• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2021 The Khronos Group Inc.
6  * Copyright (c) 2021 Valve Corporation.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief Test for VK_EXT_multi_draw
23  *//*--------------------------------------------------------------------*/
24 
25 #include "vktDrawMultiExtTests.hpp"
26 
27 #include "vkTypeUtil.hpp"
28 #include "vkImageWithMemory.hpp"
29 #include "vkObjUtil.hpp"
30 #include "vkBuilderUtil.hpp"
31 #include "vkCmdUtil.hpp"
32 #include "vkBufferWithMemory.hpp"
33 #include "vkImageUtil.hpp"
34 #include "vkBarrierUtil.hpp"
35 
36 #include "tcuTexture.hpp"
37 #include "tcuMaybe.hpp"
38 #include "tcuImageCompare.hpp"
39 
40 #include "deUniquePtr.hpp"
41 #include "deMath.h"
42 #include "deRandom.hpp"
43 
44 #include <vector>
45 #include <sstream>
46 #include <algorithm>
47 #include <iterator>
48 #include <limits>
49 
50 using namespace vk;
51 
52 namespace vkt
53 {
54 namespace Draw
55 {
56 
57 namespace
58 {
59 
60 // Normal or indexed draws.
61 enum class DrawType { NORMAL = 0, INDEXED };
62 
63 // How to apply the vertex offset in indexed draws.
64 enum class VertexOffsetType
65 {
66 	MIXED = 0,			// Do not use pVertexOffset and mix values in struct-indicated offsets.
67 	CONSTANT_RANDOM,	// Use a constant value for pVertexOffset and fill offset struct members with random values.
68 	CONSTANT_PACK,		// Use a constant value for pVertexOffset and a stride that removes the vertex offset member in structs.
69 };
70 
71 // Triangle mesh type.
72 enum class MeshType { MOSAIC = 0, OVERLAPPING };
73 
74 // Vertex offset parameters.
75 struct VertexOffsetParams
76 {
77 	VertexOffsetType	offsetType;
78 	deUint32			offset;
79 };
80 
81 // Test parameters.
82 struct TestParams
83 {
84 	MeshType						meshType;
85 	DrawType						drawType;
86 	deUint32						drawCount;
87 	deUint32						instanceCount;
88 	deUint32						firstInstance;
89 	deUint32						stride;
90 	tcu::Maybe<VertexOffsetParams>	vertexOffset;	// Only used for indexed draws.
91 	deUint32						seed;
92 	bool							useTessellation;
93 	bool							useGeometry;
94 	bool							multiview;
95 	bool							useDynamicRendering;
96 
maxInstanceIndexvkt::Draw::__anonecb9102e0111::TestParams97 	deUint32 maxInstanceIndex () const
98 	{
99 		if (instanceCount == 0u)
100 			return 0u;
101 		return (firstInstance + instanceCount - 1u);
102 	}
103 };
104 
105 // For the color attachment. Must match what the fragment shader expects.
getColorFormat()106 VkFormat getColorFormat ()
107 {
108 	return VK_FORMAT_R8G8B8A8_UINT;
109 }
110 
111 // Compatible with getColorFormat() but better when used with the image logging facilities.
getVerificationFormat()112 VkFormat getVerificationFormat ()
113 {
114 	return VK_FORMAT_R8G8B8A8_UNORM;
115 }
116 
117 // Find a suitable format for the depth/stencil buffer.
chooseDepthStencilFormat(const InstanceInterface & vki,VkPhysicalDevice physDev)118 VkFormat chooseDepthStencilFormat (const InstanceInterface& vki, VkPhysicalDevice physDev)
119 {
120 	// The spec mandates support for one of these two formats.
121 	const VkFormat candidates[] = { VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT };
122 
123 	for (const auto& format : candidates)
124 	{
125 		const auto properties = getPhysicalDeviceFormatProperties(vki, physDev, format);
126 		if ((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0u)
127 			return format;
128 	}
129 
130 	TCU_FAIL("No suitable depth/stencil format found");
131 	return VK_FORMAT_UNDEFINED; // Unreachable.
132 }
133 
134 // Format used when verifying the stencil aspect.
getStencilVerificationFormat()135 VkFormat getStencilVerificationFormat ()
136 {
137 	return VK_FORMAT_S8_UINT;
138 }
139 
getTriangleCount()140 deUint32 getTriangleCount ()
141 {
142 	return 1024u;	// This matches the minumum allowed limit for maxMultiDrawCount, so we can submit a single triangle per draw call.
143 }
144 
145 // Base class for creating triangles.
146 class TriangleGenerator
147 {
148 public:
149 	// Append a new triangle for ID (x, y).
150 	virtual void appendTriangle(deUint32 x, deUint32 y, std::vector<tcu::Vec4>& vertices) = 0;
151 };
152 
153 // Class that helps creating triangle vertices for each framebuffer pixel, forming a mosaic of triangles.
154 class TriangleMosaicGenerator : public TriangleGenerator
155 {
156 private:
157 	// Normalized width and height taking into account the framebuffer's width and height are two units (from -1 to 1).
158 	float	m_pixelWidth;
159 	float	m_pixelHeight;
160 
161 	float	m_deltaX;
162 	float	m_deltaY;
163 
164 public:
TriangleMosaicGenerator(deUint32 width,deUint32 height)165 	TriangleMosaicGenerator (deUint32 width, deUint32 height)
166 		: m_pixelWidth	(2.0f / static_cast<float>(width))
167 		, m_pixelHeight	(2.0f / static_cast<float>(height))
168 		, m_deltaX		(m_pixelWidth * 0.25f)
169 		, m_deltaY		(m_pixelHeight * 0.25f)
170 	{}
171 
172 	// Creates a triangle for framebuffer pixel (x, y) around its center. Appends the triangle vertices to the given list.
appendTriangle(deUint32 x,deUint32 y,std::vector<tcu::Vec4> & vertices)173 	void appendTriangle(deUint32 x, deUint32 y, std::vector<tcu::Vec4>& vertices) override
174 	{
175 		// Pixel center.
