udiv, lhs, rhs);
1251 }
1252
createSDiv(Value * lhs,Value * rhs)1253 Value *Nucleus::createSDiv(Value *lhs, Value *rhs)
1254 {
1255 RR_DEBUG_INFO_UPDATE_LOC();
1256 return createArithmetic(Ice::InstArithmetic::Sdiv, lhs, rhs);
1257 }
1258
createFAdd(Value * lhs,Value * rhs)1259 Value *Nucleus::createFAdd(Value *lhs, Value *rhs)
1260 {
1261 RR_DEBUG_INFO_UPDATE_LOC();
1262 return createArithmetic(Ice::InstArithmetic::Fadd, lhs, rhs);
1263 }
1264
createFSub(Value * lhs,Value * rhs)1265 Value *Nucleus::createFSub(Value *lhs, Value *rhs)
1266 {
1267 RR_DEBUG_INFO_UPDATE_LOC();
1268 return createArithmetic(Ice::InstArithmetic::Fsub, lhs, rhs);
1269 }
1270
createFMul(Value * lhs,Value * rhs)1271 Value *Nucleus::createFMul(Value *lhs, Value *rhs)
1272 {
1273 RR_DEBUG_INFO_UPDATE_LOC();
1274 return createArithmetic(Ice::InstArithmetic::Fmul, lhs, rhs);
1275 }
1276
createFDiv(Value * lhs,Value * rhs)1277 Value *Nucleus::createFDiv(Value *lhs, Value *rhs)
1278 {
1279 RR_DEBUG_INFO_UPDATE_LOC();
1280 return createArithmetic(Ice::InstArithmetic::Fdiv, lhs, rhs);
1281 }
1282
createURem(Value * lhs,Value * rhs)1283 Value *Nucleus::createURem(Value *lhs, Value *rhs)
1284 {
1285 RR_DEBUG_INFO_UPDATE_LOC();
1286 return createArithmetic(Ice::InstArithmetic::Urem, lhs, rhs);
1287 }
1288
createSRem(Value * lhs,Value * rhs)1289 Value *Nucleus::createSRem(Value *lhs, Value *rhs)
1290 {
1291 RR_DEBUG_INFO_UPDATE_LOC();
1292 return createArithmetic(Ice::InstArithmetic::Srem, lhs, rhs);
1293 }
1294
createFRem(Value * lhs,Value * rhs)1295 Value *Nucleus::createFRem(Value *lhs, Value *rhs)
1296 {
1297 RR_DEBUG_INFO_UPDATE_LOC();
1298 // TODO(b/148139679) Fix Subzero generating invalid code for FRem on vector types
1299 // createArithmetic(Ice::InstArithmetic::Frem, lhs, rhs);
1300 UNIMPLEMENTED("b/148139679 Nucleus::createFRem");
1301 return nullptr;
1302 }
1303
operator %(RValue<Float4> lhs,RValue<Float4> rhs)1304 RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs)
1305 {
1306 return emulated::FRem(lhs, rhs);
1307 }
1308
createShl(Value * lhs,Value * rhs)1309 Value *Nucleus::createShl(Value *lhs, Value *rhs)
1310 {
1311 RR_DEBUG_INFO_UPDATE_LOC();
1312 return createArithmetic(Ice::InstArithmetic::Shl, lhs, rhs);
1313 }
1314
createLShr(Value * lhs,Value * rhs)1315 Value *Nucleus::createLShr(Value *lhs, Value *rhs)
1316 {
1317 RR_DEBUG_INFO_UPDATE_LOC();
1318 return createArithmetic(Ice::InstArithmetic::Lshr, lhs, rhs);
1319 }
1320
createAShr(Value * lhs,Value * rhs)1321 Value *Nucleus::createAShr(Value *lhs, Value *rhs)
1322 {
1323 RR_DEBUG_INFO_UPDATE_LOC();
1324 return createArithmetic(Ice::InstArithmetic::Ashr, lhs, rhs);
1325 }
1326
createAnd(Value * lhs,Value * rhs)1327 Value *Nucleus::createAnd(Value *lhs, Value *rhs)
1328 {
1329 RR_DEBUG_INFO_UPDATE_LOC();
1330 return createArithmetic(Ice::InstArithmetic::And, lhs, rhs);
1331 }
1332
createOr(Value * lhs,Value * rhs)1333 Value *Nucleus::createOr(Value *lhs, Value *rhs)
1334 {
1335 RR_DEBUG_INFO_UPDATE_LOC();
1336 return createArithmetic(Ice::InstArithmetic::Or, lhs, rhs);
1337 }
1338
createXor(Value * lhs,Value * rhs)1339 Value *Nucleus::createXor(Value *lhs, Value *rhs)
1340 {
1341 RR_DEBUG_INFO_UPDATE_LOC();
1342 return createArithmetic(Ice::InstArithmetic::Xor, lhs, rhs);
1343 }
1344
createNeg(Value * v)1345 Value *Nucleus::createNeg(Value *v)
1346 {
1347 RR_DEBUG_INFO_UPDATE_LOC();
1348 return createSub(createNullValue(T(v->getType())), v);
1349 }
1350
createFNeg(Value * v)1351 Value *Nucleus::createFNeg(Value *v)
1352 {
1353 RR_DEBUG_INFO_UPDATE_LOC();
1354 double c[4] = { -0.0, -0.0, -0.0, -0.0 };
1355 Value *negativeZero = Ice::isVectorType(v->getType()) ? createConstantVector(c, T(v->getType())) : V(::context->getConstantFloat(-0.0f));
1356
1357 return createFSub(negativeZero, v);
1358 }
1359
createNot(Value * v)1360 Value *Nucleus::createNot(Value *v)
1361 {
1362 RR_DEBUG_INFO_UPDATE_LOC();
1363 if(Ice::isScalarIntegerType(v->getType()))
1364 {
1365 return createXor(v, V(::context->getConstantInt(v->getType(), -1)));
1366 }
1367 else // Vector
1368 {
1369 int64_t c[16] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
1370 return createXor(v, createConstantVector(c, T(v->getType())));
1371 }
1372 }
1373
validateAtomicAndMemoryOrderArgs(bool atomic,std::memory_order memoryOrder)1374 static void validateAtomicAndMemoryOrderArgs(bool atomic, std::memory_order memoryOrder)
1375 {
1376 #if defined(__i386__) || defined(__x86_64__)
1377 // We're good, atomics and strictest memory order (except seq_cst) are guaranteed.
1378 // Note that sequential memory ordering could be guaranteed by using x86's LOCK prefix.
1379 // Note also that relaxed memory order could be implemented using MOVNTPS and friends.
1380 #else
1381 if(atomic)
1382 {
1383 UNIMPLEMENTED("b/150475088 Atomic load/store not implemented for current platform");
1384 }
1385 if(memoryOrder != std::memory_order_relaxed)
1386 {
1387 UNIMPLEMENTED("b/150475088 Memory order other than memory_order_relaxed not implemented for current platform");
1388 }
1389 #endif
1390
1391 // Vulkan doesn't allow sequential memory order
1392 ASSERT(memoryOrder != std::memory_order_seq_cst);
1393 }
1394
createLoad(Value * ptr,Type * type,bool isVolatile,unsigned int align,bool atomic,std::memory_order memoryOrder)1395 Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder)
1396 {
1397 RR_DEBUG_INFO_UPDATE_LOC();
1398 validateAtomicAndMemoryOrderArgs(atomic, memoryOrder);
1399
1400 int valueType = (int)reinterpret_cast<intptr_t>(type);
1401 Ice::Variable *result = nullptr;
1402
1403 if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack.
1404 {
1405 if(emulateIntrinsics)
1406 {
1407 if(typeSize(type) == 4)
1408 {
1409 auto pointer = RValue<Pointer<Byte>>(ptr);
1410 Int x = *Pointer<Int>(pointer);
1411
1412 Int4 vector;
1413 vector = Insert(vector, x, 0);
1414
1415 result = ::function->makeVariable(T(type));
1416 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue());
1417 ::basicBlock->appendInst(bitcast);
1418 }
1419 else if(typeSize(type) == 8)
1420 {
1421 ASSERT_MSG(!atomic, "Emulated 64-bit loads are not atomic");
1422 auto pointer = RValue<Pointer<Byte>>(ptr);
1423 Int x = *Pointer<Int>(pointer);
1424 Int y = *Pointer<Int>(pointer + 4);
1425
1426 Int4 vector;
1427 vector = Insert(vector, x, 0);
1428 vector = Insert(vector, y, 1);
1429
1430 result = ::function->makeVariable(T(type));
1431 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue());
1432 ::basicBlock->appendInst(bitcast);
1433 }
1434 else
1435 UNREACHABLE("typeSize(type): %d", int(typeSize(type)));
1436 }
1437 else
1438 {
1439 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::LoadSubVector, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
1440 result = ::function->makeVariable(T(type));
1441 auto load = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
1442 load->addArg(ptr);
1443 load->addArg(::context->getConstantInt32(typeSize(type)));
1444 ::basicBlock->appendInst(load);
1445 }
1446 }
1447 else
1448 {
1449 result = sz::createLoad(::function, ::basicBlock, V(ptr), T(type), align);
1450 }
1451
1452 ASSERT(result);
1453 return V(result);
1454 }
1455
createStore(Value * value,Value * ptr,Type * type,bool isVolatile,unsigned int align,bool atomic,std::memory_order memoryOrder)1456 Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder)
1457 {
1458 RR_DEBUG_INFO_UPDATE_LOC();
1459 validateAtomicAndMemoryOrderArgs(atomic, memoryOrder);
1460
1461 #if __has_feature(memory_sanitizer)
1462 // Mark all (non-stack) memory writes as initialized by calling __msan_unpoison
1463 if(align != 0)
1464 {
1465 auto call = Ice::InstCall::create(::function, 2, nullptr, ::context->getConstantInt64(reinterpret_cast<intptr_t>(__msan_unpoison)), false);
1466 call->addArg(ptr);
1467 call->addArg(::context->getConstantInt64(typeSize(type)));
1468 ::basicBlock->appendInst(call);
1469 }
1470 #endif
1471
1472 int valueType = (int)reinterpret_cast<intptr_t>(type);
1473
1474 if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack.
1475 {
1476 if(emulateIntrinsics)
1477 {
1478 if(typeSize(type) == 4)
1479 {
1480 Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32);
1481 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value);
1482 ::basicBlock->appendInst(bitcast);
1483
1484 RValue<Int4> v(V(vector));
1485
1486 auto pointer = RValue<Pointer<Byte>>(ptr);
1487 Int x = Extract(v, 0);
1488 *Pointer<Int>(pointer) = x;
1489 }
1490 else if(typeSize(type) == 8)
1491 {
1492 ASSERT_MSG(!atomic, "Emulated 64-bit stores are not atomic");
1493 Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32);
1494 auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value);
1495 ::basicBlock->appendInst(bitcast);
1496
1497 RValue<Int4> v(V(vector));
1498
1499 auto pointer = RValue<Pointer<Byte>>(ptr);
1500 Int x = Extract(v, 0);
1501 *Pointer<Int>(pointer) = x;
1502 Int y = Extract(v, 1);
1503 *Pointer<Int>(pointer + 4) = y;
1504 }
1505 else
1506 UNREACHABLE("typeSize(type): %d", int(typeSize(type)));
1507 }
1508 else
1509 {
1510 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::StoreSubVector, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1511 auto store = Ice::InstIntrinsic::create(::function, 3, nullptr, intrinsic);
1512 store->addArg(value);
1513 store->addArg(ptr);
1514 store->addArg(::context->getConstantInt32(typeSize(type)));
1515 ::basicBlock->appendInst(store);
1516 }
1517 }
1518 else
1519 {
1520 ASSERT(value->getType() == T(type));
1521
1522 auto store = Ice::InstStore::create(::function, V(value), V(ptr), align);
1523 ::basicBlock->appendInst(store);
1524 }
1525
1526 return value;
1527 }
1528
createGEP(Value * ptr,Type * type,Value * index,bool unsignedIndex)1529 Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex)
1530 {
1531 RR_DEBUG_INFO_UPDATE_LOC();
1532 ASSERT(index->getType() == Ice::IceType_i32);
1533
1534 if(auto *constant = llvm::dyn_cast<Ice::ConstantInteger32>(index))
1535 {
1536 int32_t offset = constant->getValue() * (int)typeSize(type);
1537
1538 if(offset == 0)
1539 {
1540 return ptr;
1541 }
1542
1543 return createAdd(ptr, createConstantInt(offset));
1544 }
1545
1546 if(!Ice::isByteSizedType(T(type)))
1547 {
1548 index = createMul(index, createConstantInt((int)typeSize(type)));
1549 }
1550
1551 if(sizeof(void *) == 8)
1552 {
1553 if(unsignedIndex)
1554 {
1555 index = createZExt(index, T(Ice::IceType_i64));
1556 }
1557 else
1558 {
1559 index = createSExt(index, T(Ice::IceType_i64));
1560 }
1561 }
1562
1563 return createAdd(ptr, index);
1564 }
1565
createAtomicRMW(Ice::Intrinsics::AtomicRMWOperation rmwOp,Value * ptr,Value * value,std::memory_order memoryOrder)1566 static Value *createAtomicRMW(Ice::Intrinsics::AtomicRMWOperation rmwOp, Value *ptr, Value *value, std::memory_order memoryOrder)
1567 {
1568 Ice::Variable *result = ::function->makeVariable(value->getType());
1569
1570 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicRMW, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1571 auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic);
1572 auto op = ::context->getConstantInt32(rmwOp);
1573 auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder));
1574 inst->addArg(op);
1575 inst->addArg(ptr);
1576 inst->addArg(value);
1577 inst->addArg(order);
1578 ::basicBlock->appendInst(inst);
1579
1580 return V(result);
1581 }
1582
createAtomicAdd(Value * ptr,Value * value,std::memory_order memoryOrder)1583 Value *Nucleus::createAtomicAdd(Value *ptr, Value *value, std::memory_order memoryOrder)
1584 {
1585 RR_DEBUG_INFO_UPDATE_LOC();
1586 return createAtomicRMW(Ice::Intrinsics::AtomicAdd, ptr, value, memoryOrder);
1587 }
1588
createAtomicSub(Value * ptr,Value * value,std::memory_order memoryOrder)1589 Value *Nucleus::createAtomicSub(Value *ptr, Value *value, std::memory_order memoryOrder)
1590 {
1591 RR_DEBUG_INFO_UPDATE_LOC();
1592 return createAtomicRMW(Ice::Intrinsics::AtomicSub, ptr, value, memoryOrder);
1593 }
1594
createAtomicAnd(Value * ptr,Value * value,std::memory_order memoryOrder)1595 Value *Nucleus::createAtomicAnd(Value *ptr, Value *value, std::memory_order memoryOrder)
1596 {
1597 RR_DEBUG_INFO_UPDATE_LOC();
1598 return createAtomicRMW(Ice::Intrinsics::AtomicAnd, ptr, value, memoryOrder);
1599 }
1600
createAtomicOr(Value * ptr,Value * value,std::memory_order memoryOrder)1601 Value *Nucleus::createAtomicOr(Value *ptr, Value *value, std::memory_order memoryOrder)
1602 {
1603 RR_DEBUG_INFO_UPDATE_LOC();
1604 return createAtomicRMW(Ice::Intrinsics::AtomicOr, ptr, value, memoryOrder);
1605 }
1606
createAtomicXor(Value * ptr,Value * value,std::memory_order memoryOrder)1607 Value *Nucleus::createAtomicXor(Value *ptr, Value *value, std::memory_order memoryOrder)
1608 {
1609 RR_DEBUG_INFO_UPDATE_LOC();
1610 return createAtomicRMW(Ice::Intrinsics::AtomicXor, ptr, value, memoryOrder);
1611 }
1612
createAtomicExchange(Value * ptr,Value * value,std::memory_order memoryOrder)1613 Value *Nucleus::createAtomicExchange(Value *ptr, Value *value, std::memory_order memoryOrder)
1614 {
1615 RR_DEBUG_INFO_UPDATE_LOC();
1616 return createAtomicRMW(Ice::Intrinsics::AtomicExchange, ptr, value, memoryOrder);
1617 }
1618
createAtomicCompareExchange(Value * ptr,Value * value,Value * compare,std::memory_order memoryOrderEqual,std::memory_order memoryOrderUnequal)1619 Value *Nucleus::createAtomicCompareExchange(Value *ptr, Value *value, Value *compare, std::memory_order memoryOrderEqual, std::memory_order memoryOrderUnequal)
1620 {
1621 RR_DEBUG_INFO_UPDATE_LOC();
1622 Ice::Variable *result = ::function->makeVariable(value->getType());
1623
1624 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicCmpxchg, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1625 auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic);
1626 auto orderEq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderEqual));
1627 auto orderNeq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderUnequal));
1628 inst->addArg(ptr);
1629 inst->addArg(compare);
1630 inst->addArg(value);
1631 inst->addArg(orderEq);
1632 inst->addArg(orderNeq);
1633 ::basicBlock->appendInst(inst);
1634
1635 return V(result);
1636 }
1637
createCast(Ice::InstCast::OpKind op,Value * v,Type * destType)1638 static Value *createCast(Ice::InstCast::OpKind op, Value *v, Type *destType)
1639 {
1640 if(v->getType() == T(destType))
1641 {
1642 return v;
1643 }
1644
1645 Ice::Variable *result = ::function->makeVariable(T(destType));
1646 Ice::InstCast *cast = Ice::InstCast::create(::function, op, result, v);
1647 ::basicBlock->appendInst(cast);
1648
1649 return V(result);
1650 }
1651
createTrunc(Value * v,Type * destType)1652 Value *Nucleus::createTrunc(Value *v, Type *destType)
1653 {
1654 RR_DEBUG_INFO_UPDATE_LOC();
1655 return createCast(Ice::InstCast::Trunc, v, destType);
1656 }
1657
createZExt(Value * v,Type * destType)1658 Value *Nucleus::createZExt(Value *v, Type *destType)
1659 {
1660 RR_DEBUG_INFO_UPDATE_LOC();
1661 return createCast(Ice::InstCast::Zext, v, destType);
1662 }
1663
createSExt(Value * v,Type * destType)1664 Value *Nucleus::createSExt(Value *v, Type *destType)
1665 {
1666 RR_DEBUG_INFO_UPDATE_LOC();
1667 return createCast(Ice::InstCast::Sext, v, destType);
1668 }
1669
createFPToUI(Value * v,Type * destType)1670 Value *Nucleus::createFPToUI(Value *v, Type *destType)
1671 {
1672 RR_DEBUG_INFO_UPDATE_LOC();
1673 return createCast(Ice::InstCast::Fptoui, v, destType);
1674 }
1675
createFPToSI(Value * v,Type * destType)1676 Value *Nucleus::createFPToSI(Value *v, Type *destType)
1677 {
1678 RR_DEBUG_INFO_UPDATE_LOC();
1679 return createCast(Ice::InstCast::Fptosi, v, destType);
1680 }
1681
createSIToFP(Value * v,Type * destType)1682 Value *Nucleus::createSIToFP(Value *v, Type *destType)
1683 {
1684 RR_DEBUG_INFO_UPDATE_LOC();
1685 return createCast(Ice::InstCast::Sitofp, v, destType);
1686 }
1687
createFPTrunc(Value * v,Type * destType)1688 Value *Nucleus::createFPTrunc(Value *v, Type *destType)
1689 {
1690 RR_DEBUG_INFO_UPDATE_LOC();
1691 return createCast(Ice::InstCast::Fptrunc, v, destType);
1692 }
1693
createFPExt(Value * v,Type * destType)1694 Value *Nucleus::createFPExt(Value *v, Type *destType)
1695 {
1696 RR_DEBUG_INFO_UPDATE_LOC();
1697 return createCast(Ice::InstCast::Fpext, v, destType);
1698 }
1699
createBitCast(Value * v,Type * destType)1700 Value *Nucleus::createBitCast(Value *v, Type *destType)
1701 {
1702 RR_DEBUG_INFO_UPDATE_LOC();
1703 // Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need
1704 // support for casting between scalars and wide vectors. For platforms where this is not supported,
1705 // emulate them by writing to the stack and reading back as the destination type.