176 		const float coordX	= (static_cast<float>(x) + 0.5f) * m_pixelWidth - 1.0f;
177 		const float coordY	= (static_cast<float>(y) + 0.5f) * m_pixelHeight - 1.0f;
178 
179 		// Triangle around it.
180 		const float topY	= coordY - m_deltaY;
181 		const float bottomY	= coordY + m_deltaY;
182 
183 		const float leftX	= coordX - m_deltaX;
184 		const float rightX	= coordX + m_deltaX;
185 
186 		// Note: clockwise.
187 		vertices.emplace_back(leftX,	bottomY,	0.0f, 1.0f);
188 		vertices.emplace_back(coordX,	topY,		0.0f, 1.0f);
189 		vertices.emplace_back(rightX,	bottomY,	0.0f, 1.0f);
190 	}
191 };
192 
193 // Class that helps create full-screen triangles that overlap each other.
194 // This generator will generate width*height full-screen triangles with decreasing depth from 0.75 to 0.25.
195 class TriangleOverlapGenerator : public TriangleGenerator
196 {
197 private:
198 	// Normalized width and height taking into account the framebuffer's width and height are two units (from -1 to 1).
199 	deUint32	m_width;
200 	deUint32	m_totalPixels;
201 	float		m_depthStep;
202 
203 	static constexpr float kMinDepth	= 0.25f;
204 	static constexpr float kMaxDepth	= 0.75f;
205 	static constexpr float kDepthRange	= kMaxDepth - kMinDepth;
206 
207 public:
TriangleOverlapGenerator(deUint32 width,deUint32 height)208 	TriangleOverlapGenerator (deUint32 width, deUint32 height)
209 		: m_width		(width)
210 		, m_totalPixels (width * height)
211 		, m_depthStep	(kDepthRange / static_cast<float>(m_totalPixels))
212 	{}
213 
214 	// Creates full-screen triangle with 2D id (x, y) and decreasing depth with increasing ids.
appendTriangle(deUint32 x,deUint32 y,std::vector<tcu::Vec4> & vertices)215 	void appendTriangle(deUint32 x, deUint32 y, std::vector<tcu::Vec4>& vertices) override
216 	{
217 		const auto pixelId	= static_cast<float>(y * m_width + x);
218 		const auto depth	= kMaxDepth - m_depthStep * pixelId;
219 
220 		// Note: clockwise.
221 		vertices.emplace_back(-1.0f,	-1.0f,	depth, 1.0f);
222 		vertices.emplace_back(4.0f,		-1.0f,	depth, 1.0f);
223 		vertices.emplace_back(-1.0f,	4.0f,	depth, 1.0f);
224 	}
225 };
226 
227 // Class that helps creating a suitable draw info vector.
228 class DrawInfoPacker
229 {
230 private:
231 	DrawType						m_drawType;
232 	tcu::Maybe<VertexOffsetType>	m_offsetType;	// Offset type when m_drawType is DrawType::INDEXED.
233 	deUint32						m_stride;		// Desired stride. Must be zero or at least as big as the needed VkMultiDraw*InfoExt.
234 	deUint32						m_extraBytes;	// Used to match the desired stride.
235 	de::Random						m_random;		// Used to generate random offsets.
236 	deUint32						m_infoCount;	// How many infos have we appended so far?
237 	std::vector<deUint8>			m_dataVec;		// Data vector in generic form.
238 
239 	// Are draws indexed and using the offset member of VkMultiDrawIndexedInfoEXT?
indexedWithOffset(DrawType drawType,const tcu::Maybe<VertexOffsetType> & offsetType)240 	static bool indexedWithOffset (DrawType drawType, const tcu::Maybe<VertexOffsetType>& offsetType)
241 	{
242 		return (drawType == DrawType::INDEXED && *offsetType != VertexOffsetType::CONSTANT_PACK);
243 	}
244 
245 	// Size in bytes for the base structure used with the given draw type.
baseSize(DrawType drawType,const tcu::Maybe<VertexOffsetType> & offsetType)246 	static deUint32 baseSize (DrawType drawType, const tcu::Maybe<VertexOffsetType>& offsetType)
247 	{
248 		return static_cast<deUint32>(indexedWithOffset(drawType, offsetType) ? sizeof(VkMultiDrawIndexedInfoEXT) : sizeof(VkMultiDrawInfoEXT));
249 	}
250 
251 	// Number of extra bytes per entry according to the given stride.
calcExtraBytes(DrawType drawType,const tcu::Maybe<VertexOffsetType> & offsetType,deUint32 stride)252 	static deUint32 calcExtraBytes (DrawType drawType, const tcu::Maybe<VertexOffsetType>& offsetType, deUint32 stride)
253 	{
254 		// Stride 0 is a special allowed case.
255 		if (stride == 0u)
256 			return 0u;
257 
258 		const auto minStride = baseSize(drawType, offsetType);
259 		DE_ASSERT(stride >= minStride);
260 		return (stride - minStride);
261 	}
262 
263 	// Entry size in bytes taking into account the number of extra bytes due to stride.
entrySize() const264 	deUint32 entrySize () const
265 	{
266 		return baseSize(m_drawType, m_offsetType) + m_extraBytes;
267 	}
268 
269 public:
DrawInfoPacker(DrawType drawType,const tcu::Maybe<VertexOffsetType> & offsetType,deUint32 stride,deUint32 estimatedInfoCount,deUint32 seed)270 	DrawInfoPacker	(DrawType drawType, const tcu::Maybe<VertexOffsetType>& offsetType, deUint32 stride, deUint32 estimatedInfoCount, deUint32 seed)
271 		: m_drawType	(drawType)
272 		, m_offsetType	(offsetType)
273 		, m_stride		(stride)
274 		, m_extraBytes	(calcExtraBytes(drawType, offsetType, stride))
275 		, m_random		(seed)
276 		, m_infoCount	(0u)
277 		, m_dataVec		()
278 	{
279 		// estimatedInfoCount is used to avoid excessive reallocation.
280 		if (estimatedInfoCount > 0u)
281 			m_dataVec.reserve(estimatedInfoCount * entrySize());
282 	}
283 
addDrawInfo(deUint32 first,deUint32 count,deInt32 offset)284 	void addDrawInfo (deUint32 first, deUint32 count, deInt32 offset)
285 	{
286 		std::vector<deUint8> entry(entrySize(), 0);
287 
288 		if (indexedWithOffset(m_drawType, m_offsetType))
289 		{
290 			const auto usedOffset = ((*m_offsetType == VertexOffsetType::CONSTANT_RANDOM) ? m_random.getInt32() : offset);
291 			const VkMultiDrawIndexedInfoEXT info = { first, count, usedOffset };
292 			deMemcpy(entry.data(), &info, sizeof(info));
293 		}
294 		else
295 		{
296 			const VkMultiDrawInfoEXT info = { first, count };
297 			deMemcpy(entry.data(), &info, sizeof(info));
298 		}
299 
300 		std::copy(begin(entry), end(entry), std::back_inserter(m_dataVec));
301 		++m_infoCount;
302 	}
303 
drawInfoCount() const304 	deUint32 drawInfoCount () const
305 	{
306 		return m_infoCount;
307 	}
308 
drawInfoData() const309 	const void* drawInfoData () const
310 	{
311 		return m_dataVec.data();
312 	}
313 
stride() const314 	deUint32 stride () const
315 	{
316 		return m_stride;
317 	}
318 };
319 
320 class MultiDrawTest : public vkt::TestCase
321 {
322 public:
323 					MultiDrawTest	(tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TestParams& params);
~MultiDrawTest(void)324 	virtual			~MultiDrawTest	(void) {}
325 
326 	void			initPrograms	(vk::SourceCollections& programCollection) const override;
327 	TestInstance*	createInstance	(Context& context) const override;
328 	void			checkSupport	(Context& context) const override;
329 
330 private:
331 	TestParams		m_params;
332 };
333 
334 class MultiDrawInstance : public vkt::TestInstance
335 {
336 public:
337 						MultiDrawInstance	(Context& context, const TestParams& params);
~MultiDrawInstance(void)338 	virtual				~MultiDrawInstance	(void) {}
339 
340 	tcu::TestStatus		iterate				(void) override;
341 
342 private:
343 	TestParams			m_params;
344 };
345 
MultiDrawTest(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const TestParams & params)346 MultiDrawTest::MultiDrawTest (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const TestParams& params)
347 	: vkt::TestCase	(testCtx, name, description)
348 	, m_params		(params)
349 {}
350 
createInstance(Context & context) const351 TestInstance* MultiDrawTest::createInstance (Context& context) const
352 {
353 	return new MultiDrawInstance(context, m_params);
354 }
355 
checkSupport(Context & context) const356 void MultiDrawTest::checkSupport (Context& context) const
357 {
358 	context.requireDeviceFunctionality("VK_EXT_multi_draw");
359 
360 	if (m_params.useTessellation)
361 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_TESSELLATION_SHADER);
362 
363 	if (m_params.useGeometry)
364 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_GEOMETRY_SHADER);
365 
366 	if (m_params.multiview)
367 	{
368 		const auto& multiviewFeatures = context.getMultiviewFeatures();
369 
370 		if (!multiviewFeatures.multiview)
371 			TCU_THROW(NotSupportedError, "Multiview not supported");
372 
373 		if (m_params.useTessellation && !multiviewFeatures.multiviewTessellationShader)
374 			TCU_THROW(NotSupportedError, "Multiview not supported with tesellation shaders");
375 
376 		if (m_params.useGeometry && !multiviewFeatures.multiviewGeometryShader)
377 			TCU_THROW(NotSupportedError, "Multiview not supported with geometry shaders");
378 	}
379 
380 	if (m_params.useDynamicRendering)
381 		context.requireDeviceFunctionality("VK_KHR_dynamic_rendering");
382 }
383 
initPrograms(vk::SourceCollections & programCollection) const384 void MultiDrawTest::initPrograms (vk::SourceCollections& programCollection) const
385 {
386 	// The general idea behind these tests is to have a 32x32 framebuffer with 1024 pixels and 1024 triangles to draw.
387 	//
388 	// When using a mosaic mesh, the tests will generally draw a single triangle around the center of each of these pixels. When
389 	// using an overlapping mesh, each single triangle will cover the whole framebuffer using a different depth value, and the depth
390 	// test will be enabled.
391 	//
392 	// The color of each triangle will depend on the instance index, the draw index and, when using multiview, the view index. This
393 	// way, it's possible to draw those 1024 triangles with a single draw call or to draw each triangle with a separate draw call,
394 	// with up to 1024 draw calls. Combinations in between are possible.
395 	//
396 	// With overlapping meshes, the resulting color buffer will be uniform in color. With mosaic meshes, it depends on the submitted
397 	// draw count. In some cases, all pixels will be slightly different in color.
398 	//
399 	// The color buffer will be cleared to transparent black when beginning the render pass, and in some special cases some or all
400 	// pixels will preserve that clear color because they will not be drawn into. This happens, for example, if the instance count
401 	// or draw count is zero and in some cases of meshed geometry with stride zero.
402 	//
403 	// The output color for each pixel will:
404 	// - Have the draw index split into the R and G components.
405 	// - Have the instance index I stored into the B component as 255-I.
406 	//
407 	// In addition, the tests will use a depth/stencil buffer. The stencil buffer will be cleared to zero and the depth buffer to an
408 	// appropriate initial value (0.0 or 1.0, depending on triangle order). The stencil component will be increased with each draw
409 	// on each pixel. This will allow us to verify that not only the last draw for the last instance has set the proper color, but
410 	// that all draw operations have taken place.
411 
412 	// Make sure the blue channel can be calculated without issues.