1706 if(emulateMismatchedBitCast)
1707 {
1708 if(!Ice::isVectorType(v->getType()) && Ice::isVectorType(T(destType)))
1709 {
1710 Value *address = allocateStackVariable(destType);
1711 createStore(v, address, T(v->getType()));
1712 return createLoad(address, destType);
1713 }
1714 else if(Ice::isVectorType(v->getType()) && !Ice::isVectorType(T(destType)))
1715 {
1716 Value *address = allocateStackVariable(T(v->getType()));
1717 createStore(v, address, T(v->getType()));
1718 return createLoad(address, destType);
1719 }
1720 }
1721
1722 return createCast(Ice::InstCast::Bitcast, v, destType);
1723 }
1724
createIntCompare(Ice::InstIcmp::ICond condition,Value * lhs,Value * rhs)1725 static Value *createIntCompare(Ice::InstIcmp::ICond condition, Value *lhs, Value *rhs)
1726 {
1727 ASSERT(lhs->getType() == rhs->getType());
1728
1729 auto result = ::function->makeVariable(Ice::isScalarIntegerType(lhs->getType()) ? Ice::IceType_i1 : lhs->getType());
1730 auto cmp = Ice::InstIcmp::create(::function, condition, result, lhs, rhs);
1731 ::basicBlock->appendInst(cmp);
1732
1733 return V(result);
1734 }
1735
createICmpEQ(Value * lhs,Value * rhs)1736 Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs)
1737 {
1738 RR_DEBUG_INFO_UPDATE_LOC();
1739 return createIntCompare(Ice::InstIcmp::Eq, lhs, rhs);
1740 }
1741
createICmpNE(Value * lhs,Value * rhs)1742 Value *Nucleus::createICmpNE(Value *lhs, Value *rhs)
1743 {
1744 RR_DEBUG_INFO_UPDATE_LOC();
1745 return createIntCompare(Ice::InstIcmp::Ne, lhs, rhs);
1746 }
1747
createICmpUGT(Value * lhs,Value * rhs)1748 Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs)
1749 {
1750 RR_DEBUG_INFO_UPDATE_LOC();
1751 return createIntCompare(Ice::InstIcmp::Ugt, lhs, rhs);
1752 }
1753
createICmpUGE(Value * lhs,Value * rhs)1754 Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs)
1755 {
1756 RR_DEBUG_INFO_UPDATE_LOC();
1757 return createIntCompare(Ice::InstIcmp::Uge, lhs, rhs);
1758 }
1759
createICmpULT(Value * lhs,Value * rhs)1760 Value *Nucleus::createICmpULT(Value *lhs, Value *rhs)
1761 {
1762 RR_DEBUG_INFO_UPDATE_LOC();
1763 return createIntCompare(Ice::InstIcmp::Ult, lhs, rhs);
1764 }
1765
createICmpULE(Value * lhs,Value * rhs)1766 Value *Nucleus::createICmpULE(Value *lhs, Value *rhs)
1767 {
1768 RR_DEBUG_INFO_UPDATE_LOC();
1769 return createIntCompare(Ice::InstIcmp::Ule, lhs, rhs);
1770 }
1771
createICmpSGT(Value * lhs,Value * rhs)1772 Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs)
1773 {
1774 RR_DEBUG_INFO_UPDATE_LOC();
1775 return createIntCompare(Ice::InstIcmp::Sgt, lhs, rhs);
1776 }
1777
createICmpSGE(Value * lhs,Value * rhs)1778 Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs)
1779 {
1780 RR_DEBUG_INFO_UPDATE_LOC();
1781 return createIntCompare(Ice::InstIcmp::Sge, lhs, rhs);
1782 }
1783
createICmpSLT(Value * lhs,Value * rhs)1784 Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs)
1785 {
1786 RR_DEBUG_INFO_UPDATE_LOC();
1787 return createIntCompare(Ice::InstIcmp::Slt, lhs, rhs);
1788 }
1789
createICmpSLE(Value * lhs,Value * rhs)1790 Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs)
1791 {
1792 RR_DEBUG_INFO_UPDATE_LOC();
1793 return createIntCompare(Ice::InstIcmp::Sle, lhs, rhs);
1794 }
1795
createFloatCompare(Ice::InstFcmp::FCond condition,Value * lhs,Value * rhs)1796 static Value *createFloatCompare(Ice::InstFcmp::FCond condition, Value *lhs, Value *rhs)
1797 {
1798 ASSERT(lhs->getType() == rhs->getType());
1799 ASSERT(Ice::isScalarFloatingType(lhs->getType()) || lhs->getType() == Ice::IceType_v4f32);
1800
1801 auto result = ::function->makeVariable(Ice::isScalarFloatingType(lhs->getType()) ? Ice::IceType_i1 : Ice::IceType_v4i32);
1802 auto cmp = Ice::InstFcmp::create(::function, condition, result, lhs, rhs);
1803 ::basicBlock->appendInst(cmp);
1804
1805 return V(result);
1806 }
1807
createFCmpOEQ(Value * lhs,Value * rhs)1808 Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs)
1809 {
1810 RR_DEBUG_INFO_UPDATE_LOC();
1811 return createFloatCompare(Ice::InstFcmp::Oeq, lhs, rhs);
1812 }
1813
createFCmpOGT(Value * lhs,Value * rhs)1814 Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs)
1815 {
1816 RR_DEBUG_INFO_UPDATE_LOC();
1817 return createFloatCompare(Ice::InstFcmp::Ogt, lhs, rhs);
1818 }
1819
createFCmpOGE(Value * lhs,Value * rhs)1820 Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs)
1821 {
1822 RR_DEBUG_INFO_UPDATE_LOC();
1823 return createFloatCompare(Ice::InstFcmp::Oge, lhs, rhs);
1824 }
1825
createFCmpOLT(Value * lhs,Value * rhs)1826 Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs)
1827 {
1828 RR_DEBUG_INFO_UPDATE_LOC();
1829 return createFloatCompare(Ice::InstFcmp::Olt, lhs, rhs);
1830 }
1831
createFCmpOLE(Value * lhs,Value * rhs)1832 Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs)
1833 {
1834 RR_DEBUG_INFO_UPDATE_LOC();
1835 return createFloatCompare(Ice::InstFcmp::Ole, lhs, rhs);
1836 }
1837
createFCmpONE(Value * lhs,Value * rhs)1838 Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs)
1839 {
1840 RR_DEBUG_INFO_UPDATE_LOC();
1841 return createFloatCompare(Ice::InstFcmp::One, lhs, rhs);
1842 }
1843
createFCmpORD(Value * lhs,Value * rhs)1844 Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs)
1845 {
1846 RR_DEBUG_INFO_UPDATE_LOC();
1847 return createFloatCompare(Ice::InstFcmp::Ord, lhs, rhs);
1848 }
1849
createFCmpUNO(Value * lhs,Value * rhs)1850 Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs)
1851 {
1852 RR_DEBUG_INFO_UPDATE_LOC();
1853 return createFloatCompare(Ice::InstFcmp::Uno, lhs, rhs);
1854 }
1855
createFCmpUEQ(Value * lhs,Value * rhs)1856 Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs)
1857 {
1858 RR_DEBUG_INFO_UPDATE_LOC();
1859 return createFloatCompare(Ice::InstFcmp::Ueq, lhs, rhs);
1860 }
1861
createFCmpUGT(Value * lhs,Value * rhs)1862 Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs)
1863 {
1864 RR_DEBUG_INFO_UPDATE_LOC();
1865 return createFloatCompare(Ice::InstFcmp::Ugt, lhs, rhs);
1866 }
1867
createFCmpUGE(Value * lhs,Value * rhs)1868 Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs)
1869 {
1870 RR_DEBUG_INFO_UPDATE_LOC();
1871 return createFloatCompare(Ice::InstFcmp::Uge, lhs, rhs);
1872 }
1873
createFCmpULT(Value * lhs,Value * rhs)1874 Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs)
1875 {
1876 RR_DEBUG_INFO_UPDATE_LOC();
1877 return createFloatCompare(Ice::InstFcmp::Ult, lhs, rhs);
1878 }
1879
createFCmpULE(Value * lhs,Value * rhs)1880 Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs)
1881 {
1882 RR_DEBUG_INFO_UPDATE_LOC();
1883 return createFloatCompare(Ice::InstFcmp::Ule, lhs, rhs);
1884 }
1885
createFCmpUNE(Value * lhs,Value * rhs)1886 Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs)
1887 {
1888 RR_DEBUG_INFO_UPDATE_LOC();
1889 return createFloatCompare(Ice::InstFcmp::Une, lhs, rhs);
1890 }
1891
createExtractElement(Value * vector,Type * type,int index)1892 Value *Nucleus::createExtractElement(Value *vector, Type *type, int index)
1893 {
1894 RR_DEBUG_INFO_UPDATE_LOC();
1895 auto result = ::function->makeVariable(T(type));
1896 auto extract = Ice::InstExtractElement::create(::function, result, V(vector), ::context->getConstantInt32(index));
1897 ::basicBlock->appendInst(extract);
1898
1899 return V(result);
1900 }
1901
createInsertElement(Value * vector,Value * element,int index)1902 Value *Nucleus::createInsertElement(Value *vector, Value *element, int index)
1903 {
1904 RR_DEBUG_INFO_UPDATE_LOC();
1905 auto result = ::function->makeVariable(vector->getType());
1906 auto insert = Ice::InstInsertElement::create(::function, result, vector, element, ::context->getConstantInt32(index));
1907 ::basicBlock->appendInst(insert);
1908
1909 return V(result);
1910 }
1911
createShuffleVector(Value * V1,Value * V2,const int * select)1912 Value *Nucleus::createShuffleVector(Value *V1, Value *V2, const int *select)
1913 {
1914 RR_DEBUG_INFO_UPDATE_LOC();
1915 ASSERT(V1->getType() == V2->getType());
1916
1917 int size = Ice::typeNumElements(V1->getType());
1918 auto result = ::function->makeVariable(V1->getType());
1919 auto shuffle = Ice::InstShuffleVector::create(::function, result, V1, V2);
1920
1921 for(int i = 0; i < size; i++)
1922 {
1923 shuffle->addIndex(llvm::cast<Ice::ConstantInteger32>(::context->getConstantInt32(select[i])));
1924 }
1925
1926 ::basicBlock->appendInst(shuffle);
1927
1928 return V(result);
1929 }
1930
createSelect(Value * C,Value * ifTrue,Value * ifFalse)1931 Value *Nucleus::createSelect(Value *C, Value *ifTrue, Value *ifFalse)
1932 {
1933 RR_DEBUG_INFO_UPDATE_LOC();
1934 ASSERT(ifTrue->getType() == ifFalse->getType());
1935
1936 auto result = ::function->makeVariable(ifTrue->getType());
1937 auto *select = Ice::InstSelect::create(::function, result, C, ifTrue, ifFalse);
1938 ::basicBlock->appendInst(select);
1939
1940 return V(result);
1941 }
1942
createSwitch(Value * control,BasicBlock * defaultBranch,unsigned numCases)1943 SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases)
1944 {
1945 RR_DEBUG_INFO_UPDATE_LOC();
1946 auto switchInst = Ice::InstSwitch::create(::function, numCases, control, defaultBranch);
1947 ::basicBlock->appendInst(switchInst);
1948
1949 return reinterpret_cast<SwitchCases *>(switchInst);
1950 }
1951
addSwitchCase(SwitchCases * switchCases,int label,BasicBlock * branch)1952 void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch)
1953 {
1954 RR_DEBUG_INFO_UPDATE_LOC();
1955 switchCases->addBranch(label, label, branch);
1956 }
1957
createUnreachable()1958 void Nucleus::createUnreachable()
1959 {
1960 RR_DEBUG_INFO_UPDATE_LOC();
1961 Ice::InstUnreachable *unreachable = Ice::InstUnreachable::create(::function);
1962 ::basicBlock->appendInst(unreachable);
1963 }
1964
getType(Value * value)1965 Type *Nucleus::getType(Value *value)
1966 {
1967 return T(V(value)->getType());
1968 }
1969
getContainedType(Type * vectorType)1970 Type *Nucleus::getContainedType(Type *vectorType)
1971 {
1972 Ice::Type vecTy = T(vectorType);
1973 switch(vecTy)
1974 {
1975 case Ice::IceType_v4i1: return T(Ice::IceType_i1);
1976 case Ice::IceType_v8i1: return T(Ice::IceType_i1);
1977 case Ice::IceType_v16i1: return T(Ice::IceType_i1);
1978 case Ice::IceType_v16i8: return T(Ice::IceType_i8);
1979 case Ice::IceType_v8i16: return T(Ice::IceType_i16);
1980 case Ice::IceType_v4i32: return T(Ice::IceType_i32);
1981 case Ice::IceType_v4f32: return T(Ice::IceType_f32);
1982 default:
1983 ASSERT_MSG(false, "getContainedType: input type is not a vector type");
1984 return {};
1985 }
1986 }
1987
getPointerType(Type * ElementType)1988 Type *Nucleus::getPointerType(Type *ElementType)
1989 {
1990 return T(sz::getPointerType(T(ElementType)));
1991 }
1992
getNaturalIntType()1993 static constexpr Ice::Type getNaturalIntType()
1994 {
1995 constexpr size_t intSize = sizeof(int);
1996 static_assert(intSize == 4 || intSize == 8, "");
1997 return intSize == 4 ? Ice::IceType_i32 : Ice::IceType_i64;
1998 }
1999
getPrintfStorageType(Type * valueType)2000 Type *Nucleus::getPrintfStorageType(Type *valueType)
2001 {
2002 Ice::Type valueTy = T(valueType);
2003 switch(valueTy)
2004 {
2005 case Ice::IceType_i32:
2006 return T(getNaturalIntType());
2007
2008 case Ice::IceType_f32:
2009 return T(Ice::IceType_f64);
2010
2011 default:
2012 UNIMPLEMENTED_NO_BUG("getPrintfStorageType: add more cases as needed");
2013 return {};
2014 }
2015 }
2016
createNullValue(Type * Ty)2017 Value *Nucleus::createNullValue(Type *Ty)
2018 {
2019 RR_DEBUG_INFO_UPDATE_LOC();
2020 if(Ice::isVectorType(T(Ty)))
2021 {
2022 ASSERT(Ice::typeNumElements(T(Ty)) <= 16);
2023 int64_t c[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2024 return createConstantVector(c, Ty);
2025 }
2026 else
2027 {
2028 return V(::context->getConstantZero(T(Ty)));
2029 }
2030 }
2031
createConstantLong(int64_t i)2032 Value *Nucleus::createConstantLong(int64_t i)
2033 {
2034 RR_DEBUG_INFO_UPDATE_LOC();
2035 return V(::context->getConstantInt64(i));
2036 }
2037
createConstantInt(int i)2038 Value *Nucleus::createConstantInt(int i)
2039 {
2040 RR_DEBUG_INFO_UPDATE_LOC();
2041 return V(::context->getConstantInt32(i));
2042 }
2043
createConstantInt(unsigned int i)2044 Value *Nucleus::createConstantInt(unsigned int i)
2045 {
2046 RR_DEBUG_INFO_UPDATE_LOC();
2047 return V(::context->getConstantInt32(i));
2048 }
2049
createConstantBool(bool b)2050 Value *Nucleus::createConstantBool(bool b)
2051 {
2052 RR_DEBUG_INFO_UPDATE_LOC();
2053 return V(::context->getConstantInt1(b));
2054 }
2055
createConstantByte(signed char i)2056 Value *Nucleus::createConstantByte(signed char i)
2057 {
2058 RR_DEBUG_INFO_UPDATE_LOC();
2059 return V(::context->getConstantInt8(i));
2060 }
2061
createConstantByte(unsigned char i)2062 Value *Nucleus::createConstantByte(unsigned char i)
2063 {
2064 RR_DEBUG_INFO_UPDATE_LOC();
2065 return V(::context->getConstantInt8(i));
2066 }
2067
createConstantShort(short i)2068 Value *Nucleus::createConstantShort(short i)
2069 {
2070 RR_DEBUG_INFO_UPDATE_LOC();
2071 return V(::context->getConstantInt16(i));
2072 }
2073
createConstantShort(unsigned short i)2074 Value *Nucleus::createConstantShort(unsigned short i)
2075 {
2076 RR_DEBUG_INFO_UPDATE_LOC();
2077 return V(::context->getConstantInt16(i));
2078 }
2079
createConstantFloat(float x)2080 Value *Nucleus::createConstantFloat(float x)
2081 {
2082 RR_DEBUG_INFO_UPDATE_LOC();
2083 return V(::context->getConstantFloat(x));
2084 }
2085
createNullPointer(Type * Ty)2086 Value *Nucleus::createNullPointer(Type *Ty)
2087 {
2088 RR_DEBUG_INFO_UPDATE_LOC();
2089 return createNullValue(T(sizeof(void *) == 8 ? Ice::IceType_i64 : Ice::IceType_i32));
2090 }
2091
IceConstantData(void const * data,size_t size,size_t alignment=1)2092 static Ice::Constant *IceConstantData(void const *data, size_t size, size_t alignment = 1)
2093 {
2094 return sz::getConstantPointer(::context, ::routine->addConstantData(data, size, alignment));
2095 }
2096
createConstantVector(const int64_t * constants,Type * type)2097 Value *Nucleus::createConstantVector(const int64_t *constants, Type *type)
2098 {
2099 RR_DEBUG_INFO_UPDATE_LOC();
2100 const int vectorSize = 16;
2101 ASSERT(Ice::typeWidthInBytes(T(type)) == vectorSize);
2102 const int alignment = vectorSize;
2103
2104 const int64_t *i = constants;
2105 const double *f = reinterpret_cast<const double *>(constants);
2106
2107 // TODO(b/148082873): Fix global variable constants when generating multiple functions
2108 Ice::Constant *ptr = nullptr;
2109
2110 switch((int)reinterpret_cast<intptr_t>(type))
2111 {
2112 case Ice::IceType_v4i32:
2113 case Ice::IceType_v4i1:
2114 {
2115 const int initializer[4] = { (int)i[0], (int)i[1], (int)i[2], (int)i[3] };
2116 static_assert(sizeof(initializer) == vectorSize, "!");
2117 ptr = IceConstantData(initializer, vectorSize, alignment);
2118 }
2119 break;
2120 case Ice::IceType_v4f32:
2121 {
2122 const float initializer[4] = { (float)f[0], (float)f[1], (float)f[2], (float)f[3] };
2123 static_assert(sizeof(initializer) == vectorSize, "!");
2124 ptr = IceConstantData(initializer, vectorSize, alignment);
2125 }
2126 break;
2127 case Ice::IceType_v8i16:
2128 case Ice::IceType_v8i1:
2129 {
2130 const short initializer[8] = { (short)i[0], (short)i[1], (short)i[2], (short)i[3], (short)i[4], (short)i[5], (short)i[6], (short)i[7] };
2131 static_assert(sizeof(initializer) == vectorSize, "!");
2132 ptr = IceConstantData(initializer, vectorSize, alignment);
2133 }
2134 break;
2135 case Ice::IceType_v16i8:
2136 case Ice::IceType_v16i1:
2137 {
2138 const char initializer[16] = { (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7], (char)i[8], (char)i[9], (char)i[10], (char)i[11], (char)i[12], (char)i[13], (char)i[14], (char)i[15] };
2139 static_assert(sizeof(initializer) == vectorSize, "!");
2140 ptr = IceConstantData(initializer, vectorSize, alignment);
2141 }
2142 break;
2143 case Type_v2i32:
2144 {
2145 const int initializer[4] = { (int)i[0], (int)i[1], (int)i[0], (int)i[1] };
2146 static_assert(sizeof(initializer) == vectorSize, "!");
2147 ptr = IceConstantData(initializer, vectorSize, alignment);
2148 }
2149 break;
2150 case Type_v2f32:
2151 {
2152 const float initializer[4] = { (float)f[0], (float)f[1], (float)f[0], (float)f[1] };
2153 static_assert(sizeof(initializer) == vectorSize, "!");
2154 ptr = IceConstantData(initializer, vectorSize, alignment);
2155 }
2156 break;
2157 case Type_v4i16:
2158 {
2159 const short initializer[8] = { (short)i[0], (short)i[1], (short)i[2], (short)i[3], (short)i[0], (short)i[1], (short)i[2], (short)i[3] };
2160 static_assert(sizeof(initializer) == vectorSize, "!");
2161 ptr = IceConstantData(initializer, vectorSize, alignment);
2162 }
2163 break;
2164 case Type_v8i8:
2165 {
2166 const char initializer[16] = { (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7] };
2167 static_assert(sizeof(initializer) == vectorSize, "!");
2168 ptr = IceConstantData(initializer, vectorSize, alignment);
2169 }
2170 break;
2171 case Type_v4i8:
2172 {
2173 const char initializer[16] = { (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3] };
2174 static_assert(sizeof(initializer) == vectorSize, "!");
2175 ptr = IceConstantData(initializer, vectorSize, alignment);
2176 }
2177 break;
2178 default:
2179 UNREACHABLE("Unknown constant vector type: %d", (int)reinterpret_cast<intptr_t>(type));
2180 }
2181
2182 ASSERT(ptr);
2183
2184 Ice::Variable *result = sz::createLoad(::function, ::basicBlock, ptr, T(type), alignment);
2185 return V(result);
2186 }
2187
createConstantVector(const double * constants,Type * type)2188 Value *Nucleus::createConstantVector(const double *constants, Type *type)
2189 {
2190 return createConstantVector((const int64_t *)constants, type);
2191 }
2192
createConstantString(const char * v)2193 Value *Nucleus::createConstantString(const char *v)
2194 {
2195 // NOTE: Do not call RR_DEBUG_INFO_UPDATE_LOC() here to avoid recursion when called from rr::Printv
2196 return V(IceConstantData(v, strlen(v) + 1));
2197 }
2198
setOptimizerCallback(OptimizerCallback * callback)2199 void Nucleus::setOptimizerCallback(OptimizerCallback *callback)
2200 {
2201 ::optimizerCallback = callback;
2202 }
2203
type()2204 Type *Void::type()
2205 {
2206 return T(Ice::IceType_void);
2207 }
2208
type()2209 Type *Bool::type()
2210 {
2211 return T(Ice::IceType_i1);
2212 }
2213
type()2214 Type *Byte::type()
2215 {
2216 return T(Ice::IceType_i8);
2217 }
2218
type()2219 Type *SByte::type()
2220 {
2221 return T(Ice::IceType_i8);
2222 }
2223
type()2224 Type *Short::type()
2225 {
2226 return T(Ice::IceType_i16);
2227 }
2228
type()2229 Type *UShort::type()
2230 {
2231 return T(Ice::IceType_i16);
2232 }
2233
type()2234 Type *Byte4::type()
2235 {
2236 return T(Type_v4i8);
2237 }
2238
type()2239 Type *SByte4::type()
2240 {
2241 return T(Type_v4i8);
2242 }
2243
2244 namespace {
SaturateUnsigned(RValue<Short> x)2245 RValue<Byte> SaturateUnsigned(RValue<Short> x)
2246 {
2247 return Byte(IfThenElse(Int(x) > 0xFF, Int(0xFF), IfThenElse(Int(x) < 0, Int(0), Int(x))));
2248 }
2249
Extract(RValue<Byte8> val,int i)2250 RValue<Byte> Extract(RValue<Byte8> val, int i)
2251 {
2252 return RValue<Byte>(Nucleus::createExtractElement(val.value(), Byte::type(), i));
2253 }
2254
Insert(RValue<Byte8> val,RValue<Byte> element,int i)2255 RValue<Byte8> Insert(RValue<Byte8> val, RValue<Byte> element, int i)
2256 {
2257 return RValue<Byte8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2258 }
2259 } // namespace
2260
AddSat(RValue<Byte8> x,RValue<Byte8> y)2261 RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y)
2262 {
2263 RR_DEBUG_INFO_UPDATE_LOC();
2264 if(emulateIntrinsics)
2265 {
2266 Byte8 result;
2267 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 0)) + Int(Extract(y, 0)))), 0);
2268 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 1)) + Int(Extract(y, 1)))), 1);
2269 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 2)) + Int(Extract(y, 2)))), 2);
2270 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 3)) + Int(Extract(y, 3)))), 3);
2271 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 4)) + Int(Extract(y, 4)))), 4);
2272 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 5)) + Int(Extract(y, 5)))), 5);
2273 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 6)) + Int(Extract(y, 6)))), 6);
2274 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 7)) + Int(Extract(y, 7)))), 7);
2275
2276 return result;
2277 }
2278 else
2279 {
2280 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2281 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2282 auto paddusb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2283 paddusb->addArg(x.value());
2284 paddusb->addArg(y.value());
2285 ::basicBlock->appendInst(paddusb);
2286
2287 return RValue<Byte8>(V(result));
2288 }
2289 }
2290
SubSat(RValue<Byte8> x,RValue<Byte8> y)2291 RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y)
2292 {
2293 RR_DEBUG_INFO_UPDATE_LOC();
2294 if(emulateIntrinsics)
2295 {
2296 Byte8 result;
2297 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 0)) - Int(Extract(y, 0)))), 0);
2298 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 1)) - Int(Extract(y, 1)))), 1);
2299 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 2)) - Int(Extract(y, 2)))), 2);
2300 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 3)) - Int(Extract(y, 3)))), 3);
2301 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 4)) - Int(Extract(y, 4)))), 4);
2302 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 5)) - Int(Extract(y, 5)))), 5);
2303 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 6)) - Int(Extract(y, 6)))), 6);
2304 result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 7)) - Int(Extract(y, 7)))), 7);
2305
2306 return result;
2307 }
2308 else
2309 {
2310 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2311 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2312 auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2313 psubusw->addArg(x.value());
2314 psubusw->addArg(y.value());
2315 ::basicBlock->appendInst(psubusw);
2316
2317 return RValue<Byte8>(V(result));
2318 }
2319 }
2320
Extract(RValue<SByte8> val,int i)2321 RValue<SByte> Extract(RValue<SByte8> val, int i)
2322 {
2323 RR_DEBUG_INFO_UPDATE_LOC();
2324 return RValue<SByte>(Nucleus::createExtractElement(val.value(), SByte::type(), i));
2325 }
2326
Insert(RValue<SByte8> val,RValue<SByte> element,int i)2327 RValue<SByte8> Insert(RValue<SByte8> val, RValue<SByte> element, int i)
2328 {
2329 RR_DEBUG_INFO_UPDATE_LOC();
2330 return RValue<SByte8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2331 }
2332
operator >>(RValue<SByte8> lhs,unsigned char rhs)2333 RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
2334 {
2335 RR_DEBUG_INFO_UPDATE_LOC();
2336 if(emulateIntrinsics)
2337 {
2338 SByte8 result;
2339 result = Insert(result, Extract(lhs, 0) >> SByte(rhs), 0);
2340 result = Insert(result, Extract(lhs, 1) >> SByte(rhs), 1);
2341 result = Insert(result, Extract(lhs, 2) >> SByte(rhs), 2);
2342 result = Insert(result, Extract(lhs, 3) >> SByte(rhs), 3);
2343 result = Insert(result, Extract(lhs, 4) >> SByte(rhs), 4);
2344 result = Insert(result, Extract(lhs, 5) >> SByte(rhs), 5);
2345 result = Insert(result, Extract(lhs, 6) >> SByte(rhs), 6);
2346 result = Insert(result, Extract(lhs, 7) >> SByte(rhs), 7);
2347
2348 return result;
2349 }
2350 else
2351 {
2352 #if defined(__i386__) || defined(__x86_64__)
2353 // SSE2 doesn't support byte vector shifts, so shift as shorts and recombine.
2354 RValue<Short4> hi = (As<Short4>(lhs) >> rhs) & Short4(0xFF00u);
2355 RValue<Short4> lo = As<Short4>(As<UShort4>((As<Short4>(lhs) << 8) >> rhs) >> 8);
2356
2357 return As<SByte8>(hi | lo);
2358 #else
2359 return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2360 #endif
2361 }
2362 }
2363
SignMask(RValue<Byte8> x)2364 RValue<Int> SignMask(RValue<Byte8> x)
2365 {
2366 RR_DEBUG_INFO_UPDATE_LOC();
2367 if(emulateIntrinsics || CPUID::ARM)
2368 {
2369 Byte8 xx = As<Byte8>(As<SByte8>(x) >> 7) & Byte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80);
2370 return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7));
2371 }
2372 else
2373 {
2374 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
2375 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2376 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
2377 movmsk->addArg(x.value());
2378 ::basicBlock->appendInst(movmsk);
2379
2380 return RValue<Int>(V(result)) & 0xFF;
2381 }
2382 }
2383
2384 // RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y)
2385 // {
2386 // return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Ugt, x.value(), y.value()));
2387 // }
2388
CmpEQ(RValue<Byte8> x,RValue<Byte8> y)2389 RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y)
2390 {
2391 RR_DEBUG_INFO_UPDATE_LOC();
2392 return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value()));
2393 }
2394
type()2395 Type *Byte8::type()
2396 {
2397 return T(Type_v8i8);
2398 }
2399
2400 // RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs)
2401 // {
2402 // return RValue<SByte8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2403 // }
2404
2405 // RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
2406 // {
2407 // return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2408 // }
2409
SaturateSigned(RValue<Short> x)2410 RValue<SByte> SaturateSigned(RValue<Short> x)
2411 {
2412 RR_DEBUG_INFO_UPDATE_LOC();
2413 return SByte(IfThenElse(Int(x) > 0x7F, Int(0x7F), IfThenElse(Int(x) < -0x80, Int(0x80), Int(x))));
2414 }
2415
AddSat(RValue<SByte8> x,RValue<SByte8> y)2416 RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y)
2417 {
2418 RR_DEBUG_INFO_UPDATE_LOC();
2419 if(emulateIntrinsics)
2420 {
2421 SByte8 result;
2422 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 0)) + Int(Extract(y, 0)))), 0);
2423 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 1)) + Int(Extract(y, 1)))), 1);
2424 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 2)) + Int(Extract(y, 2)))), 2);
2425 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 3)) + Int(Extract(y, 3)))), 3);
2426 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 4)) + Int(Extract(y, 4)))), 4);
2427 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 5)) + Int(Extract(y, 5)))), 5);
2428 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 6)) + Int(Extract(y, 6)))), 6);
2429 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 7)) + Int(Extract(y, 7)))), 7);
2430
2431 return result;
2432 }
2433 else
2434 {
2435 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2436 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2437 auto paddsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2438 paddsb->addArg(x.value());
2439 paddsb->addArg(y.value());
2440 ::basicBlock->appendInst(paddsb);
2441
2442 return RValue<SByte8>(V(result));
2443 }
2444 }
2445
SubSat(RValue<SByte8> x,RValue<SByte8> y)2446 RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y)
2447 {
2448 RR_DEBUG_INFO_UPDATE_LOC();
2449 if(emulateIntrinsics)
2450 {
2451 SByte8 result;
2452 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 0)) - Int(Extract(y, 0)))), 0);
2453 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 1)) - Int(Extract(y, 1)))), 1);
2454 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 2)) - Int(Extract(y, 2)))), 2);
2455 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 3)) - Int(Extract(y, 3)))), 3);
2456 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 4)) - Int(Extract(y, 4)))), 4);
2457 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 5)) - Int(Extract(y, 5)))), 5);
2458 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 6)) - Int(Extract(y, 6)))), 6);
2459 result = Insert(result, SaturateSigned(Short(Int(Extract(x, 7)) - Int(Extract(y, 7)))), 7);
2460
2461 return result;
2462 }
2463 else
2464 {
2465 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2466 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2467 auto psubsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2468 psubsb->addArg(x.value());
2469 psubsb->addArg(y.value());
2470 ::basicBlock->appendInst(psubsb);
2471
2472 return RValue<SByte8>(V(result));
2473 }
2474 }
2475
SignMask(RValue<SByte8> x)2476 RValue<Int> SignMask(RValue<SByte8> x)
2477 {
2478 RR_DEBUG_INFO_UPDATE_LOC();
2479 if(emulateIntrinsics || CPUID::ARM)
2480 {
2481 SByte8 xx = (x >> 7) & SByte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80);
2482 return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7));
2483 }
2484 else
2485 {
2486 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
2487 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2488 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
2489 movmsk->addArg(x.value());
2490 ::basicBlock->appendInst(movmsk);
2491
2492 return RValue<Int>(V(result)) & 0xFF;
2493 }
2494 }
2495
CmpGT(RValue<SByte8> x,RValue<SByte8> y)2496 RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y)
2497 {
2498 RR_DEBUG_INFO_UPDATE_LOC();
2499 return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value()));
2500 }
2501
CmpEQ(RValue<SByte8> x,RValue<SByte8> y)2502 RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y)
2503 {
2504 RR_DEBUG_INFO_UPDATE_LOC();
2505 return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value()));
2506 }
2507
type()2508 Type *SByte8::type()
2509 {
2510 return T(Type_v8i8);
2511 }
2512
type()2513 Type *Byte16::type()
2514 {
2515 return T(Ice::IceType_v16i8);
2516 }
2517
type()2518 Type *SByte16::type()
2519 {
2520 return T(Ice::IceType_v16i8);
2521 }
2522
type()2523 Type *Short2::type()
2524 {
2525 return T(Type_v2i16);
2526 }
2527
type()2528 Type *UShort2::type()
2529 {
2530 return T(Type_v2i16);
2531 }
2532
Short4(RValue<Int4> cast)2533 Short4::Short4(RValue<Int4> cast)
2534 {
2535 int select[8] = { 0, 2, 4, 6, 0, 2, 4, 6 };
2536 Value *short8 = Nucleus::createBitCast(cast.value(), Short8::type());
2537 Value *packed = Nucleus::createShuffleVector(short8, short8, select);
2538
2539 Value *int2 = RValue<Int2>(Int2(As<Int4>(packed))).value();
2540 Value *short4 = Nucleus::createBitCast(int2, Short4::type());
2541
2542 storeValue(short4);
2543 }
2544
2545 // Short4::Short4(RValue<Float> cast)
2546 // {
2547 // }
2548
Short4(RValue<Float4> cast)2549 Short4::Short4(RValue<Float4> cast)
2550 {
2551 // TODO(b/150791192): Generalize and optimize
2552 auto smin = std::numeric_limits<short>::min();
2553 auto smax = std::numeric_limits<short>::max();
2554 *this = Short4(Int4(Max(Min(cast, Float4(smax)), Float4(smin))));
2555 }
2556
operator <<(RValue<Short4> lhs,unsigned char rhs)2557 RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs)
2558 {
2559 RR_DEBUG_INFO_UPDATE_LOC();
2560 if(emulateIntrinsics)
2561 {
2562 Short4 result;
2563 result = Insert(result, Extract(lhs, 0) << Short(rhs), 0);
2564 result = Insert(result, Extract(lhs, 1) << Short(rhs), 1);
2565 result = Insert(result, Extract(lhs, 2) << Short(rhs), 2);
2566 result = Insert(result, Extract(lhs, 3) << Short(rhs), 3);
2567
2568 return result;
2569 }
2570 else
2571 {
2572 return RValue<Short4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2573 }
2574 }
2575
operator >>(RValue<Short4> lhs,unsigned char rhs)2576 RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs)
2577 {
2578 RR_DEBUG_INFO_UPDATE_LOC();
2579 if(emulateIntrinsics)
2580 {
2581 Short4 result;
2582 result = Insert(result, Extract(lhs, 0) >> Short(rhs), 0);
2583 result = Insert(result, Extract(lhs, 1) >> Short(rhs), 1);
2584 result = Insert(result, Extract(lhs, 2) >> Short(rhs), 2);
2585 result = Insert(result, Extract(lhs, 3) >> Short(rhs), 3);
2586
2587 return result;
2588 }
2589 else
2590 {
2591 return RValue<Short4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2592 }
2593 }
2594