413 	DE_ASSERT(m_params.maxInstanceIndex() <= 255u);
414 
415 	std::ostringstream vert;
416 	vert
417 		<< "#version 460\n"
418 		<< (m_params.multiview ? "#extension GL_EXT_multiview : enable\n" : "")
419 		<< "\n"
420 		<< "out gl_PerVertex\n"
421 		<< "{\n"
422 		<< "    vec4 gl_Position;\n"
423 		<< "};\n"
424 		<< "\n"
425 		<< "layout (location=0) in vec4 inPos;\n"
426 		<< "layout (location=0) out uvec4 outColor;\n"
427 		<< "\n"
428 		<< "void main()\n"
429 		<< "{\n"
430 		<< "    gl_Position = inPos;\n"
431 		<< "    const uint uDrawIndex = uint(gl_DrawID);\n"
432 		<< "    outColor.r = ((uDrawIndex >> 8u) & 0xFFu);\n"
433 		<< "    outColor.g = ((uDrawIndex      ) & 0xFFu);\n"
434 		<< "    outColor.b = 255u - uint(gl_InstanceIndex);\n"
435 		<< "    outColor.a = 255u" << (m_params.multiview ? " - uint(gl_ViewIndex)" : "") << ";\n"
436 		<< "}\n"
437 		;
438 	programCollection.glslSources.add("vert") << glu::VertexSource(vert.str());
439 
440 	std::ostringstream frag;
441 	frag
442 		<< "#version 460\n"
443 		<< "\n"
444 		<< "layout (location=0) flat in uvec4 inColor;\n"
445 		<< "layout (location=0) out uvec4 outColor;\n"
446 		<< "\n"
447 		<< "void main ()\n"
448 		<< "{\n"
449 		<< "    outColor = inColor;\n"
450 		<< "}\n"
451 		;
452 	programCollection.glslSources.add("frag") << glu::FragmentSource(frag.str());
453 
454 	if (m_params.useTessellation)
455 	{
456 		std::ostringstream tesc;
457 		tesc
458 			<< "#version 460\n"
459 			<< "\n"
460 			<< "layout (vertices=3) out;\n"
461 			<< "in gl_PerVertex\n"
462 			<< "{\n"
463 			<< "    vec4 gl_Position;\n"
464 			<< "} gl_in[gl_MaxPatchVertices];\n"
465 			<< "out gl_PerVertex\n"
466 			<< "{\n"
467 			<< "    vec4 gl_Position;\n"
468 			<< "} gl_out[];\n"
469 			<< "\n"
470 			<< "layout (location=0) in uvec4 inColor[gl_MaxPatchVertices];\n"
471 			<< "layout (location=0) out uvec4 outColor[];\n"
472 			<< "\n"
473 			<< "void main (void)\n"
474 			<< "{\n"
475 			<< "    gl_TessLevelInner[0] = 1.0;\n"
476 			<< "    gl_TessLevelInner[1] = 1.0;\n"
477 			<< "    gl_TessLevelOuter[0] = 1.0;\n"
478 			<< "    gl_TessLevelOuter[1] = 1.0;\n"
479 			<< "    gl_TessLevelOuter[2] = 1.0;\n"
480 			<< "    gl_TessLevelOuter[3] = 1.0;\n"
481 			<< "    gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n"
482 			<< "    outColor[gl_InvocationID] = inColor[gl_InvocationID];\n"
483 			<< "}\n"
484 			;
485 		programCollection.glslSources.add("tesc") << glu::TessellationControlSource(tesc.str());
486 
487 		std::ostringstream tese;
488 		tese
489 			<< "#version 460\n"
490 			<< "\n"
491 			<< "layout (triangles, fractional_odd_spacing, cw) in;\n"
492 			<< "in gl_PerVertex\n"
493 			<< "{\n"
494 			<< "    vec4 gl_Position;\n"
495 			<< "} gl_in[gl_MaxPatchVertices];\n"
496 			<< "out gl_PerVertex\n"
497 			<< "{\n"
498 			<< "    vec4 gl_Position;\n"
499 			<< "};\n"
500 			<< "\n"
501 			<< "layout (location=0) in uvec4 inColor[gl_MaxPatchVertices];\n"
502 			<< "layout (location=0) out uvec4 outColor;\n"
503 			<< "\n"
504 			<< "void main (void)\n"
505 			<< "{\n"
506 			<< "    gl_Position = (gl_TessCoord.x * gl_in[0].gl_Position) +\n"
507 			<< "                  (gl_TessCoord.y * gl_in[1].gl_Position) +\n"
508 			<< "                  (gl_TessCoord.z * gl_in[2].gl_Position);\n"
509 			<< "    outColor = inColor[0];\n"
510 			<< "}\n"
511 			;
512 		programCollection.glslSources.add("tese") << glu::TessellationEvaluationSource(tese.str());
513 	}
514 
515 	if (m_params.useGeometry)
516 	{
517 		std::ostringstream geom;
518 		geom
519 			<< "#version 460\n"
520 			<< "\n"
521 			<< "layout (triangles) in;\n"
522 			<< "layout (triangle_strip, max_vertices=3) out;\n"
523 			<< "in gl_PerVertex\n"
524 			<< "{\n"
525 			<< "    vec4 gl_Position;\n"
526 			<< "} gl_in[3];\n"
527 			<< "out gl_PerVertex\n"
528 			<< "{\n"
529 			<< "    vec4 gl_Position;\n"
530 			<< "};\n"
531 			<< "\n"
532 			<< "layout (location=0) in uvec4 inColor[3];\n"
533 			<< "layout (location=0) out uvec4 outColor;\n"
534 			<< "\n"
535 			<< "void main ()\n"
536 			<< "{\n"
537 			<< "    gl_Position = gl_in[0].gl_Position; outColor = inColor[0]; EmitVertex();\n"
538 			<< "    gl_Position = gl_in[1].gl_Position; outColor = inColor[1]; EmitVertex();\n"
539 			<< "    gl_Position = gl_in[2].gl_Position; outColor = inColor[2]; EmitVertex();\n"
540 			<< "}\n"
541 			;
542 		programCollection.glslSources.add("geom") << glu::GeometrySource(geom.str());
543 	}
544 }
545 
MultiDrawInstance(Context & context,const TestParams & params)546 MultiDrawInstance::MultiDrawInstance (Context& context, const TestParams& params)
547 	: vkt::TestInstance	(context)
548 	, m_params			(params)
549 {}
550 
appendPaddingVertices(std::vector<tcu::Vec4> & vertices,deUint32 count)551 void appendPaddingVertices (std::vector<tcu::Vec4>& vertices, deUint32 count)
552 {
553 	for (deUint32 i = 0u; i < count; ++i)
554 		vertices.emplace_back(0.0f, 0.0f, 0.0f, 1.0f);
555 }
556 
557 // Creates a render pass with multiple subpasses, one per layer.