Max(RValue<Short4> x,RValue<Short4> y)2595 RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y)
2596 {
2597 RR_DEBUG_INFO_UPDATE_LOC();
2598 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2599 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value());
2600 ::basicBlock->appendInst(cmp);
2601
2602 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2603 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2604 ::basicBlock->appendInst(select);
2605
2606 return RValue<Short4>(V(result));
2607 }
2608
Min(RValue<Short4> x,RValue<Short4> y)2609 RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y)
2610 {
2611 RR_DEBUG_INFO_UPDATE_LOC();
2612 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2613 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value());
2614 ::basicBlock->appendInst(cmp);
2615
2616 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2617 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2618 ::basicBlock->appendInst(select);
2619
2620 return RValue<Short4>(V(result));
2621 }
2622
SaturateSigned(RValue<Int> x)2623 RValue<Short> SaturateSigned(RValue<Int> x)
2624 {
2625 RR_DEBUG_INFO_UPDATE_LOC();
2626 return Short(IfThenElse(x > 0x7FFF, Int(0x7FFF), IfThenElse(x < -0x8000, Int(0x8000), x)));
2627 }
2628
AddSat(RValue<Short4> x,RValue<Short4> y)2629 RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y)
2630 {
2631 RR_DEBUG_INFO_UPDATE_LOC();
2632 if(emulateIntrinsics)
2633 {
2634 Short4 result;
2635 result = Insert(result, SaturateSigned(Int(Extract(x, 0)) + Int(Extract(y, 0))), 0);
2636 result = Insert(result, SaturateSigned(Int(Extract(x, 1)) + Int(Extract(y, 1))), 1);
2637 result = Insert(result, SaturateSigned(Int(Extract(x, 2)) + Int(Extract(y, 2))), 2);
2638 result = Insert(result, SaturateSigned(Int(Extract(x, 3)) + Int(Extract(y, 3))), 3);
2639
2640 return result;
2641 }
2642 else
2643 {
2644 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2645 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2646 auto paddsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2647 paddsw->addArg(x.value());
2648 paddsw->addArg(y.value());
2649 ::basicBlock->appendInst(paddsw);
2650
2651 return RValue<Short4>(V(result));
2652 }
2653 }
2654
SubSat(RValue<Short4> x,RValue<Short4> y)2655 RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y)
2656 {
2657 RR_DEBUG_INFO_UPDATE_LOC();
2658 if(emulateIntrinsics)
2659 {
2660 Short4 result;
2661 result = Insert(result, SaturateSigned(Int(Extract(x, 0)) - Int(Extract(y, 0))), 0);
2662 result = Insert(result, SaturateSigned(Int(Extract(x, 1)) - Int(Extract(y, 1))), 1);
2663 result = Insert(result, SaturateSigned(Int(Extract(x, 2)) - Int(Extract(y, 2))), 2);
2664 result = Insert(result, SaturateSigned(Int(Extract(x, 3)) - Int(Extract(y, 3))), 3);
2665
2666 return result;
2667 }
2668 else
2669 {
2670 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2671 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2672 auto psubsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2673 psubsw->addArg(x.value());
2674 psubsw->addArg(y.value());
2675 ::basicBlock->appendInst(psubsw);
2676
2677 return RValue<Short4>(V(result));
2678 }
2679 }
2680
MulHigh(RValue<Short4> x,RValue<Short4> y)2681 RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y)
2682 {
2683 RR_DEBUG_INFO_UPDATE_LOC();
2684 if(emulateIntrinsics)
2685 {
2686 Short4 result;
2687 result = Insert(result, Short((Int(Extract(x, 0)) * Int(Extract(y, 0))) >> 16), 0);
2688 result = Insert(result, Short((Int(Extract(x, 1)) * Int(Extract(y, 1))) >> 16), 1);
2689 result = Insert(result, Short((Int(Extract(x, 2)) * Int(Extract(y, 2))) >> 16), 2);
2690 result = Insert(result, Short((Int(Extract(x, 3)) * Int(Extract(y, 3))) >> 16), 3);
2691
2692 return result;
2693 }
2694 else
2695 {
2696 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2697 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2698 auto pmulhw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2699 pmulhw->addArg(x.value());
2700 pmulhw->addArg(y.value());
2701 ::basicBlock->appendInst(pmulhw);
2702
2703 return RValue<Short4>(V(result));
2704 }
2705 }
2706
MulAdd(RValue<Short4> x,RValue<Short4> y)2707 RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y)
2708 {
2709 RR_DEBUG_INFO_UPDATE_LOC();
2710 if(emulateIntrinsics)
2711 {
2712 Int2 result;
2713 result = Insert(result, Int(Extract(x, 0)) * Int(Extract(y, 0)) + Int(Extract(x, 1)) * Int(Extract(y, 1)), 0);
2714 result = Insert(result, Int(Extract(x, 2)) * Int(Extract(y, 2)) + Int(Extract(x, 3)) * Int(Extract(y, 3)), 1);
2715
2716 return result;
2717 }
2718 else
2719 {
2720 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2721 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyAddPairs, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2722 auto pmaddwd = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2723 pmaddwd->addArg(x.value());
2724 pmaddwd->addArg(y.value());
2725 ::basicBlock->appendInst(pmaddwd);
2726
2727 return As<Int2>(V(result));
2728 }
2729 }
2730
PackSigned(RValue<Short4> x,RValue<Short4> y)2731 RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y)
2732 {
2733 RR_DEBUG_INFO_UPDATE_LOC();
2734 if(emulateIntrinsics)
2735 {
2736 SByte8 result;
2737 result = Insert(result, SaturateSigned(Extract(x, 0)), 0);
2738 result = Insert(result, SaturateSigned(Extract(x, 1)), 1);
2739 result = Insert(result, SaturateSigned(Extract(x, 2)), 2);
2740 result = Insert(result, SaturateSigned(Extract(x, 3)), 3);
2741 result = Insert(result, SaturateSigned(Extract(y, 0)), 4);
2742 result = Insert(result, SaturateSigned(Extract(y, 1)), 5);
2743 result = Insert(result, SaturateSigned(Extract(y, 2)), 6);
2744 result = Insert(result, SaturateSigned(Extract(y, 3)), 7);
2745
2746 return result;
2747 }
2748 else
2749 {
2750 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2751 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2752 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2753 pack->addArg(x.value());
2754 pack->addArg(y.value());
2755 ::basicBlock->appendInst(pack);
2756
2757 return As<SByte8>(Swizzle(As<Int4>(V(result)), 0x0202));
2758 }
2759 }
2760
PackUnsigned(RValue<Short4> x,RValue<Short4> y)2761 RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y)
2762 {
2763 RR_DEBUG_INFO_UPDATE_LOC();
2764 if(emulateIntrinsics)
2765 {
2766 Byte8 result;
2767 result = Insert(result, SaturateUnsigned(Extract(x, 0)), 0);
2768 result = Insert(result, SaturateUnsigned(Extract(x, 1)), 1);
2769 result = Insert(result, SaturateUnsigned(Extract(x, 2)), 2);
2770 result = Insert(result, SaturateUnsigned(Extract(x, 3)), 3);
2771 result = Insert(result, SaturateUnsigned(Extract(y, 0)), 4);
2772 result = Insert(result, SaturateUnsigned(Extract(y, 1)), 5);
2773 result = Insert(result, SaturateUnsigned(Extract(y, 2)), 6);
2774 result = Insert(result, SaturateUnsigned(Extract(y, 3)), 7);
2775
2776 return result;
2777 }
2778 else
2779 {
2780 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2781 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2782 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2783 pack->addArg(x.value());
2784 pack->addArg(y.value());
2785 ::basicBlock->appendInst(pack);
2786
2787 return As<Byte8>(Swizzle(As<Int4>(V(result)), 0x0202));
2788 }
2789 }
2790
CmpGT(RValue<Short4> x,RValue<Short4> y)2791 RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y)
2792 {
2793 RR_DEBUG_INFO_UPDATE_LOC();
2794 return RValue<Short4>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value()));
2795 }
2796
CmpEQ(RValue<Short4> x,RValue<Short4> y)2797 RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y)
2798 {
2799 RR_DEBUG_INFO_UPDATE_LOC();
2800 return RValue<Short4>(Nucleus::createICmpEQ(x.value(), y.value()));
2801 }
2802
type()2803 Type *Short4::type()
2804 {
2805 return T(Type_v4i16);
2806 }
2807
UShort4(RValue<Float4> cast,bool saturate)2808 UShort4::UShort4(RValue<Float4> cast, bool saturate)
2809 {
2810 if(saturate)
2811 {
2812 if(CPUID::SSE4_1)
2813 {
2814 // x86 produces 0x80000000 on 32-bit integer overflow/underflow.
2815 // PackUnsigned takes care of 0x0000 saturation.
2816 Int4 int4(Min(cast, Float4(0xFFFF)));
2817 *this = As<UShort4>(PackUnsigned(int4, int4));
2818 }
2819 else if(CPUID::ARM)
2820 {
2821 // ARM saturates the 32-bit integer result on overflow/undeflow.
2822 Int4 int4(cast);
2823 *this = As<UShort4>(PackUnsigned(int4, int4));
2824 }
2825 else
2826 {
2827 *this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000))));
2828 }
2829 }
2830 else
2831 {
2832 *this = Short4(Int4(cast));
2833 }
2834 }
2835
Extract(RValue<UShort4> val,int i)2836 RValue<UShort> Extract(RValue<UShort4> val, int i)
2837 {
2838 return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i));
2839 }
2840
Insert(RValue<UShort4> val,RValue<UShort> element,int i)2841 RValue<UShort4> Insert(RValue<UShort4> val, RValue<UShort> element, int i)
2842 {
2843 return RValue<UShort4>(Nucleus::createInsertElement(val.value(), element.value(), i));
2844 }
2845
operator <<(RValue<UShort4> lhs,unsigned char rhs)2846 RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs)
2847 {
2848 RR_DEBUG_INFO_UPDATE_LOC();
2849 if(emulateIntrinsics)
2850
2851 {
2852 UShort4 result;
2853 result = Insert(result, Extract(lhs, 0) << UShort(rhs), 0);
2854 result = Insert(result, Extract(lhs, 1) << UShort(rhs), 1);
2855 result = Insert(result, Extract(lhs, 2) << UShort(rhs), 2);
2856 result = Insert(result, Extract(lhs, 3) << UShort(rhs), 3);
2857
2858 return result;
2859 }
2860 else
2861 {
2862 return RValue<UShort4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2863 }
2864 }
2865
operator >>(RValue<UShort4> lhs,unsigned char rhs)2866 RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs)
2867 {
2868 RR_DEBUG_INFO_UPDATE_LOC();
2869 if(emulateIntrinsics)
2870 {
2871 UShort4 result;
2872 result = Insert(result, Extract(lhs, 0) >> UShort(rhs), 0);
2873 result = Insert(result, Extract(lhs, 1) >> UShort(rhs), 1);
2874 result = Insert(result, Extract(lhs, 2) >> UShort(rhs), 2);
2875 result = Insert(result, Extract(lhs, 3) >> UShort(rhs), 3);
2876
2877 return result;
2878 }
2879 else
2880 {
2881 return RValue<UShort4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2882 }
2883 }
2884
Max(RValue<UShort4> x,RValue<UShort4> y)2885 RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y)
2886 {
2887 RR_DEBUG_INFO_UPDATE_LOC();
2888 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2889 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value());
2890 ::basicBlock->appendInst(cmp);
2891
2892 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2893 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2894 ::basicBlock->appendInst(select);
2895
2896 return RValue<UShort4>(V(result));
2897 }
2898
Min(RValue<UShort4> x,RValue<UShort4> y)2899 RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y)
2900 {
2901 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2902 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value());
2903 ::basicBlock->appendInst(cmp);
2904
2905 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2906 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2907 ::basicBlock->appendInst(select);
2908
2909 return RValue<UShort4>(V(result));
2910 }
2911
SaturateUnsigned(RValue<Int> x)2912 RValue<UShort> SaturateUnsigned(RValue<Int> x)
2913 {
2914 RR_DEBUG_INFO_UPDATE_LOC();
2915 return UShort(IfThenElse(x > 0xFFFF, Int(0xFFFF), IfThenElse(x < 0, Int(0), x)));
2916 }
2917
AddSat(RValue<UShort4> x,RValue<UShort4> y)2918 RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y)
2919 {
2920 RR_DEBUG_INFO_UPDATE_LOC();
2921 if(emulateIntrinsics)
2922 {
2923 UShort4 result;
2924 result = Insert(result, SaturateUnsigned(Int(Extract(x, 0)) + Int(Extract(y, 0))), 0);
2925 result = Insert(result, SaturateUnsigned(Int(Extract(x, 1)) + Int(Extract(y, 1))), 1);
2926 result = Insert(result, SaturateUnsigned(Int(Extract(x, 2)) + Int(Extract(y, 2))), 2);
2927 result = Insert(result, SaturateUnsigned(Int(Extract(x, 3)) + Int(Extract(y, 3))), 3);
2928
2929 return result;
2930 }
2931 else
2932 {
2933 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2934 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2935 auto paddusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2936 paddusw->addArg(x.value());
2937 paddusw->addArg(y.value());
2938 ::basicBlock->appendInst(paddusw);
2939
2940 return RValue<UShort4>(V(result));
2941 }
2942 }
2943
SubSat(RValue<UShort4> x,RValue<UShort4> y)2944 RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y)
2945 {
2946 RR_DEBUG_INFO_UPDATE_LOC();
2947 if(emulateIntrinsics)
2948 {
2949 UShort4 result;
2950 result = Insert(result, SaturateUnsigned(Int(Extract(x, 0)) - Int(Extract(y, 0))), 0);
2951 result = Insert(result, SaturateUnsigned(Int(Extract(x, 1)) - Int(Extract(y, 1))), 1);
2952 result = Insert(result, SaturateUnsigned(Int(Extract(x, 2)) - Int(Extract(y, 2))), 2);
2953 result = Insert(result, SaturateUnsigned(Int(Extract(x, 3)) - Int(Extract(y, 3))), 3);
2954
2955 return result;
2956 }
2957 else
2958 {
2959 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2960 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2961 auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2962 psubusw->addArg(x.value());
2963 psubusw->addArg(y.value());
2964 ::basicBlock->appendInst(psubusw);
2965
2966 return RValue<UShort4>(V(result));
2967 }
2968 }
2969
MulHigh(RValue<UShort4> x,RValue<UShort4> y)2970 RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y)
2971 {
2972 RR_DEBUG_INFO_UPDATE_LOC();
2973 if(emulateIntrinsics)
2974 {
2975 UShort4 result;
2976 result = Insert(result, UShort((UInt(Extract(x, 0)) * UInt(Extract(y, 0))) >> 16), 0);
2977 result = Insert(result, UShort((UInt(Extract(x, 1)) * UInt(Extract(y, 1))) >> 16), 1);
2978 result = Insert(result, UShort((UInt(Extract(x, 2)) * UInt(Extract(y, 2))) >> 16), 2);
2979 result = Insert(result, UShort((UInt(Extract(x, 3)) * UInt(Extract(y, 3))) >> 16), 3);
2980
2981 return result;
2982 }
2983 else
2984 {
2985 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2986 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2987 auto pmulhuw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2988 pmulhuw->addArg(x.value());
2989 pmulhuw->addArg(y.value());
2990 ::basicBlock->appendInst(pmulhuw);
2991
2992 return RValue<UShort4>(V(result));
2993 }
2994 }
2995
MulHigh(RValue<Int4> x,RValue<Int4> y)2996 RValue<Int4> MulHigh(RValue<Int4> x, RValue<Int4> y)
2997 {
2998 RR_DEBUG_INFO_UPDATE_LOC();
2999 // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq.
3000
3001 // Scalarized implementation.
3002 Int4 result;
3003 result = Insert(result, Int((Long(Extract(x, 0)) * Long(Extract(y, 0))) >> Long(Int(32))), 0);
3004 result = Insert(result, Int((Long(Extract(x, 1)) * Long(Extract(y, 1))) >> Long(Int(32))), 1);
3005 result = Insert(result, Int((Long(Extract(x, 2)) * Long(Extract(y, 2))) >> Long(Int(32))), 2);
3006 result = Insert(result, Int((Long(Extract(x, 3)) * Long(Extract(y, 3))) >> Long(Int(32))), 3);
3007
3008 return result;
3009 }
3010
MulHigh(RValue<UInt4> x,RValue<UInt4> y)3011 RValue<UInt4> MulHigh(RValue<UInt4> x, RValue<UInt4> y)
3012 {
3013 RR_DEBUG_INFO_UPDATE_LOC();
3014 // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq.
3015
3016 if(false) // Partial product based implementation.
3017 {
3018 auto xh = x >> 16;
3019 auto yh = y >> 16;
3020 auto xl = x & UInt4(0x0000FFFF);
3021 auto yl = y & UInt4(0x0000FFFF);
3022 auto xlyh = xl * yh;
3023 auto xhyl = xh * yl;
3024 auto xlyhh = xlyh >> 16;
3025 auto xhylh = xhyl >> 16;
3026 auto xlyhl = xlyh & UInt4(0x0000FFFF);
3027 auto xhyll = xhyl & UInt4(0x0000FFFF);
3028 auto xlylh = (xl * yl) >> 16;
3029 auto oflow = (xlyhl + xhyll + xlylh) >> 16;
3030
3031 return (xh * yh) + (xlyhh + xhylh) + oflow;
3032 }
3033
3034 // Scalarized implementation.
3035 Int4 result;
3036 result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 0))) * Long(UInt(Extract(As<Int4>(y), 0)))) >> Long(Int(32))), 0);
3037 result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 1))) * Long(UInt(Extract(As<Int4>(y), 1)))) >> Long(Int(32))), 1);
3038 result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 2))) * Long(UInt(Extract(As<Int4>(y), 2)))) >> Long(Int(32))), 2);
3039 result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 3))) * Long(UInt(Extract(As<Int4>(y), 3)))) >> Long(Int(32))), 3);
3040
3041 return As<UInt4>(result);
3042 }
3043
Average(RValue<UShort4> x,RValue<UShort4> y)3044 RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)
3045 {
3046 RR_DEBUG_INFO_UPDATE_LOC();
3047 UNIMPLEMENTED_NO_BUG("RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)");
3048 return UShort4(0);
3049 }
3050
type()3051 Type *UShort4::type()
3052 {
3053 return T(Type_v4i16);
3054 }
3055
Extract(RValue<Short8> val,int i)3056 RValue<Short> Extract(RValue<Short8> val, int i)
3057 {
3058 RR_DEBUG_INFO_UPDATE_LOC();
3059 return RValue<Short>(Nucleus::createExtractElement(val.value(), Short::type(), i));
3060 }
3061
Insert(RValue<Short8> val,RValue<Short> element,int i)3062 RValue<Short8> Insert(RValue<Short8> val, RValue<Short> element, int i)
3063 {
3064 RR_DEBUG_INFO_UPDATE_LOC();
3065 return RValue<Short8>(Nucleus::createInsertElement(val.value(), element.value(), i));
3066 }
3067
operator <<(RValue<Short8> lhs,unsigned char rhs)3068 RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs)
3069 {
3070 RR_DEBUG_INFO_UPDATE_LOC();
3071 if(emulateIntrinsics)
3072 {
3073 Short8 result;
3074 result = Insert(result, Extract(lhs, 0) << Short(rhs), 0);
3075 result = Insert(result, Extract(lhs, 1) << Short(rhs), 1);
3076 result = Insert(result, Extract(lhs, 2) << Short(rhs), 2);
3077 result = Insert(result, Extract(lhs, 3) << Short(rhs), 3);
3078 result = Insert(result, Extract(lhs, 4) << Short(rhs), 4);
3079 result = Insert(result, Extract(lhs, 5) << Short(rhs), 5);
3080 result = Insert(result, Extract(lhs, 6) << Short(rhs), 6);
3081 result = Insert(result, Extract(lhs, 7) << Short(rhs), 7);
3082
3083 return result;
3084 }
3085 else
3086 {
3087 return RValue<Short8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3088 }
3089 }
3090
operator >>(RValue<Short8> lhs,unsigned char rhs)3091 RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs)
3092 {
3093 RR_DEBUG_INFO_UPDATE_LOC();
3094 if(emulateIntrinsics)
3095 {
3096 Short8 result;
3097 result = Insert(result, Extract(lhs, 0) >> Short(rhs), 0);
3098 result = Insert(result, Extract(lhs, 1) >> Short(rhs), 1);
3099 result = Insert(result, Extract(lhs, 2) >> Short(rhs), 2);
3100 result = Insert(result, Extract(lhs, 3) >> Short(rhs), 3);
3101 result = Insert(result, Extract(lhs, 4) >> Short(rhs), 4);
3102 result = Insert(result, Extract(lhs, 5) >> Short(rhs), 5);
3103 result = Insert(result, Extract(lhs, 6) >> Short(rhs), 6);
3104 result = Insert(result, Extract(lhs, 7) >> Short(rhs), 7);
3105
3106 return result;
3107 }
3108 else
3109 {
3110 return RValue<Short8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3111 }
3112 }
3113
MulAdd(RValue<Short8> x,RValue<Short8> y)3114 RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)
3115 {
3116 RR_DEBUG_INFO_UPDATE_LOC();
3117 UNIMPLEMENTED_NO_BUG("RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)");
3118 return Int4(0);
3119 }
3120
MulHigh(RValue<Short8> x,RValue<Short8> y)3121 RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)
3122 {
3123 RR_DEBUG_INFO_UPDATE_LOC();
3124 UNIMPLEMENTED_NO_BUG("RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)");
3125 return Short8(0);
3126 }
3127
type()3128 Type *Short8::type()
3129 {
3130 return T(Ice::IceType_v8i16);
3131 }
3132
Extract(RValue<UShort8> val,int i)3133 RValue<UShort> Extract(RValue<UShort8> val, int i)
3134 {
3135 RR_DEBUG_INFO_UPDATE_LOC();
3136 return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i));
3137 }
3138
Insert(RValue<UShort8> val,RValue<UShort> element,int i)3139 RValue<UShort8> Insert(RValue<UShort8> val, RValue<UShort> element, int i)
3140 {
3141 RR_DEBUG_INFO_UPDATE_LOC();
3142 return RValue<UShort8>(Nucleus::createInsertElement(val.value(), element.value(), i));
3143 }
3144
operator <<(RValue<UShort8> lhs,unsigned char rhs)3145 RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs)
3146 {
3147 RR_DEBUG_INFO_UPDATE_LOC();
3148 if(emulateIntrinsics)
3149 {
3150 UShort8 result;
3151 result = Insert(result, Extract(lhs, 0) << UShort(rhs), 0);
3152 result = Insert(result, Extract(lhs, 1) << UShort(rhs), 1);
3153 result = Insert(result, Extract(lhs, 2) << UShort(rhs), 2);
3154 result = Insert(result, Extract(lhs, 3) << UShort(rhs), 3);
3155 result = Insert(result, Extract(lhs, 4) << UShort(rhs), 4);
3156 result = Insert(result, Extract(lhs, 5) << UShort(rhs), 5);
3157 result = Insert(result, Extract(lhs, 6) << UShort(rhs), 6);
3158 result = Insert(result, Extract(lhs, 7) << UShort(rhs), 7);
3159
3160 return result;
3161 }
3162 else
3163 {
3164 return RValue<UShort8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3165 }
3166 }
3167
operator >>(RValue<UShort8> lhs,unsigned char rhs)3168 RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs)
3169 {
3170 RR_DEBUG_INFO_UPDATE_LOC();
3171 if(emulateIntrinsics)
3172 {
3173 UShort8 result;
3174 result = Insert(result, Extract(lhs, 0) >> UShort(rhs), 0);
3175 result = Insert(result, Extract(lhs, 1) >> UShort(rhs), 1);
3176 result = Insert(result, Extract(lhs, 2) >> UShort(rhs), 2);
3177 result = Insert(result, Extract(lhs, 3) >> UShort(rhs), 3);
3178 result = Insert(result, Extract(lhs, 4) >> UShort(rhs), 4);
3179 result = Insert(result, Extract(lhs, 5) >> UShort(rhs), 5);
3180 result = Insert(result, Extract(lhs, 6) >> UShort(rhs), 6);
3181 result = Insert(result, Extract(lhs, 7) >> UShort(rhs), 7);
3182
3183 return result;
3184 }
3185 else
3186 {
3187 return RValue<UShort8>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3188 }
3189 }
3190
MulHigh(RValue<UShort8> x,RValue<UShort8> y)3191 RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)
3192 {
3193 RR_DEBUG_INFO_UPDATE_LOC();
3194 UNIMPLEMENTED_NO_BUG("RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)");
3195 return UShort8(0);
3196 }
3197
type()3198 Type *UShort8::type()
3199 {
3200 return T(Ice::IceType_v8i16);
3201 }
3202
operator ++(Int & val,int)3203 RValue<Int> operator++(Int &val, int) // Post-increment
3204 {
3205 RR_DEBUG_INFO_UPDATE_LOC();
3206 RValue<Int> res = val;
3207 val += 1;
3208 return res;
3209 }
3210
operator ++(Int & val)3211 const Int &operator++(Int &val) // Pre-increment
3212 {
3213 RR_DEBUG_INFO_UPDATE_LOC();
3214 val += 1;
3215 return val;
3216 }
3217
operator --(Int & val,int)3218 RValue<Int> operator--(Int &val, int) // Post-decrement
3219 {
3220 RR_DEBUG_INFO_UPDATE_LOC();
3221 RValue<Int> res = val;
3222 val -= 1;
3223 return res;
3224 }
3225
operator --(Int & val)3226 const Int &operator--(Int &val) // Pre-decrement
3227 {
3228 RR_DEBUG_INFO_UPDATE_LOC();
3229 val -= 1;
3230 return val;
3231 }
3232
RoundInt(RValue<Float> cast)3233 RValue<Int> RoundInt(RValue<Float> cast)
3234 {
3235 RR_DEBUG_INFO_UPDATE_LOC();
3236 if(emulateIntrinsics || CPUID::ARM)
3237 {
3238 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
3239 return Int((cast + Float(0x00C00000)) - Float(0x00C00000));
3240 }
3241 else
3242 {
3243 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
3244 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3245 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3246 nearbyint->addArg(cast.value());
3247 ::basicBlock->appendInst(nearbyint);
3248
3249 return RValue<Int>(V(result));
3250 }
3251 }
3252
type()3253 Type *Int::type()
3254 {
3255 return T(Ice::IceType_i32);
3256 }
3257
type()3258 Type *Long::type()
3259 {
3260 return T(Ice::IceType_i64);
3261 }
3262
UInt(RValue<Float> cast)3263 UInt::UInt(RValue<Float> cast)
3264 {
3265 RR_DEBUG_INFO_UPDATE_LOC();
3266 // Smallest positive value representable in UInt, but not in Int
3267 const unsigned int ustart = 0x80000000u;
3268 const float ustartf = float(ustart);
3269
3270 // If the value is negative, store 0, otherwise store the result of the conversion
3271 storeValue((~(As<Int>(cast) >> 31) &
3272 // Check if the value can be represented as an Int
3273 IfThenElse(cast >= ustartf,
3274 // If the value is too large, subtract ustart and re-add it after conversion.
3275 As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)),
3276 // Otherwise, just convert normally
3277 Int(cast)))
3278 .value());
3279 }
3280
operator ++(UInt & val,int)3281 RValue<UInt> operator++(UInt &val, int) // Post-increment
3282 {
3283 RR_DEBUG_INFO_UPDATE_LOC();
3284 RValue<UInt> res = val;
3285 val += 1;
3286 return res;
3287 }
3288
operator ++(UInt & val)3289 const UInt &operator++(UInt &val) // Pre-increment
3290 {
3291 RR_DEBUG_INFO_UPDATE_LOC();
3292 val += 1;
3293 return val;
3294 }
3295
operator --(UInt & val,int)3296 RValue<UInt> operator--(UInt &val, int) // Post-decrement
3297 {
3298 RR_DEBUG_INFO_UPDATE_LOC();
3299 RValue<UInt> res = val;
3300 val -= 1;
3301 return res;
3302 }
3303
operator --(UInt & val)3304 const UInt &operator--(UInt &val) // Pre-decrement
3305 {
3306 RR_DEBUG_INFO_UPDATE_LOC();
3307 val -= 1;
3308 return val;
3309 }
3310
3311 // RValue<UInt> RoundUInt(RValue<Float> cast)
3312 // {
3313 // ASSERT(false && "UNIMPLEMENTED"); return RValue<UInt>(V(nullptr));
3314 // }
3315
type()3316 Type *UInt::type()
3317 {
3318 return T(Ice::IceType_i32);
3319 }
3320
3321 // Int2::Int2(RValue<Int> cast)
3322 // {
3323 // Value *extend = Nucleus::createZExt(cast.value(), Long::type());
3324 // Value *vector = Nucleus::createBitCast(extend, Int2::type());
3325 //
3326 // Constant *shuffle[2];
3327 // shuffle[0] = Nucleus::createConstantInt(0);
3328 // shuffle[1] = Nucleus::createConstantInt(0);
3329 //
3330 // Value *replicate = Nucleus::createShuffleVector(vector, UndefValue::get(Int2::type()), Nucleus::createConstantVector(shuffle, 2));
3331 //
3332 // storeValue(replicate);
3333 // }
3334
operator <<(RValue<Int2> lhs,unsigned char rhs)3335 RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs)
3336 {
3337 RR_DEBUG_INFO_UPDATE_LOC();
3338 if(emulateIntrinsics)
3339 {
3340 Int2 result;
3341 result = Insert(result, Extract(lhs, 0) << Int(rhs), 0);
3342 result = Insert(result, Extract(lhs, 1) << Int(rhs), 1);
3343
3344 return result;
3345 }
3346 else
3347 {
3348 return RValue<Int2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3349 }
3350 }
3351
operator >>(RValue<Int2> lhs,unsigned char rhs)3352 RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs)
3353 {
3354 RR_DEBUG_INFO_UPDATE_LOC();
3355 if(emulateIntrinsics)
3356 {
3357 Int2 result;
3358 result = Insert(result, Extract(lhs, 0) >> Int(rhs), 0);
3359 result = Insert(result, Extract(lhs, 1) >> Int(rhs), 1);
3360
3361 return result;
3362 }
3363 else
3364 {
3365 return RValue<Int2>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3366 }
3367 }
3368
type()3369 Type *Int2::type()
3370 {
3371 return T(Type_v2i32);
3372 }
3373
operator <<(RValue<UInt2> lhs,unsigned char rhs)3374 RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs)
3375 {
3376 RR_DEBUG_INFO_UPDATE_LOC();
3377 if(emulateIntrinsics)
3378 {
3379 UInt2 result;
3380 result = Insert(result, Extract(lhs, 0) << UInt(rhs), 0);
3381 result = Insert(result, Extract(lhs, 1) << UInt(rhs), 1);
3382
3383 return result;
3384 }
3385 else
3386 {
3387 return RValue<UInt2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3388 }
3389 }
3390
operator >>(RValue<UInt2> lhs,unsigned char rhs)3391 RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs)
3392 {
3393 RR_DEBUG_INFO_UPDATE_LOC();
3394 if(emulateIntrinsics)
3395 {
3396 UInt2 result;
3397 result = Insert(result, Extract(lhs, 0) >> UInt(rhs), 0);
3398 result = Insert(result, Extract(lhs, 1) >> UInt(rhs), 1);
3399
3400 return result;
3401 }
3402 else
3403 {
3404 return RValue<UInt2>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3405 }
3406 }
3407
type()3408 Type *UInt2::type()
3409 {
3410 return T(Type_v2i32);
3411 }
3412
Int4(RValue<Byte4> cast)3413 Int4::Int4(RValue<Byte4> cast)
3414 : XYZW(this)
3415 {
3416 RR_DEBUG_INFO_UPDATE_LOC();
3417 Value *x = Nucleus::createBitCast(cast.value(), Int::type());
3418 Value *a = Nucleus::createInsertElement(loadValue(), x, 0);
3419
3420 Value *e;
3421 int swizzle[16] = { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 };
3422 Value *b = Nucleus::createBitCast(a, Byte16::type());
3423 Value *c = Nucleus::createShuffleVector(b, Nucleus::createNullValue(Byte16::type()), swizzle);
3424
3425 int swizzle2[8] = { 0, 8, 1, 9, 2, 10, 3, 11 };
3426 Value *d = Nucleus::createBitCast(c, Short8::type());
3427 e = Nucleus::createShuffleVector(d, Nucleus::createNullValue(Short8::type()), swizzle2);
3428
3429 Value *f = Nucleus::createBitCast(e, Int4::type());
3430 storeValue(f);
3431 }
3432
Int4(RValue<SByte4> cast)3433 Int4::Int4(RValue<SByte4> cast)
3434 : XYZW(this)
3435 {
3436 RR_DEBUG_INFO_UPDATE_LOC();
3437 Value *x = Nucleus::createBitCast(cast.value(), Int::type());
3438 Value *a = Nucleus::createInsertElement(loadValue(), x, 0);
3439
3440 int swizzle[16] = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 };
3441 Value *b = Nucleus::createBitCast(a, Byte16::type());
3442 Value *c = Nucleus::createShuffleVector(b, b, swizzle);
3443
3444 int swizzle2[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
3445 Value *d = Nucleus::createBitCast(c, Short8::type());
3446 Value *e = Nucleus::createShuffleVector(d, d, swizzle2);
3447
3448 *this = As<Int4>(e) >> 24;
3449 }
3450
Int4(RValue<Short4> cast)3451 Int4::Int4(RValue<Short4> cast)
3452 : XYZW(this)
3453 {
3454 RR_DEBUG_INFO_UPDATE_LOC();
3455 int swizzle[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
3456 Value *c = Nucleus::createShuffleVector(cast.value(), cast.value(), swizzle);
3457
3458 *this = As<Int4>(c) >> 16;
3459 }
3460
Int4(RValue<UShort4> cast)3461 Int4::Int4(RValue<UShort4> cast)
3462 : XYZW(this)
3463 {
3464 RR_DEBUG_INFO_UPDATE_LOC();
3465 int swizzle[8] = { 0, 8, 1, 9, 2, 10, 3, 11 };
3466 Value *c = Nucleus::createShuffleVector(cast.value(), Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle);
3467 Value *d = Nucleus::createBitCast(c, Int4::type());
3468 storeValue(d);
3469 }
3470
Int4(RValue<Int> rhs)3471 Int4::Int4(RValue<Int> rhs)
3472 : XYZW(this)
3473 {
3474 RR_DEBUG_INFO_UPDATE_LOC();
3475 Value *vector = Nucleus::createBitCast(rhs.value(), Int4::type());
3476
3477 int swizzle[4] = { 0, 0, 0, 0 };
3478 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3479
3480 storeValue(replicate);
3481 }
3482
operator <<(RValue<Int4> lhs,unsigned char rhs)3483 RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs)
3484 {
3485 RR_DEBUG_INFO_UPDATE_LOC();
3486 if(emulateIntrinsics)
3487 {
3488 Int4 result;
3489 result = Insert(result, Extract(lhs, 0) << Int(rhs), 0);
3490 result = Insert(result, Extract(lhs, 1) << Int(rhs), 1);
3491 result = Insert(result, Extract(lhs, 2) << Int(rhs), 2);
3492 result = Insert(result, Extract(lhs, 3) << Int(rhs), 3);
3493
3494 return result;
3495 }
3496 else
3497 {
3498 return RValue<Int4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3499 }
3500 }
3501
operator >>(RValue<Int4> lhs,unsigned char rhs)3502 RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs)
3503 {
3504 RR_DEBUG_INFO_UPDATE_LOC();
3505 if(emulateIntrinsics)
3506 {
3507 Int4 result;
3508 result = Insert(result, Extract(lhs, 0) >> Int(rhs), 0);
3509 result = Insert(result, Extract(lhs, 1) >> Int(rhs), 1);
3510 result = Insert(result, Extract(lhs, 2) >> Int(rhs), 2);
3511 result = Insert(result, Extract(lhs, 3) >> Int(rhs), 3);
3512
3513 return result;
3514 }
3515 else
3516 {
3517 return RValue<Int4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3518 }
3519 }
3520
CmpEQ(RValue<Int4> x,RValue<Int4> y)3521 RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y)
3522 {
3523 RR_DEBUG_INFO_UPDATE_LOC();
3524 return RValue<Int4>(Nucleus::createICmpEQ(x.value(), y.value()));
3525 }
3526
CmpLT(RValue<Int4> x,RValue<Int4> y)3527 RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y)
3528 {
3529 RR_DEBUG_INFO_UPDATE_LOC();
3530 return RValue<Int4>(Nucleus::createICmpSLT(x.value(), y.value()));
3531 }
3532
CmpLE(RValue<Int4> x,RValue<Int4> y)3533 RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y)
3534 {
3535 RR_DEBUG_INFO_UPDATE_LOC();
3536 return RValue<Int4>(Nucleus::createICmpSLE(x.value(), y.value()));
3537 }
3538
CmpNEQ(RValue<Int4> x,RValue<Int4> y)3539 RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y)
3540 {
3541 RR_DEBUG_INFO_UPDATE_LOC();
3542 return RValue<Int4>(Nucleus::createICmpNE(x.value(), y.value()));
3543 }
3544
CmpNLT(RValue<Int4> x,RValue<Int4> y)3545 RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y)
3546 {
3547 RR_DEBUG_INFO_UPDATE_LOC();
3548 return RValue<Int4>(Nucleus::createICmpSGE(x.value(), y.value()));
3549 }
3550
CmpNLE(RValue<Int4> x,RValue<Int4> y)3551 RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y)
3552 {
3553 RR_DEBUG_INFO_UPDATE_LOC();
3554 return RValue<Int4>(Nucleus::createICmpSGT(x.value(), y.value()));
3555 }
3556
Max(RValue<Int4> x,RValue<Int4> y)3557 RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y)
3558 {
3559 RR_DEBUG_INFO_UPDATE_LOC();
3560 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3561 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value());
3562 ::basicBlock->appendInst(cmp);
3563
3564 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3565 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3566 ::basicBlock->appendInst(select);
3567
3568 return RValue<Int4>(V(result));
3569 }
3570
Min(RValue<Int4> x,RValue<Int4> y)3571 RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y)
3572 {
3573 RR_DEBUG_INFO_UPDATE_LOC();
3574 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3575 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value());
3576 ::basicBlock->appendInst(cmp);
3577
3578 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3579 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3580 ::basicBlock->appendInst(select);
3581
3582 return RValue<Int4>(V(result));
3583 }
3584
RoundInt(RValue<Float4> cast)3585 RValue<Int4> RoundInt(RValue<Float4> cast)
3586 {
3587 RR_DEBUG_INFO_UPDATE_LOC();
3588 if(emulateIntrinsics || CPUID::ARM)
3589 {
3590 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
3591 return Int4((cast + Float4(0x00C00000)) - Float4(0x00C00000));
3592 }
3593 else
3594 {
3595 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3596 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3597 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3598 nearbyint->addArg(cast.value());
3599 ::basicBlock->appendInst(nearbyint);
3600
3601 return RValue<Int4>(V(result));
3602 }
3603 }
3604
RoundIntClamped(RValue<Float4> cast)3605 RValue<Int4> RoundIntClamped(RValue<Float4> cast)
3606 {
3607 RR_DEBUG_INFO_UPDATE_LOC();
3608
3609 // cvtps2dq produces 0x80000000, a negative value, for input larger than
3610 // 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0
3611 // saturate to 0x80000000.