makeMultidrawRenderPass(const DeviceInterface & vk,VkDevice device,VkFormat colorFormat,VkFormat depthStencilFormat,deUint32 layerCount)558 Move<VkRenderPass> makeMultidrawRenderPass (const DeviceInterface&	vk,
559 											VkDevice				device,
560 											VkFormat				colorFormat,
561 											VkFormat				depthStencilFormat,
562 											deUint32				layerCount)
563 {
564 	const VkAttachmentDescription colorAttachmentDescription =
565 	{
566 		0u,											// VkAttachmentDescriptionFlags    flags
567 		colorFormat,								// VkFormat                        format
568 		VK_SAMPLE_COUNT_1_BIT,						// VkSampleCountFlagBits           samples
569 		VK_ATTACHMENT_LOAD_OP_CLEAR,				// VkAttachmentLoadOp              loadOp
570 		VK_ATTACHMENT_STORE_OP_STORE,				// VkAttachmentStoreOp             storeOp
571 		VK_ATTACHMENT_LOAD_OP_DONT_CARE,			// VkAttachmentLoadOp              stencilLoadOp
572 		VK_ATTACHMENT_STORE_OP_DONT_CARE,			// VkAttachmentStoreOp             stencilStoreOp
573 		VK_IMAGE_LAYOUT_UNDEFINED,					// VkImageLayout                   initialLayout
574 		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,	// VkImageLayout                   finalLayout
575 	};
576 
577 	const VkAttachmentDescription depthStencilAttachmentDescription =
578 	{
579 		0u,													// VkAttachmentDescriptionFlags    flags
580 		depthStencilFormat,									// VkFormat                        format
581 		VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits           samples
582 		VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp              loadOp
583 		VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp             storeOp
584 		VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp              stencilLoadOp
585 		VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp             stencilStoreOp
586 		VK_IMAGE_LAYOUT_UNDEFINED,							// VkImageLayout                   initialLayout
587 		VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,	// VkImageLayout                   finalLayout
588 	};
589 
590 	const std::vector<VkAttachmentDescription>	attachmentDescriptions		= { colorAttachmentDescription, depthStencilAttachmentDescription };
591 	const VkAttachmentReference					colorAttachmentRef			= makeAttachmentReference(0u, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
592 	const VkAttachmentReference					depthStencilAttachmentRef	= makeAttachmentReference(1u, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
593 
594 	const VkSubpassDescription subpassDescription =
595 	{
596 		0u,									// VkSubpassDescriptionFlags       flags
597 		VK_PIPELINE_BIND_POINT_GRAPHICS,	// VkPipelineBindPoint             pipelineBindPoint
598 		0u,									// deUint32                        inputAttachmentCount
599 		nullptr,							// const VkAttachmentReference*    pInputAttachments
600 		1u,									// deUint32                        colorAttachmentCount
601 		&colorAttachmentRef,				// const VkAttachmentReference*    pColorAttachments
602 		nullptr,							// const VkAttachmentReference*    pResolveAttachments
603 		&depthStencilAttachmentRef,			// const VkAttachmentReference*    pDepthStencilAttachment
604 		0u,									// deUint32                        preserveAttachmentCount
605 		nullptr								// const deUint32*                 pPreserveAttachments
606 	};
607 
608 	std::vector<VkSubpassDescription> subpassDescriptions;
609 
610 	subpassDescriptions.reserve(layerCount);
611 	for (deUint32 subpassIdx = 0u; subpassIdx < layerCount; ++subpassIdx)
612 		subpassDescriptions.push_back(subpassDescription);
613 
614 	using MultiviewInfoPtr = de::MovePtr<VkRenderPassMultiviewCreateInfo>;
615 
616 	MultiviewInfoPtr multiviewCreateInfo;
617 	std::vector<deUint32> viewMasks;
618 
619 	if (layerCount > 1u)
620 	{
621 		multiviewCreateInfo		= MultiviewInfoPtr(new VkRenderPassMultiviewCreateInfo);
622 		*multiviewCreateInfo	= initVulkanStructure();
623 
624 		viewMasks.resize(subpassDescriptions.size());
625 		for (deUint32 subpassIdx = 0u; subpassIdx < static_cast<deUint32>(viewMasks.size()); ++subpassIdx)
626 			viewMasks[subpassIdx] = (1u << subpassIdx);
627 
628 		multiviewCreateInfo->subpassCount	= static_cast<deUint32>(viewMasks.size());
629 		multiviewCreateInfo->pViewMasks		= de::dataOrNull(viewMasks);
630 	}
631 
632 	// Dependencies between subpasses for color and depth/stencil read/writes.
633 	std::vector<VkSubpassDependency> dependencies;
634 	if (layerCount > 1u)
635 		dependencies.reserve((layerCount - 1u) * 2u);
636 
637 	const auto fragmentTestStages	= (VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT);
638 	const auto dsWrites				= VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
639 	const auto dsReadWrites			= (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT);
640 	const auto colorStage			= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
641 	const auto colorWrites			= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
642 	const auto colorReadWrites		= (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT);
643 
644 	for (deUint32 subpassIdx = 1u; subpassIdx < layerCount; ++subpassIdx)
645 	{
646 		const auto prev = subpassIdx - 1u;
647 
648 		const VkSubpassDependency dsDep =
649 		{
650 			prev,							//	deUint32				srcSubpass;
651 			subpassIdx,						//	deUint32				dstSubpass;
652 			fragmentTestStages,				//	VkPipelineStageFlags	srcStageMask;
653 			fragmentTestStages,				//	VkPipelineStageFlags	dstStageMask;
654 			dsWrites,						//	VkAccessFlags			srcAccessMask;
655 			dsReadWrites,					//	VkAccessFlags			dstAccessMask;
656 			VK_DEPENDENCY_BY_REGION_BIT,	//	VkDependencyFlags		dependencyFlags;
657 		};
658 		dependencies.push_back(dsDep);
659 
660 		const VkSubpassDependency colorDep =
661 		{
662 			prev,							//	deUint32				srcSubpass;
663 			subpassIdx,						//	deUint32				dstSubpass;
664 			colorStage,						//	VkPipelineStageFlags	srcStageMask;
665 			colorStage,						//	VkPipelineStageFlags	dstStageMask;
666 			colorWrites,					//	VkAccessFlags			srcAccessMask;
667 			colorReadWrites,				//	VkAccessFlags			dstAccessMask;
668 			VK_DEPENDENCY_BY_REGION_BIT,	//	VkDependencyFlags		dependencyFlags;
669 		};
670 		dependencies.push_back(colorDep);
671 	}
672 
673 	const VkRenderPassCreateInfo renderPassInfo =
674 	{
675 		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,				// VkStructureType                   sType
676 		multiviewCreateInfo.get(),								// const void*                       pNext
677 		0u,														// VkRenderPassCreateFlags           flags
678 		static_cast<deUint32>(attachmentDescriptions.size()),	// deUint32                          attachmentCount
679 		de::dataOrNull(attachmentDescriptions),					// const VkAttachmentDescription*    pAttachments
680 		static_cast<deUint32>(subpassDescriptions.size()),		// deUint32                          subpassCount
681 		de::dataOrNull(subpassDescriptions),					// const VkSubpassDescription*       pSubpasses
682 		static_cast<deUint32>(dependencies.size()),				// deUint32                          dependencyCount
683 		de::dataOrNull(dependencies),							// const VkSubpassDependency*        pDependencies
684 	};
685 
686 	return createRenderPass(vk, device, &renderPassInfo, nullptr);
687 }
688 
iterate(void)689 tcu::TestStatus MultiDrawInstance::iterate (void)
690 {
691 	const auto&	vki				= m_context.getInstanceInterface();
692 	const auto	physDev			= m_context.getPhysicalDevice();
693 	const auto&	vkd				= m_context.getDeviceInterface();
694 	const auto	device			= m_context.getDevice();
695 	auto&		alloc			= m_context.getDefaultAllocator();
696 	const auto	queue			= m_context.getUniversalQueue();
697 	const auto	qIndex			= m_context.getUniversalQueueFamilyIndex();
698 
699 	const auto	colorFormat		= getColorFormat();
700 	const auto	dsFormat		= chooseDepthStencilFormat(vki, physDev);
701 	const auto	tcuColorFormat	= mapVkFormat(colorFormat);
702 	const auto	triangleCount	= getTriangleCount();
703 	const auto	imageDim		= static_cast<deUint32>(deSqrt(static_cast<double>(triangleCount)));
704 	const auto	imageExtent		= makeExtent3D(imageDim, imageDim, 1u);
705 	const auto	imageLayers		= (m_params.multiview ? 2u : 1u);
706 	const auto	imageViewType	= ((imageLayers > 1u) ? VK_IMAGE_VIEW_TYPE_2D_ARRAY : VK_IMAGE_VIEW_TYPE_2D);
707 	const auto	colorUsage		= (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
708 	const auto	dsUsage			= (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
709 	const auto	pixelCount		= imageExtent.width * imageExtent.height;
710 	const auto	vertexCount		= pixelCount * 3u; // Triangle list.
711 	const auto	isIndexed		= (m_params.drawType == DrawType::INDEXED);
712 	const auto	isMixedMode		= (isIndexed && m_params.vertexOffset && m_params.vertexOffset->offsetType == VertexOffsetType::MIXED);
713 	const auto	extraVertices	= (m_params.vertexOffset ? m_params.vertexOffset->offset : 0u);
714 	const auto	isMosaic		= (m_params.meshType == MeshType::MOSAIC);
715 
716 	// Make sure we're providing a vertex offset for indexed cases.
717 	DE_ASSERT(!isIndexed || static_cast<bool>(m_params.vertexOffset));
718 
719 	// Make sure overlapping draws use a single instance.
720 	DE_ASSERT(isMosaic || m_params.instanceCount <= 1u);
721 
722 	// Color buffer.
723 	const VkImageCreateInfo imageCreateInfo =
724 	{
725 		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,	//	VkStructureType			sType;
726 		nullptr,								//	const void*				pNext;
727 		0u,										//	VkImageCreateFlags		flags;
728 		VK_IMAGE_TYPE_2D,						//	VkImageType				imageType;
729 		colorFormat,							//	VkFormat				format;
730 		imageExtent,							//	VkExtent3D				extent;
731 		1u,										//	deUint32				mipLevels;
732 		imageLayers,							//	deUint32				arrayLayers;
733 		VK_SAMPLE_COUNT_1_BIT,					//	VkSampleCountFlagBits	samples;
734 		VK_IMAGE_TILING_OPTIMAL,				//	VkImageTiling			tiling;
735 		colorUsage,								//	VkImageUsageFlags		usage;
736 		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode			sharingMode;
737 		0u,										//	deUint32				queueFamilyIndexCount;
738 		nullptr,								//	const deUint32*			pQueueFamilyIndices;
739 		VK_IMAGE_LAYOUT_UNDEFINED,				//	VkImageLayout			initialLayout;
740 	};
741 
742 	ImageWithMemory	colorBuffer				(vkd, device, alloc, imageCreateInfo, MemoryRequirement::Any);
743 	const auto		colorSubresourceRange	= makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, imageLayers);
744 	const auto		colorBufferView			= makeImageView(vkd, device, colorBuffer.get(), imageViewType, colorFormat, colorSubresourceRange);
745 
746 	// Depth/stencil buffer.