3612 RValue<Float4> clamped = Min(cast, Float4(0x7FFFFF80));
3613
3614 if(emulateIntrinsics || CPUID::ARM)
3615 {
3616 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
3617 return Int4((clamped + Float4(0x00C00000)) - Float4(0x00C00000));
3618 }
3619 else
3620 {
3621 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3622 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3623 auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3624 nearbyint->addArg(clamped.value());
3625 ::basicBlock->appendInst(nearbyint);
3626
3627 return RValue<Int4>(V(result));
3628 }
3629 }
3630
PackSigned(RValue<Int4> x,RValue<Int4> y)3631 RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y)
3632 {
3633 RR_DEBUG_INFO_UPDATE_LOC();
3634 if(emulateIntrinsics)
3635 {
3636 Short8 result;
3637 result = Insert(result, SaturateSigned(Extract(x, 0)), 0);
3638 result = Insert(result, SaturateSigned(Extract(x, 1)), 1);
3639 result = Insert(result, SaturateSigned(Extract(x, 2)), 2);
3640 result = Insert(result, SaturateSigned(Extract(x, 3)), 3);
3641 result = Insert(result, SaturateSigned(Extract(y, 0)), 4);
3642 result = Insert(result, SaturateSigned(Extract(y, 1)), 5);
3643 result = Insert(result, SaturateSigned(Extract(y, 2)), 6);
3644 result = Insert(result, SaturateSigned(Extract(y, 3)), 7);
3645
3646 return result;
3647 }
3648 else
3649 {
3650 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
3651 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3652 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3653 pack->addArg(x.value());
3654 pack->addArg(y.value());
3655 ::basicBlock->appendInst(pack);
3656
3657 return RValue<Short8>(V(result));
3658 }
3659 }
3660
PackUnsigned(RValue<Int4> x,RValue<Int4> y)3661 RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y)
3662 {
3663 RR_DEBUG_INFO_UPDATE_LOC();
3664 if(emulateIntrinsics || !(CPUID::SSE4_1 || CPUID::ARM))
3665 {
3666 RValue<Int4> sx = As<Int4>(x);
3667 RValue<Int4> bx = (sx & ~(sx >> 31)) - Int4(0x8000);
3668
3669 RValue<Int4> sy = As<Int4>(y);
3670 RValue<Int4> by = (sy & ~(sy >> 31)) - Int4(0x8000);
3671
3672 return As<UShort8>(PackSigned(bx, by) + Short8(0x8000u));
3673 }
3674 else
3675 {
3676 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
3677 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3678 auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3679 pack->addArg(x.value());
3680 pack->addArg(y.value());
3681 ::basicBlock->appendInst(pack);
3682
3683 return RValue<UShort8>(V(result));
3684 }
3685 }
3686
SignMask(RValue<Int4> x)3687 RValue<Int> SignMask(RValue<Int4> x)
3688 {
3689 RR_DEBUG_INFO_UPDATE_LOC();
3690 if(emulateIntrinsics || CPUID::ARM)
3691 {
3692 Int4 xx = (x >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008);
3693 return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3);
3694 }
3695 else
3696 {
3697 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
3698 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3699 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3700 movmsk->addArg(x.value());
3701 ::basicBlock->appendInst(movmsk);
3702
3703 return RValue<Int>(V(result));
3704 }
3705 }
3706
type()3707 Type *Int4::type()
3708 {
3709 return T(Ice::IceType_v4i32);
3710 }
3711
UInt4(RValue<Float4> cast)3712 UInt4::UInt4(RValue<Float4> cast)
3713 : XYZW(this)
3714 {
3715 RR_DEBUG_INFO_UPDATE_LOC();
3716 // Smallest positive value representable in UInt, but not in Int
3717 const unsigned int ustart = 0x80000000u;
3718 const float ustartf = float(ustart);
3719
3720 // Check if the value can be represented as an Int
3721 Int4 uiValue = CmpNLT(cast, Float4(ustartf));
3722 // If the value is too large, subtract ustart and re-add it after conversion.
3723 uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) |
3724 // Otherwise, just convert normally
3725 (~uiValue & Int4(cast));
3726 // If the value is negative, store 0, otherwise store the result of the conversion
3727 storeValue((~(As<Int4>(cast) >> 31) & uiValue).value());
3728 }
3729
UInt4(RValue<UInt> rhs)3730 UInt4::UInt4(RValue<UInt> rhs)
3731 : XYZW(this)
3732 {
3733 RR_DEBUG_INFO_UPDATE_LOC();
3734 Value *vector = Nucleus::createBitCast(rhs.value(), UInt4::type());
3735
3736 int swizzle[4] = { 0, 0, 0, 0 };
3737 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3738
3739 storeValue(replicate);
3740 }
3741
operator <<(RValue<UInt4> lhs,unsigned char rhs)3742 RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs)
3743 {
3744 RR_DEBUG_INFO_UPDATE_LOC();
3745 if(emulateIntrinsics)
3746 {
3747 UInt4 result;
3748 result = Insert(result, Extract(lhs, 0) << UInt(rhs), 0);
3749 result = Insert(result, Extract(lhs, 1) << UInt(rhs), 1);
3750 result = Insert(result, Extract(lhs, 2) << UInt(rhs), 2);
3751 result = Insert(result, Extract(lhs, 3) << UInt(rhs), 3);
3752
3753 return result;
3754 }
3755 else
3756 {
3757 return RValue<UInt4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3758 }
3759 }
3760
operator >>(RValue<UInt4> lhs,unsigned char rhs)3761 RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs)
3762 {
3763 RR_DEBUG_INFO_UPDATE_LOC();
3764 if(emulateIntrinsics)
3765 {
3766 UInt4 result;
3767 result = Insert(result, Extract(lhs, 0) >> UInt(rhs), 0);
3768 result = Insert(result, Extract(lhs, 1) >> UInt(rhs), 1);
3769 result = Insert(result, Extract(lhs, 2) >> UInt(rhs), 2);
3770 result = Insert(result, Extract(lhs, 3) >> UInt(rhs), 3);
3771
3772 return result;
3773 }
3774 else
3775 {
3776 return RValue<UInt4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3777 }
3778 }
3779
CmpEQ(RValue<UInt4> x,RValue<UInt4> y)3780 RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y)
3781 {
3782 RR_DEBUG_INFO_UPDATE_LOC();
3783 return RValue<UInt4>(Nucleus::createICmpEQ(x.value(), y.value()));
3784 }
3785
CmpLT(RValue<UInt4> x,RValue<UInt4> y)3786 RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y)
3787 {
3788 RR_DEBUG_INFO_UPDATE_LOC();
3789 return RValue<UInt4>(Nucleus::createICmpULT(x.value(), y.value()));
3790 }
3791
CmpLE(RValue<UInt4> x,RValue<UInt4> y)3792 RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y)
3793 {
3794 RR_DEBUG_INFO_UPDATE_LOC();
3795 return RValue<UInt4>(Nucleus::createICmpULE(x.value(), y.value()));
3796 }
3797
CmpNEQ(RValue<UInt4> x,RValue<UInt4> y)3798 RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y)
3799 {
3800 RR_DEBUG_INFO_UPDATE_LOC();
3801 return RValue<UInt4>(Nucleus::createICmpNE(x.value(), y.value()));
3802 }
3803
CmpNLT(RValue<UInt4> x,RValue<UInt4> y)3804 RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y)
3805 {
3806 RR_DEBUG_INFO_UPDATE_LOC();
3807 return RValue<UInt4>(Nucleus::createICmpUGE(x.value(), y.value()));
3808 }
3809
CmpNLE(RValue<UInt4> x,RValue<UInt4> y)3810 RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y)
3811 {
3812 RR_DEBUG_INFO_UPDATE_LOC();
3813 return RValue<UInt4>(Nucleus::createICmpUGT(x.value(), y.value()));
3814 }
3815
Max(RValue<UInt4> x,RValue<UInt4> y)3816 RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y)
3817 {
3818 RR_DEBUG_INFO_UPDATE_LOC();
3819 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3820 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value());
3821 ::basicBlock->appendInst(cmp);
3822
3823 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3824 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3825 ::basicBlock->appendInst(select);
3826
3827 return RValue<UInt4>(V(result));
3828 }
3829
Min(RValue<UInt4> x,RValue<UInt4> y)3830 RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y)
3831 {
3832 RR_DEBUG_INFO_UPDATE_LOC();
3833 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3834 auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value());
3835 ::basicBlock->appendInst(cmp);
3836
3837 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3838 auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3839 ::basicBlock->appendInst(select);
3840
3841 return RValue<UInt4>(V(result));
3842 }
3843
type()3844 Type *UInt4::type()
3845 {
3846 return T(Ice::IceType_v4i32);
3847 }
3848
type()3849 Type *Half::type()
3850 {
3851 return T(Ice::IceType_i16);
3852 }
3853
Rcp_pp(RValue<Float> x,bool exactAtPow2)3854 RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2)
3855 {
3856 RR_DEBUG_INFO_UPDATE_LOC();
3857 return 1.0f / x;
3858 }
3859
RcpSqrt_pp(RValue<Float> x)3860 RValue<Float> RcpSqrt_pp(RValue<Float> x)
3861 {
3862 RR_DEBUG_INFO_UPDATE_LOC();
3863 return Rcp_pp(Sqrt(x));
3864 }
3865
Sqrt(RValue<Float> x)3866 RValue<Float> Sqrt(RValue<Float> x)
3867 {
3868 RR_DEBUG_INFO_UPDATE_LOC();
3869 Ice::Variable *result = ::function->makeVariable(Ice::IceType_f32);
3870 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3871 auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3872 sqrt->addArg(x.value());
3873 ::basicBlock->appendInst(sqrt);
3874
3875 return RValue<Float>(V(result));
3876 }
3877
Round(RValue<Float> x)3878 RValue<Float> Round(RValue<Float> x)
3879 {
3880 RR_DEBUG_INFO_UPDATE_LOC();
3881 return Float4(Round(Float4(x))).x;
3882 }
3883
Trunc(RValue<Float> x)3884 RValue<Float> Trunc(RValue<Float> x)
3885 {
3886 RR_DEBUG_INFO_UPDATE_LOC();
3887 return Float4(Trunc(Float4(x))).x;
3888 }
3889
Frac(RValue<Float> x)3890 RValue<Float> Frac(RValue<Float> x)
3891 {
3892 RR_DEBUG_INFO_UPDATE_LOC();
3893 return Float4(Frac(Float4(x))).x;
3894 }
3895
Floor(RValue<Float> x)3896 RValue<Float> Floor(RValue<Float> x)
3897 {
3898 RR_DEBUG_INFO_UPDATE_LOC();
3899 return Float4(Floor(Float4(x))).x;
3900 }
3901
Ceil(RValue<Float> x)3902 RValue<Float> Ceil(RValue<Float> x)
3903 {
3904 RR_DEBUG_INFO_UPDATE_LOC();
3905 return Float4(Ceil(Float4(x))).x;
3906 }
3907
type()3908 Type *Float::type()
3909 {
3910 return T(Ice::IceType_f32);
3911 }
3912
type()3913 Type *Float2::type()
3914 {
3915 return T(Type_v2f32);
3916 }
3917
Float4(RValue<Float> rhs)3918 Float4::Float4(RValue<Float> rhs)
3919 : XYZW(this)
3920 {
3921 RR_DEBUG_INFO_UPDATE_LOC();
3922 Value *vector = Nucleus::createBitCast(rhs.value(), Float4::type());
3923
3924 int swizzle[4] = { 0, 0, 0, 0 };
3925 Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3926
3927 storeValue(replicate);
3928 }
3929
Max(RValue<Float4> x,RValue<Float4> y)3930 RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y)
3931 {
3932 RR_DEBUG_INFO_UPDATE_LOC();
3933 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3934 auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Ogt, condition, x.value(), y.value());
3935 ::basicBlock->appendInst(cmp);
3936
3937 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
3938 auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
3939 ::basicBlock->appendInst(select);
3940
3941 return RValue<Float4>(V(result));
3942 }
3943
Min(RValue<Float4> x,RValue<Float4> y)3944 RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y)
3945 {
3946 RR_DEBUG_INFO_UPDATE_LOC();
3947 Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3948 auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Olt, condition, x.value(), y.value());
3949 ::basicBlock->appendInst(cmp);
3950
3951 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
3952 auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
3953 ::basicBlock->appendInst(select);
3954
3955 return RValue<Float4>(V(result));
3956 }
3957
Rcp_pp(RValue<Float4> x,bool exactAtPow2)3958 RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2)
3959 {
3960 RR_DEBUG_INFO_UPDATE_LOC();
3961 return Float4(1.0f) / x;
3962 }
3963
RcpSqrt_pp(RValue<Float4> x)3964 RValue<Float4> RcpSqrt_pp(RValue<Float4> x)
3965 {
3966 RR_DEBUG_INFO_UPDATE_LOC();
3967 return Rcp_pp(Sqrt(x));
3968 }
3969
HasRcpApprox()3970 bool HasRcpApprox()
3971 {
3972 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3973 return false;
3974 }
3975
RcpApprox(RValue<Float4> x,bool exactAtPow2)3976 RValue<Float4> RcpApprox(RValue<Float4> x, bool exactAtPow2)
3977 {
3978 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3979 UNREACHABLE("RValue<Float4> RcpApprox()");
3980 return { 0.0f };
3981 }
3982
RcpApprox(RValue<Float> x,bool exactAtPow2)3983 RValue<Float> RcpApprox(RValue<Float> x, bool exactAtPow2)
3984 {
3985 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3986 UNREACHABLE("RValue<Float> RcpApprox()");
3987 return { 0.0f };
3988 }
3989
HasRcpSqrtApprox()3990 bool HasRcpSqrtApprox()
3991 {
3992 return false;
3993 }
3994
RcpSqrtApprox(RValue<Float4> x)3995 RValue<Float4> RcpSqrtApprox(RValue<Float4> x)
3996 {
3997 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
3998 UNREACHABLE("RValue<Float4> RcpSqrtApprox()");
3999 return { 0.0f };
4000 }
4001
RcpSqrtApprox(RValue<Float> x)4002 RValue<Float> RcpSqrtApprox(RValue<Float> x)
4003 {
4004 // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
4005 UNREACHABLE("RValue<Float> RcpSqrtApprox()");
4006 return { 0.0f };
4007 }
4008
Sqrt(RValue<Float4> x)4009 RValue<Float4> Sqrt(RValue<Float4> x)
4010 {
4011 RR_DEBUG_INFO_UPDATE_LOC();
4012 if(emulateIntrinsics || CPUID::ARM)
4013 {
4014 Float4 result;
4015 result.x = Sqrt(Float(Float4(x).x));
4016 result.y = Sqrt(Float(Float4(x).y));
4017 result.z = Sqrt(Float(Float4(x).z));
4018 result.w = Sqrt(Float(Float4(x).w));
4019
4020 return result;
4021 }
4022 else
4023 {
4024 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4025 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4026 auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4027 sqrt->addArg(x.value());
4028 ::basicBlock->appendInst(sqrt);
4029
4030 return RValue<Float4>(V(result));
4031 }
4032 }
4033
SignMask(RValue<Float4> x)4034 RValue<Int> SignMask(RValue<Float4> x)
4035 {
4036 RR_DEBUG_INFO_UPDATE_LOC();
4037 if(emulateIntrinsics || CPUID::ARM)
4038 {
4039 Int4 xx = (As<Int4>(x) >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008);
4040 return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3);
4041 }
4042 else
4043 {
4044 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4045 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4046 auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4047 movmsk->addArg(x.value());
4048 ::basicBlock->appendInst(movmsk);
4049
4050 return RValue<Int>(V(result));
4051 }
4052 }
4053
CmpEQ(RValue<Float4> x,RValue<Float4> y)4054 RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y)
4055 {
4056 RR_DEBUG_INFO_UPDATE_LOC();
4057 return RValue<Int4>(Nucleus::createFCmpOEQ(x.value(), y.value()));
4058 }
4059
CmpLT(RValue<Float4> x,RValue<Float4> y)4060 RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y)
4061 {
4062 RR_DEBUG_INFO_UPDATE_LOC();
4063 return RValue<Int4>(Nucleus::createFCmpOLT(x.value(), y.value()));
4064 }
4065
CmpLE(RValue<Float4> x,RValue<Float4> y)4066 RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y)
4067 {
4068 RR_DEBUG_INFO_UPDATE_LOC();
4069 return RValue<Int4>(Nucleus::createFCmpOLE(x.value(), y.value()));
4070 }
4071
CmpNEQ(RValue<Float4> x,RValue<Float4> y)4072 RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y)
4073 {
4074 RR_DEBUG_INFO_UPDATE_LOC();
4075 return RValue<Int4>(Nucleus::createFCmpONE(x.value(), y.value()));
4076 }
4077
CmpNLT(RValue<Float4> x,RValue<Float4> y)4078 RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y)
4079 {
4080 RR_DEBUG_INFO_UPDATE_LOC();
4081 return RValue<Int4>(Nucleus::createFCmpOGE(x.value(), y.value()));
4082 }
4083
CmpNLE(RValue<Float4> x,RValue<Float4> y)4084 RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y)
4085 {
4086 RR_DEBUG_INFO_UPDATE_LOC();
4087 return RValue<Int4>(Nucleus::createFCmpOGT(x.value(), y.value()));
4088 }
4089
CmpUEQ(RValue<Float4> x,RValue<Float4> y)4090 RValue<Int4> CmpUEQ(RValue<Float4> x, RValue<Float4> y)
4091 {
4092 RR_DEBUG_INFO_UPDATE_LOC();
4093 return RValue<Int4>(Nucleus::createFCmpUEQ(x.value(), y.value()));
4094 }
4095
CmpULT(RValue<Float4> x,RValue<Float4> y)4096 RValue<Int4> CmpULT(RValue<Float4> x, RValue<Float4> y)
4097 {
4098 RR_DEBUG_INFO_UPDATE_LOC();
4099 return RValue<Int4>(Nucleus::createFCmpULT(x.value(), y.value()));
4100 }
4101
CmpULE(RValue<Float4> x,RValue<Float4> y)4102 RValue<Int4> CmpULE(RValue<Float4> x, RValue<Float4> y)
4103 {
4104 RR_DEBUG_INFO_UPDATE_LOC();
4105 return RValue<Int4>(Nucleus::createFCmpULE(x.value(), y.value()));
4106 }
4107
CmpUNEQ(RValue<Float4> x,RValue<Float4> y)4108 RValue<Int4> CmpUNEQ(RValue<Float4> x, RValue<Float4> y)
4109 {
4110 RR_DEBUG_INFO_UPDATE_LOC();
4111 return RValue<Int4>(Nucleus::createFCmpUNE(x.value(), y.value()));
4112 }
4113
CmpUNLT(RValue<Float4> x,RValue<Float4> y)4114 RValue<Int4> CmpUNLT(RValue<Float4> x, RValue<Float4> y)
4115 {
4116 RR_DEBUG_INFO_UPDATE_LOC();
4117 return RValue<Int4>(Nucleus::createFCmpUGE(x.value(), y.value()));
4118 }
4119
CmpUNLE(RValue<Float4> x,RValue<Float4> y)4120 RValue<Int4> CmpUNLE(RValue<Float4> x, RValue<Float4> y)
4121 {
4122 RR_DEBUG_INFO_UPDATE_LOC();
4123 return RValue<Int4>(Nucleus::createFCmpUGT(x.value(), y.value()));
4124 }
4125
Round(RValue<Float4> x)4126 RValue<Float4> Round(RValue<Float4> x)
4127 {
4128 RR_DEBUG_INFO_UPDATE_LOC();
4129 if(emulateIntrinsics || CPUID::ARM)
4130 {
4131 // Push the fractional part off the mantissa. Accurate up to +/-2^22.