747 	const VkImageCreateInfo dsCreateInfo =
748 	{
749 		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,	//	VkStructureType			sType;
750 		nullptr,								//	const void*				pNext;
751 		0u,										//	VkImageCreateFlags		flags;
752 		VK_IMAGE_TYPE_2D,						//	VkImageType				imageType;
753 		dsFormat,								//	VkFormat				format;
754 		imageExtent,							//	VkExtent3D				extent;
755 		1u,										//	deUint32				mipLevels;
756 		imageLayers,							//	deUint32				arrayLayers;
757 		VK_SAMPLE_COUNT_1_BIT,					//	VkSampleCountFlagBits	samples;
758 		VK_IMAGE_TILING_OPTIMAL,				//	VkImageTiling			tiling;
759 		dsUsage,								//	VkImageUsageFlags		usage;
760 		VK_SHARING_MODE_EXCLUSIVE,				//	VkSharingMode			sharingMode;
761 		0u,										//	deUint32				queueFamilyIndexCount;
762 		nullptr,								//	const deUint32*			pQueueFamilyIndices;
763 		VK_IMAGE_LAYOUT_UNDEFINED,				//	VkImageLayout			initialLayout;
764 	};
765 
766 	ImageWithMemory dsBuffer			(vkd, device, alloc, dsCreateInfo, MemoryRequirement::Any);
767 	const auto		dsSubresourceRange	= makeImageSubresourceRange((VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT), 0u, 1u, 0u, imageLayers);
768 	const auto		dsBufferView		= makeImageView(vkd, device, dsBuffer.get(), imageViewType, dsFormat, dsSubresourceRange);
769 
770 	// Output buffers to verify attachments.
771 	using BufferWithMemoryPtr = de::MovePtr<BufferWithMemory>;
772 
773 	// Buffers to read color attachment.
774 	const auto outputBufferSize = pixelCount * static_cast<VkDeviceSize>(tcu::getPixelSize(tcuColorFormat));
775 	const auto bufferCreateInfo = makeBufferCreateInfo(outputBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
776 
777 	std::vector<BufferWithMemoryPtr> outputBuffers;
778 	for (deUint32 i = 0u; i < imageLayers; ++i)
779 		outputBuffers.push_back(BufferWithMemoryPtr(new BufferWithMemory(vkd, device, alloc, bufferCreateInfo, MemoryRequirement::HostVisible)));
780 
781 	// Buffer to read depth/stencil attachment. Note: this supposes we'll only copy the stencil aspect. See below.
782 	const auto			tcuStencilFmt			= mapVkFormat(getStencilVerificationFormat());
783 	const auto			stencilOutBufferSize	= pixelCount * static_cast<VkDeviceSize>(tcu::getPixelSize(tcuStencilFmt));
784 	const auto			stencilOutCreateInfo	= makeBufferCreateInfo(stencilOutBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
785 
786 	std::vector<BufferWithMemoryPtr> stencilOutBuffers;
787 	for (deUint32 i = 0u; i < imageLayers; ++i)
788 		stencilOutBuffers.push_back(BufferWithMemoryPtr(new BufferWithMemory(vkd, device, alloc, stencilOutCreateInfo, MemoryRequirement::HostVisible)));
789 
790 	// Shaders.
791 	const auto				vertModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("vert"), 0u);
792 	const auto				fragModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("frag"), 0u);
793 	Move<VkShaderModule>	tescModule;
794 	Move<VkShaderModule>	teseModule;
795 	Move<VkShaderModule>	geomModule;
796 
797 	if (m_params.useGeometry)
798 		geomModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("geom"), 0u);
799 
800 	if (m_params.useTessellation)
801 	{
802 		tescModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("tesc"), 0u);
803 		teseModule = createShaderModule(vkd, device, m_context.getBinaryCollection().get("tese"), 0u);
804 	}
805 
806 	DescriptorSetLayoutBuilder	layoutBuilder;
807 	const auto					descriptorSetLayout	= layoutBuilder.build(vkd, device);
808 	const auto					pipelineLayout		= makePipelineLayout(vkd, device, descriptorSetLayout.get());
809 
810 	Move<VkRenderPass>			renderPass;
811 	Move<VkFramebuffer>			framebuffer;
812 
813 	// Render pass and Framebuffer (note layers is always 1 as required by the spec).
814 	if (!m_params.useDynamicRendering)
815 	{
816 		renderPass = makeMultidrawRenderPass(vkd, device, colorFormat, dsFormat, imageLayers);
817 		const std::vector<VkImageView> attachments { colorBufferView.get(), dsBufferView.get() };
818 		framebuffer = makeFramebuffer(vkd, device, renderPass.get(), static_cast<deUint32>(attachments.size()), de::dataOrNull(attachments), imageExtent.width, imageExtent.height, 1u);
819 	}
820 
821 	// Viewports and scissors.
822 	const auto						viewport	= makeViewport(imageExtent);
823 	const std::vector<VkViewport>	viewports	(1u, viewport);
824 	const auto						scissor		= makeRect2D(imageExtent);
825 	const std::vector<VkRect2D>		scissors	(1u, scissor);
826 
827 	// Indexed draws will have triangle vertices in reverse order. See index buffer creation below.