4132 return (x + Float4(0x00C00000)) - Float4(0x00C00000);
4133 }
4134 else if(CPUID::SSE4_1)
4135 {
4136 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4137 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4138 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4139 round->addArg(x.value());
4140 round->addArg(::context->getConstantInt32(0));
4141 ::basicBlock->appendInst(round);
4142
4143 return RValue<Float4>(V(result));
4144 }
4145 else
4146 {
4147 return Float4(RoundInt(x));
4148 }
4149 }
4150
Trunc(RValue<Float4> x)4151 RValue<Float4> Trunc(RValue<Float4> x)
4152 {
4153 RR_DEBUG_INFO_UPDATE_LOC();
4154 if(CPUID::SSE4_1)
4155 {
4156 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4157 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4158 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4159 round->addArg(x.value());
4160 round->addArg(::context->getConstantInt32(3));
4161 ::basicBlock->appendInst(round);
4162
4163 return RValue<Float4>(V(result));
4164 }
4165 else
4166 {
4167 return Float4(Int4(x));
4168 }
4169 }
4170
Frac(RValue<Float4> x)4171 RValue<Float4> Frac(RValue<Float4> x)
4172 {
4173 RR_DEBUG_INFO_UPDATE_LOC();
4174 Float4 frc;
4175
4176 if(CPUID::SSE4_1)
4177 {
4178 frc = x - Floor(x);
4179 }
4180 else
4181 {
4182 frc = x - Float4(Int4(x)); // Signed fractional part.
4183
4184 frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1, 1, 1, 1))); // Add 1.0 if negative.
4185 }
4186
4187 // x - floor(x) can be 1.0 for very small negative x.
4188 // Clamp against the value just below 1.0.
4189 return Min(frc, As<Float4>(Int4(0x3F7FFFFF)));
4190 }
4191
Floor(RValue<Float4> x)4192 RValue<Float4> Floor(RValue<Float4> x)
4193 {
4194 RR_DEBUG_INFO_UPDATE_LOC();
4195 if(CPUID::SSE4_1)
4196 {
4197 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4198 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4199 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4200 round->addArg(x.value());
4201 round->addArg(::context->getConstantInt32(1));
4202 ::basicBlock->appendInst(round);
4203
4204 return RValue<Float4>(V(result));
4205 }
4206 else
4207 {
4208 return x - Frac(x);
4209 }
4210 }
4211
Ceil(RValue<Float4> x)4212 RValue<Float4> Ceil(RValue<Float4> x)
4213 {
4214 RR_DEBUG_INFO_UPDATE_LOC();
4215 if(CPUID::SSE4_1)
4216 {
4217 Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4218 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4219 auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4220 round->addArg(x.value());
4221 round->addArg(::context->getConstantInt32(2));
4222 ::basicBlock->appendInst(round);
4223
4224 return RValue<Float4>(V(result));
4225 }
4226 else
4227 {
4228 return -Floor(-x);
4229 }
4230 }
4231
type()4232 Type *Float4::type()
4233 {
4234 return T(Ice::IceType_v4f32);
4235 }
4236
Ticks()4237 RValue<Long> Ticks()
4238 {
4239 RR_DEBUG_INFO_UPDATE_LOC();
4240 UNIMPLEMENTED_NO_BUG("RValue<Long> Ticks()");
4241 return Long(Int(0));
4242 }
4243
ConstantPointer(void const * ptr)4244 RValue<Pointer<Byte>> ConstantPointer(void const *ptr)
4245 {
4246 RR_DEBUG_INFO_UPDATE_LOC();
4247 return RValue<Pointer<Byte>>{ V(sz::getConstantPointer(::context, ptr)) };
4248 }
4249
ConstantData(void const * data,size_t size)4250 RValue<Pointer<Byte>> ConstantData(void const *data, size_t size)
4251 {
4252 RR_DEBUG_INFO_UPDATE_LOC();
4253 return RValue<Pointer<Byte>>{ V(IceConstantData(data, size)) };
4254 }
4255
Call(RValue<Pointer<Byte>> fptr,Type * retTy,std::initializer_list<Value * > args,std::initializer_list<Type * > argTys)4256 Value *Call(RValue<Pointer<Byte>> fptr, Type *retTy, std::initializer_list<Value *> args, std::initializer_list<Type *> argTys)
4257 {
4258 RR_DEBUG_INFO_UPDATE_LOC();
4259 return V(sz::Call(::function, ::basicBlock, T(retTy), V(fptr.value()), V(args), false));
4260 }
4261
Breakpoint()4262 void Breakpoint()
4263 {
4264 RR_DEBUG_INFO_UPDATE_LOC();
4265 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Trap, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4266 auto trap = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic);
4267 ::basicBlock->appendInst(trap);
4268 }
4269
createFence(std::memory_order memoryOrder)4270 void Nucleus::createFence(std::memory_order memoryOrder)
4271 {
4272 RR_DEBUG_INFO_UPDATE_LOC();
4273 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicFence, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4274 auto inst = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic);
4275 auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder));
4276 inst->addArg(order);
4277 ::basicBlock->appendInst(inst);
4278 }
4279
createMaskedLoad(Value * ptr,Type * elTy,Value * mask,unsigned int alignment,bool zeroMaskedLanes)4280 Value *Nucleus::createMaskedLoad(Value *ptr, Type *elTy, Value *mask, unsigned int alignment, bool zeroMaskedLanes)
4281 {
4282 RR_DEBUG_INFO_UPDATE_LOC();
4283 UNIMPLEMENTED("b/155867273 Subzero createMaskedLoad()");
4284 return nullptr;
4285 }
4286
createMaskedStore(Value * ptr,Value * val,Value * mask,unsigned int alignment)4287 void Nucleus::createMaskedStore(Value *ptr, Value *val, Value *mask, unsigned int alignment)
4288 {
4289 RR_DEBUG_INFO_UPDATE_LOC();
4290 UNIMPLEMENTED("b/155867273 Subzero createMaskedStore()");
4291 }
4292
Gather(RValue<Pointer<Float>> base,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment,bool zeroMaskedLanes)4293 RValue<Float4> Gather(RValue<Pointer<Float>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */)
4294 {
4295 RR_DEBUG_INFO_UPDATE_LOC();
4296 return emulated::Gather(base, offsets, mask, alignment, zeroMaskedLanes);
4297 }
4298
Gather(RValue<Pointer<Int>> base,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment,bool zeroMaskedLanes)4299 RValue<Int4> Gather(RValue<Pointer<Int>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */)
4300 {
4301 RR_DEBUG_INFO_UPDATE_LOC();
4302 return emulated::Gather(base, offsets, mask, alignment, zeroMaskedLanes);
4303 }
4304
Scatter(RValue<Pointer<Float>> base,RValue<Float4> val,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment)4305 void Scatter(RValue<Pointer<Float>> base, RValue<Float4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment)
4306 {
4307 RR_DEBUG_INFO_UPDATE_LOC();
4308 return emulated::Scatter(base, val, offsets, mask, alignment);
4309 }
4310
Scatter(RValue<Pointer<Int>> base,RValue<Int4> val,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment)4311 void Scatter(RValue<Pointer<Int>> base, RValue<Int4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment)
4312 {
4313 RR_DEBUG_INFO_UPDATE_LOC();
4314 return emulated::Scatter(base, val, offsets, mask, alignment);
4315 }
4316
Exp2(RValue<Float> x)4317 RValue<Float> Exp2(RValue<Float> x)
4318 {
4319 RR_DEBUG_INFO_UPDATE_LOC();
4320 return emulated::Exp2(x);
4321 }
4322
Log2(RValue<Float> x)4323 RValue<Float> Log2(RValue<Float> x)
4324 {
4325 RR_DEBUG_INFO_UPDATE_LOC();
4326 return emulated::Log2(x);
4327 }
4328
Sin(RValue<Float4> x)4329 RValue<Float4> Sin(RValue<Float4> x)
4330 {
4331 RR_DEBUG_INFO_UPDATE_LOC();
4332 return optimal::Sin(x);
4333 }
4334
Cos(RValue<Float4> x)4335 RValue<Float4> Cos(RValue<Float4> x)
4336 {
4337 RR_DEBUG_INFO_UPDATE_LOC();
4338 return optimal::Cos(x);
4339 }
4340
Tan(RValue<Float4> x)4341 RValue<Float4> Tan(RValue<Float4> x)
4342 {
4343 RR_DEBUG_INFO_UPDATE_LOC();
4344 return optimal::Tan(x);
4345 }
4346
Asin(RValue<Float4> x,Precision p)4347 RValue<Float4> Asin(RValue<Float4> x, Precision p)
4348 {
4349 RR_DEBUG_INFO_UPDATE_LOC();
4350 if(p == Precision::Full)
4351 {
4352 return emulated::Asin(x);
4353 }
4354 return optimal::Asin_8_terms(x);
4355 }
4356
Acos(RValue<Float4> x,Precision p)4357 RValue<Float4> Acos(RValue<Float4> x, Precision p)
4358 {
4359 RR_DEBUG_INFO_UPDATE_LOC();
4360 // Surprisingly, deqp-vk's precision.acos.highp/mediump tests pass when using the 4-term polynomial approximation
4361 // version of acos, unlike for Asin, which requires higher precision algorithms.
4362 return optimal::Acos_4_terms(x);
4363 }
4364
Atan(RValue<Float4> x)4365 RValue<Float4> Atan(RValue<Float4> x)
4366 {
4367 RR_DEBUG_INFO_UPDATE_LOC();
4368 return optimal::Atan(x);
4369 }
4370
Sinh(RValue<Float4> x)4371 RValue<Float4> Sinh(RValue<Float4> x)
4372 {
4373 RR_DEBUG_INFO_UPDATE_LOC();
4374 return optimal::Sinh(x);
4375 }
4376
Cosh(RValue<Float4> x)4377 RValue<Float4> Cosh(RValue<Float4> x)
4378 {
4379 RR_DEBUG_INFO_UPDATE_LOC();
4380 return optimal::Cosh(x);
4381 }
4382
Tanh(RValue<Float4> x)4383 RValue<Float4> Tanh(RValue<Float4> x)
4384 {
4385 RR_DEBUG_INFO_UPDATE_LOC();
4386 return optimal::Tanh(x);
4387 }
4388
Asinh(RValue<Float4> x)4389 RValue<Float4> Asinh(RValue<Float4> x)
4390 {
4391 RR_DEBUG_INFO_UPDATE_LOC();
4392 return optimal::Asinh(x);
4393 }
4394
Acosh(RValue<Float4> x)4395 RValue<Float4> Acosh(RValue<Float4> x)
4396 {
4397 RR_DEBUG_INFO_UPDATE_LOC();
4398 return optimal::Acosh(x);
4399 }
4400
Atanh(RValue<Float4> x)4401 RValue<Float4> Atanh(RValue<Float4> x)
4402 {
4403 RR_DEBUG_INFO_UPDATE_LOC();
4404 return optimal::Atanh(x);
4405 }
4406
Atan2(RValue<Float4> x,RValue<Float4> y)4407 RValue<Float4> Atan2(RValue<Float4> x, RValue<Float4> y)
4408 {
4409 RR_DEBUG_INFO_UPDATE_LOC();
4410 return optimal::Atan2(x, y);
4411 }
4412
Pow(RValue<Float4> x,RValue<Float4> y)4413 RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y)
4414 {
4415 RR_DEBUG_INFO_UPDATE_LOC();
4416 return optimal::Pow(x, y);
4417 }
4418
Exp(RValue<Float4> x)4419 RValue<Float4> Exp(RValue<Float4> x)
4420 {
4421 RR_DEBUG_INFO_UPDATE_LOC();
4422 return optimal::Exp(x);
4423 }
4424
Log(RValue<Float4> x)4425 RValue<Float4> Log(RValue<Float4> x)
4426 {
4427 RR_DEBUG_INFO_UPDATE_LOC();
4428 return optimal::Log(x);
4429 }
4430
Exp2(RValue<Float4> x)4431 RValue<Float4> Exp2(RValue<Float4> x)
4432 {
4433 RR_DEBUG_INFO_UPDATE_LOC();
4434 return optimal::Exp2(x);
4435 }
4436
Log2(RValue<Float4> x)4437 RValue<Float4> Log2(RValue<Float4> x)
4438 {
4439 RR_DEBUG_INFO_UPDATE_LOC();
4440 return optimal::Log2(x);
4441 }
4442
Ctlz(RValue<UInt> x,bool isZeroUndef)4443 RValue<UInt> Ctlz(RValue<UInt> x, bool isZeroUndef)
4444 {
4445 RR_DEBUG_INFO_UPDATE_LOC();
4446 if(emulateIntrinsics)
4447 {
4448 UNIMPLEMENTED_NO_BUG("Subzero Ctlz()");
4449 return UInt(0);
4450 }
4451 else
4452 {
4453 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4454 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Ctlz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4455 auto ctlz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4456 ctlz->addArg(x.value());
4457 ::basicBlock->appendInst(ctlz);
4458
4459 return RValue<UInt>(V(result));
4460 }
4461 }
4462
Ctlz(RValue<UInt4> x,bool isZeroUndef)4463 RValue<UInt4> Ctlz(RValue<UInt4> x, bool isZeroUndef)
4464 {
4465 RR_DEBUG_INFO_UPDATE_LOC();
4466 if(emulateIntrinsics)
4467 {
4468 UNIMPLEMENTED_NO_BUG("Subzero Ctlz()");
4469 return UInt4(0);
4470 }
4471 else
4472 {
4473 // TODO: implement vectorized version in Subzero
4474 UInt4 result;
4475 result = Insert(result, Ctlz(Extract(x, 0), isZeroUndef), 0);
4476 result = Insert(result, Ctlz(Extract(x, 1), isZeroUndef), 1);
4477 result = Insert(result, Ctlz(Extract(x, 2), isZeroUndef), 2);
4478 result = Insert(result, Ctlz(Extract(x, 3), isZeroUndef), 3);
4479 return result;
4480 }
4481 }
4482
Cttz(RValue<UInt> x,bool isZeroUndef)4483 RValue<UInt> Cttz(RValue<UInt> x, bool isZeroUndef)
4484 {
4485 RR_DEBUG_INFO_UPDATE_LOC();
4486 if(emulateIntrinsics)
4487 {
4488 UNIMPLEMENTED_NO_BUG("Subzero Cttz()");
4489 return UInt(0);
4490 }
4491 else
4492 {
4493 Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4494 const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Cttz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4495 auto ctlz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4496 ctlz->addArg(x.value());
4497 ::basicBlock->appendInst(ctlz);
4498
4499 return RValue<UInt>(V(result));
4500 }
4501 }
4502
Cttz(RValue<UInt4> x,bool isZeroUndef)4503 RValue<UInt4> Cttz(RValue<UInt4> x, bool isZeroUndef)
4504 {
4505 RR_DEBUG_INFO_UPDATE_LOC();
4506 if(emulateIntrinsics)
4507 {
4508 UNIMPLEMENTED_NO_BUG("Subzero Cttz()");
4509 return UInt4(0);
4510 }
4511 else
4512 {
4513 // TODO: implement vectorized version in Subzero
4514 UInt4 result;
4515 result = Insert(result, Cttz(Extract(x, 0), isZeroUndef), 0);
4516 result = Insert(result, Cttz(Extract(x, 1), isZeroUndef), 1);
4517 result = Insert(result, Cttz(Extract(x, 2), isZeroUndef), 2);
4518 result = Insert(result, Cttz(Extract(x, 3), isZeroUndef), 3);
4519 return result;
4520 }
4521 }
4522
MinAtomic(RValue<Pointer<Int>> x,RValue<Int> y,std::memory_order memoryOrder)4523 RValue<Int> MinAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder)
4524 {
4525 RR_DEBUG_INFO_UPDATE_LOC();
4526 return emulated::MinAtomic(x, y, memoryOrder);
4527 }
4528
MinAtomic(RValue<Pointer<UInt>> x,RValue<UInt> y,std::memory_order memoryOrder)4529 RValue<UInt> MinAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder)
4530 {
4531 RR_DEBUG_INFO_UPDATE_LOC();
4532 return emulated::MinAtomic(x, y, memoryOrder);
4533 }
4534
MaxAtomic(RValue<Pointer<Int>> x,RValue<Int> y,std::memory_order memoryOrder)4535 RValue<Int> MaxAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder)
4536 {
4537 RR_DEBUG_INFO_UPDATE_LOC();
4538 return emulated::MaxAtomic(x, y, memoryOrder);
4539 }
4540
MaxAtomic(RValue<Pointer<UInt>> x,RValue<UInt> y,std::memory_order memoryOrder)4541 RValue<UInt> MaxAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder)
4542 {
4543 RR_DEBUG_INFO_UPDATE_LOC();
4544 return emulated::MaxAtomic(x, y, memoryOrder);
4545 }
4546
EmitDebugLocation()4547 void EmitDebugLocation()
4548 {
4549 #ifdef ENABLE_RR_DEBUG_INFO
4550 emitPrintLocation(getCallerBacktrace());
4551 #endif // ENABLE_RR_DEBUG_INFO
4552 }
EmitDebugVariable(Value * value)4553 void EmitDebugVariable(Value *value) {}
FlushDebug()4554 void FlushDebug() {}
4555
4556 namespace {
4557 namespace coro {
4558
4559 // Instance data per generated coroutine
4560 // This is the "handle" type used for Coroutine functions
4561 // Lifetime: from yield to when CoroutineEntryDestroy generated function is called.
4562 struct CoroutineData
4563 {
4564 bool useInternalScheduler = false;
4565 bool done = false; // the coroutine should stop at the next yield()
4566 bool terminated = false; // the coroutine has finished.
4567 bool inRoutine = false; // is the coroutine currently executing?
4568 marl::Scheduler::Fiber *mainFiber = nullptr;
4569 marl::Scheduler::Fiber *routineFiber = nullptr;
4570 void *promisePtr = nullptr;
4571 };
4572
createCoroutineData()4573 CoroutineData *createCoroutineData()
4574 {
4575 return new CoroutineData{};
4576 }
4577
destroyCoroutineData(CoroutineData * coroData)4578 void destroyCoroutineData(CoroutineData *coroData)
4579 {
4580 delete coroData;
4581 }
4582
4583 // suspend() pauses execution of the coroutine, and resumes execution from the
4584 // caller's call to await().
4585 // Returns true if await() is called again, or false if coroutine_destroy()
4586 // is called.
suspend(Nucleus::CoroutineHandle handle)4587 bool suspend(Nucleus::CoroutineHandle handle)
4588 {
4589 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4590 ASSERT(marl::Scheduler::Fiber::current() == coroData->routineFiber);
4591 ASSERT(coroData->inRoutine);
4592 coroData->inRoutine = false;
4593 coroData->mainFiber->notify();
4594 while(!coroData->inRoutine)
4595 {
4596 coroData->routineFiber->wait();
4597 }
4598 return !coroData->done;
4599 }
4600
4601 // resume() is called by await(), blocking until the coroutine calls yield()
4602 // or the coroutine terminates.
resume(Nucleus::CoroutineHandle handle)4603 void resume(Nucleus::CoroutineHandle handle)
4604 {
4605 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4606 ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber);
4607 ASSERT(!coroData->inRoutine);
4608 coroData->inRoutine = true;
4609 coroData->routineFiber->notify();
4610 while(coroData->inRoutine)
4611 {
4612 coroData->mainFiber->wait();
4613 }
4614 }
4615
4616 // stop() is called by coroutine_destroy(), signalling that it's done, then blocks
4617 // until the coroutine ends, and deletes the coroutine data.
stop(Nucleus::CoroutineHandle handle)4618 void stop(Nucleus::CoroutineHandle handle)
4619 {
4620 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4621 ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber);
4622 ASSERT(!coroData->inRoutine);
4623 if(!coroData->terminated)
4624 {
4625 coroData->done = true;
4626 coroData->inRoutine = true;
4627 coroData->routineFiber->notify();
4628 while(!coroData->terminated)
4629 {
4630 coroData->mainFiber->wait();
4631 }
4632 }
4633 if(coroData->useInternalScheduler)
4634 {
4635 ::getOrCreateScheduler().unbind();
4636 }
4637 coro::destroyCoroutineData(coroData); // free the coroutine data.
4638 }
4639
4640 namespace detail {
4641 thread_local rr::Nucleus::CoroutineHandle coroHandle{};
4642 } // namespace detail
4643
setHandleParam(Nucleus::CoroutineHandle handle)4644 void setHandleParam(Nucleus::CoroutineHandle handle)
4645 {
4646 ASSERT(!detail::coroHandle);
4647 detail::coroHandle = handle;
4648 }
4649
getHandleParam()4650 Nucleus::CoroutineHandle getHandleParam()
4651 {
4652 ASSERT(detail::coroHandle);
4653 auto handle = detail::coroHandle;
4654 detail::coroHandle = {};
4655 return handle;
4656 }
4657
isDone(Nucleus::CoroutineHandle handle)4658 bool isDone(Nucleus::CoroutineHandle handle)
4659 {
4660 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4661 return coroData->done;
4662 }
4663
setPromisePtr(Nucleus::CoroutineHandle handle,void * promisePtr)4664 void setPromisePtr(Nucleus::CoroutineHandle handle, void *promisePtr)
4665 {
4666 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4667 coroData->promisePtr = promisePtr;
4668 }
4669
getPromisePtr(Nucleus::CoroutineHandle handle)4670 void *getPromisePtr(Nucleus::CoroutineHandle handle)
4671 {
4672 auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4673 return coroData->promisePtr;
4674 }
4675
4676 } // namespace coro
4677 } // namespace
4678
4679 // Used to generate coroutines.
4680 // Lifetime: from yield to acquireCoroutine
4681 class CoroutineGenerator
4682 {
4683 public:
CoroutineGenerator()4684 CoroutineGenerator()
4685 {
4686 }
4687
4688 // Inserts instructions at the top of the current function to make it a coroutine.
generateCoroutineBegin()4689 void generateCoroutineBegin()
4690 {
4691 // Begin building the main coroutine_begin() function.
4692 // We insert these instructions at the top of the entry node,
4693 // before existing reactor-generated instructions.
4694
4695 // CoroutineHandle coroutine_begin(<Arguments>)
4696 // {
4697 // this->handle = coro::getHandleParam();
4698 //
4699 // YieldType promise;
4700 // coro::setPromisePtr(handle, &promise); // For await
4701 //
4702 // ... <REACTOR CODE> ...
4703 //
4704
4705 // this->handle = coro::getHandleParam();
4706 this->handle = sz::Call(::function, ::entryBlock, coro::getHandleParam);
4707
4708 // YieldType promise;
4709 // coro::setPromisePtr(handle, &promise); // For await
4710 this->promise = sz::allocateStackVariable(::function, T(::coroYieldType));
4711 sz::Call(::function, ::entryBlock, coro::setPromisePtr, this->handle, this->promise);
4712 }
4713
4714 // Adds instructions for Yield() calls at the current location of the main coroutine function.
generateYield(Value * val)4715 void generateYield(Value *val)
4716 {
4717 // ... <REACTOR CODE> ...
4718 //
4719 // promise = val;
4720 // if (!coro::suspend(handle)) {
4721 // return false; // coroutine has been stopped by the caller.
4722 // }
4723 //
4724 // ... <REACTOR CODE> ...
4725
4726 // promise = val;
4727 Nucleus::createStore(val, V(this->promise), ::coroYieldType);
4728
4729 // if (!coro::suspend(handle)) {
4730 auto result = sz::Call(::function, ::basicBlock, coro::suspend, this->handle);
4731 auto doneBlock = Nucleus::createBasicBlock();
4732 auto resumeBlock = Nucleus::createBasicBlock();
4733 Nucleus::createCondBr(V(result), resumeBlock, doneBlock);
4734
4735 // return false; // coroutine has been stopped by the caller.
4736 ::basicBlock = doneBlock;
4737 Nucleus::createRetVoid(); // coroutine return value is ignored.
4738
4739 // ... <REACTOR CODE> ...
4740 ::basicBlock = resumeBlock;
4741 }
4742
4743 using FunctionUniquePtr = std::unique_ptr<Ice::Cfg>;
4744
4745 // Generates the await function for the current coroutine.
4746 // Cannot use Nucleus functions that modify ::function and ::basicBlock.
generateAwaitFunction()4747 static FunctionUniquePtr generateAwaitFunction()
4748 {
4749 // bool coroutine_await(CoroutineHandle handle, YieldType* out)
4750 // {
4751 // if (coro::isDone())
4752 // {
4753 // return false;
4754 // }
4755 // else // resume
4756 // {
4757 // YieldType* promise = coro::getPromisePtr(handle);
4758 // *out = *promise;
4759 // coro::resume(handle);
4760 // return true;
4761 // }
4762 // }
4763
4764 // Subzero doesn't support bool types (IceType_i1) as return type
4765 const Ice::Type ReturnType = Ice::IceType_i32;
4766 const Ice::Type YieldPtrType = sz::getPointerType(T(::coroYieldType));
4767 const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void);
4768
4769 Ice::Cfg *awaitFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType, YieldPtrType });
4770 Ice::CfgLocalAllocatorScope scopedAlloc{ awaitFunc };
4771
4772 Ice::Variable *handle = awaitFunc->getArgs()[0];
4773 Ice::Variable *outPtr = awaitFunc->getArgs()[1];
4774
4775 auto doneBlock = awaitFunc->makeNode();
4776 {
4777 // return false;
4778 Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(0));
4779 doneBlock->appendInst(ret);
4780 }
4781
4782 auto resumeBlock = awaitFunc->makeNode();
4783 {
4784 // YieldType* promise = coro::getPromisePtr(handle);
4785 Ice::Variable *promise = sz::Call(awaitFunc, resumeBlock, coro::getPromisePtr, handle);
4786
4787 // *out = *promise;
4788 // Load promise value
4789 Ice::Variable *promiseVal = awaitFunc->makeVariable(T(::coroYieldType));
4790 auto load = Ice::InstLoad::create(awaitFunc, promiseVal, promise);
4791 resumeBlock->appendInst(load);
4792 // Then store it in output param
4793 auto store = Ice::InstStore::create(awaitFunc, promiseVal, outPtr);
4794 resumeBlock->appendInst(store);
4795
4796 // coro::resume(handle);
4797 sz::Call(awaitFunc, resumeBlock, coro::resume, handle);
4798
4799 // return true;
4800 Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(1));
4801 resumeBlock->appendInst(ret);
4802 }
4803
4804 // if (coro::isDone())
4805 // {
4806 // <doneBlock>
4807 // }
4808 // else // resume
4809 // {
4810 // <resumeBlock>
4811 // }
4812 Ice::CfgNode *bb = awaitFunc->getEntryNode();
4813 Ice::Variable *done = sz::Call(awaitFunc, bb, coro::isDone, handle);
4814 auto br = Ice::InstBr::create(awaitFunc, done, doneBlock, resumeBlock);
4815 bb->appendInst(br);
4816
4817 return FunctionUniquePtr{ awaitFunc };
4818 }
4819
4820 // Generates the destroy function for the current coroutine.
4821 // Cannot use Nucleus functions that modify ::function and ::basicBlock.
generateDestroyFunction()4822 static FunctionUniquePtr generateDestroyFunction()
4823 {
4824 // void coroutine_destroy(Nucleus::CoroutineHandle handle)
4825 // {
4826 // coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data
4827 // return;
4828 // }
4829
4830 const Ice::Type ReturnType = Ice::IceType_void;
4831 const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void);
4832
4833 Ice::Cfg *destroyFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType });
4834 Ice::CfgLocalAllocatorScope scopedAlloc{ destroyFunc };
4835
4836 Ice::Variable *handle = destroyFunc->getArgs()[0];
4837
4838 auto *bb = destroyFunc->getEntryNode();
4839
4840 // coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data
4841 sz::Call(destroyFunc, bb, coro::stop, handle);
4842
4843 // return;
4844 Ice::InstRet *ret = Ice::InstRet::create(destroyFunc);
4845 bb->appendInst(ret);
4846
4847 return FunctionUniquePtr{ destroyFunc };
4848 }
4849
4850 private:
4851 Ice::Variable *handle{};
4852 Ice::Variable *promise{};
4853 };
4854
invokeCoroutineBegin(std::function<Nucleus::CoroutineHandle ()> beginFunc)4855 static Nucleus::CoroutineHandle invokeCoroutineBegin(std::function<Nucleus::CoroutineHandle()> beginFunc)
4856 {
4857 // This doubles up as our coroutine handle
4858 auto coroData = coro::createCoroutineData();
4859
4860 coroData->useInternalScheduler = (marl::Scheduler::get() == nullptr);
4861 if(coroData->useInternalScheduler)
4862 {
4863 ::getOrCreateScheduler().bind();
4864 }
4865
4866 auto run = [=] {
4867 // Store handle in TLS so that the coroutine can grab it right away, before
4868 // any fiber switch occurs.
4869 coro::setHandleParam(coroData);
4870
4871 ASSERT(!coroData->routineFiber);
4872 coroData->routineFiber = marl::Scheduler::Fiber::current();
4873
4874 beginFunc();
4875
4876 ASSERT(coroData->inRoutine);
4877 coroData->done = true; // coroutine is done.
4878 coroData->terminated = true; // signal that the coroutine data is ready for freeing.
4879 coroData->inRoutine = false;
4880 coroData->mainFiber->notify();
4881 };
4882
4883 ASSERT(!coroData->mainFiber);
4884 coroData->mainFiber = marl::Scheduler::Fiber::current();
4885
4886 // block until the first yield or coroutine end
4887 ASSERT(!coroData->inRoutine);
4888 coroData->inRoutine = true;
4889 marl::schedule(marl::Task(run, marl::Task::Flags::SameThread));
4890 while(coroData->inRoutine)
4891 {
4892 coroData->mainFiber->wait();
4893 }
4894
4895 return coroData;
4896 }
4897
createCoroutine(Type * yieldType,const std::vector<Type * > & params)4898 void Nucleus::createCoroutine(Type *yieldType, const std::vector<Type *> ¶ms)
4899 {
4900 // Start by creating a regular function
4901 createFunction(yieldType, params);
4902
4903 // Save in case yield() is called
4904 ASSERT(::coroYieldType == nullptr); // Only one coroutine can be generated at once
4905 ::coroYieldType = yieldType;
4906 }
4907
yield(Value * val)4908 void Nucleus::yield(Value *val)
4909 {
4910 RR_DEBUG_INFO_UPDATE_LOC();
4911 Variable::materializeAll();
4912
4913 // On first yield, we start generating coroutine functions
4914 if(!::coroGen)
4915 {
4916 ::coroGen = std::make_shared<CoroutineGenerator>();
4917 ::coroGen->generateCoroutineBegin();
4918 }
4919
4920 ASSERT(::coroGen);
4921 ::coroGen->generateYield(val);
4922 }
4923
coroutineEntryAwaitStub(Nucleus::CoroutineHandle,void * yieldValue)4924 static bool coroutineEntryAwaitStub(Nucleus::CoroutineHandle, void *yieldValue)
4925 {
4926 return false;
4927 }
4928
coroutineEntryDestroyStub(Nucleus::CoroutineHandle handle)4929 static void coroutineEntryDestroyStub(Nucleus::CoroutineHandle handle)
4930 {
4931 }
4932
acquireCoroutine(const char * name,const Config::Edit * cfgEdit)4933 std::shared_ptr<Routine> Nucleus::acquireCoroutine(const char *name, const Config::Edit *cfgEdit /* = nullptr */)
4934 {
4935 if(::coroGen)
4936 {
4937 // Finish generating coroutine functions
4938 {
4939 Ice::CfgLocalAllocatorScope scopedAlloc{ ::function };
4940 finalizeFunction();
4941 }
4942
4943 auto awaitFunc = ::coroGen->generateAwaitFunction();
4944 auto destroyFunc = ::coroGen->generateDestroyFunction();
4945
4946 // At this point, we no longer need the CoroutineGenerator.
4947 ::coroGen.reset();
4948 ::coroYieldType = nullptr;
4949
4950 auto routine = rr::acquireRoutine({ ::function, awaitFunc.get(), destroyFunc.get() },
4951 { name, "await", "destroy" },
4952 cfgEdit);
4953
4954 return routine;
4955 }
4956 else
4957 {
4958 {
4959 Ice::CfgLocalAllocatorScope scopedAlloc{ ::function };
4960 finalizeFunction();
4961 }
4962
4963 ::coroYieldType = nullptr;
4964
4965 // Not an actual coroutine (no yields), so return stubs for await and destroy
4966 auto routine = rr::acquireRoutine({ ::function }, { name }, cfgEdit);
4967
4968 auto routineImpl = std::static_pointer_cast<ELFMemoryStreamer>(routine);
4969 routineImpl->setEntry(Nucleus::CoroutineEntryAwait, reinterpret_cast<const void *>(&coroutineEntryAwaitStub));
4970 routineImpl->setEntry(Nucleus::CoroutineEntryDestroy, reinterpret_cast<const void *>(&coroutineEntryDestroyStub));
4971 return routine;
4972 }
4973 }
4974
invokeCoroutineBegin(Routine & routine,std::function<Nucleus::CoroutineHandle ()> func)4975 Nucleus::CoroutineHandle Nucleus::invokeCoroutineBegin(Routine &routine, std::function<Nucleus::CoroutineHandle()> func)
4976 {
4977 const bool isCoroutine = routine.getEntry(Nucleus::CoroutineEntryAwait) != reinterpret_cast<const void *>(&coroutineEntryAwaitStub);
4978
4979 if(isCoroutine)
4980 {
4981 return rr::invokeCoroutineBegin(func);
4982 }
4983 else
4984 {
4985 // For regular routines, just invoke the begin func directly
4986 return func();
4987 }
4988 }
4989
4990 } // namespace rr
4991