828 	const auto										frontFace			= (isIndexed ? VK_FRONT_FACE_COUNTER_CLOCKWISE : VK_FRONT_FACE_CLOCKWISE);
829 	const VkPipelineRasterizationStateCreateInfo	rasterizationInfo	=
830 	{
831 		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,	//	VkStructureType							sType;
832 		nullptr,													//	const void*								pNext;
833 		0u,															//	VkPipelineRasterizationStateCreateFlags	flags;
834 		VK_FALSE,													//	VkBool32								depthClampEnable;
835 		VK_FALSE,													//	VkBool32								rasterizerDiscardEnable;
836 		VK_POLYGON_MODE_FILL,										//	VkPolygonMode							polygonMode;
837 		VK_CULL_MODE_BACK_BIT,										//	VkCullModeFlags							cullMode;
838 		frontFace,													//	VkFrontFace								frontFace;
839 		VK_FALSE,													//	VkBool32								depthBiasEnable;
840 		0.0f,														//	float									depthBiasConstantFactor;
841 		0.0f,														//	float									depthBiasClamp;
842 		0.0f,														//	float									depthBiasSlopeFactor;
843 		1.0f,														//	float									lineWidth;
844 	};
845 
846 	const auto frontStencilState	= makeStencilOpState(VK_STENCIL_OP_KEEP, VK_STENCIL_OP_INCREMENT_AND_WRAP, VK_STENCIL_OP_KEEP, VK_COMPARE_OP_ALWAYS, 0xFFu, 0xFFu, 0u);
847 	const auto backStencilState		= makeStencilOpState(VK_STENCIL_OP_KEEP, VK_STENCIL_OP_KEEP, VK_STENCIL_OP_KEEP, VK_COMPARE_OP_NEVER, 0xFFu, 0xFFu, 0u);
848 	const auto depthTestEnable		= (isMosaic ? VK_FALSE : VK_TRUE);
849 	const auto depthWriteEnable		= depthTestEnable;
850 	const auto depthCompareOp		= (isMosaic ? VK_COMPARE_OP_ALWAYS : (isIndexed ? VK_COMPARE_OP_GREATER : VK_COMPARE_OP_LESS));
851 
852 	const VkPipelineDepthStencilStateCreateInfo depthStencilInfo =
853 	{
854 		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,		//	VkStructureType							sType;
855 		nullptr,														//	const void*								pNext;
856 		0u,																//	VkPipelineDepthStencilStateCreateFlags	flags;
857 		depthTestEnable,												//	VkBool32								depthTestEnable;
858 		depthWriteEnable,												//	VkBool32								depthWriteEnable;
859 		depthCompareOp,													//	VkCompareOp								depthCompareOp;
860 		VK_FALSE,														//	VkBool32								depthBoundsTestEnable;
861 		VK_TRUE,														//	VkBool32								stencilTestEnable;
862 		frontStencilState,												//	VkStencilOpState						front;
863 		backStencilState,												//	VkStencilOpState						back;
864 		0.0f,															//	float									minDepthBounds;
865 		1.0f,															//	float									maxDepthBounds;
866 	};
867 
868 	vk::VkPipelineRenderingCreateInfoKHR renderingCreateInfo
869 	{
870 		vk::VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR,
871 		DE_NULL,
872 		0u,
873 		1u,
874 		&colorFormat,
875 		dsFormat,
876 		dsFormat
877 	};
878 
879 	vk::VkPipelineRenderingCreateInfoKHR* nextPtr = nullptr;
880 	if (m_params.useDynamicRendering)
881 		nextPtr = &renderingCreateInfo;
882 
883 	const auto primitiveTopology	= (m_params.useTessellation ? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST : VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST);
884 	const auto patchControlPoints	= (m_params.useTessellation ? 3u : 0u);
885 
886 	// Pipelines.
887 	std::vector<Move<VkPipeline>> pipelines;
888 	pipelines.reserve(imageLayers);
889 	for (deUint32 subpassIdx = 0u; subpassIdx < imageLayers; ++subpassIdx)
890 	{
891 		pipelines.emplace_back(makeGraphicsPipeline(vkd, device, pipelineLayout.get(),
892 			vertModule.get(), tescModule.get(), teseModule.get(), geomModule.get(), fragModule.get(),
893 			renderPass.get(), viewports, scissors, primitiveTopology, subpassIdx, patchControlPoints,
894 			nullptr/*vertexInputStateCreateInfo*/, &rasterizationInfo, nullptr/*multisampleStateCreateInfo*/, &depthStencilInfo,
895 			nullptr/*colorBlendStateCreateInfo*/, nullptr/*dynamicStateCreateInfo*/, nextPtr));
896 	}
897 
898 	// Command pool and buffer.
899 	const auto cmdPool		= makeCommandPool(vkd, device, qIndex);
900 	const auto cmdBufferPtr	= allocateCommandBuffer(vkd, device, cmdPool.get(), VK_COMMAND_BUFFER_LEVEL_PRIMARY);
901 	const auto cmdBuffer	= cmdBufferPtr.get();
902 
903 	// Create vertex buffer.
904 	std::vector<tcu::Vec4> triangleVertices;
905 	triangleVertices.reserve(vertexCount + extraVertices);
906 
907 	// Vertex count per draw call.
908 	const bool atLeastOneDraw	= (m_params.drawCount > 0u);
909 	const bool moreThanOneDraw	= (m_params.drawCount > 1u);
910 	const auto trianglesPerDraw	= (atLeastOneDraw ? pixelCount / m_params.drawCount : 0u);
911 	const auto verticesPerDraw	= trianglesPerDraw * 3u;
912 
913 	if (atLeastOneDraw)
914 		DE_ASSERT(pixelCount % m_params.drawCount == 0u);
915 
916 	{
917 		using TriangleGeneratorPtr = de::MovePtr<TriangleGenerator>;
918 		TriangleGeneratorPtr triangleGen;
919 
920 		if (m_params.meshType == MeshType::MOSAIC)
921 			triangleGen = TriangleGeneratorPtr(new TriangleMosaicGenerator(imageExtent.width, imageExtent.height));
922 		else if (m_params.meshType == MeshType::OVERLAPPING)
923 			triangleGen = TriangleGeneratorPtr(new TriangleOverlapGenerator(imageExtent.width, imageExtent.height));
924 		else
925 			DE_ASSERT(false);
926 
927 		// When applying a vertex offset in nonmixed modes, there will be a few extra vertices at the start of the vertex buffer.
928 		if (isIndexed && !isMixedMode)
929 			appendPaddingVertices(triangleVertices, extraVertices);
930 
931 		for (deUint32 y = 0u; y < imageExtent.height; ++y)
932 		for (deUint32 x = 0u; x < imageExtent.width; ++x)
933 		{
934 			// When applying a vertex offset in mixed mode, there will be some extra padding between the triangles for the first
935 			// block and the rest, so that the vertex offset will not be constant in all draw info structures. This way, the first
936 			// triangles will always have offset zero, and the number of them depends on the given draw count.
937 			const auto pixelIndex = y * imageExtent.width + x;
938 			if (isIndexed && isMixedMode && moreThanOneDraw && pixelIndex == trianglesPerDraw)
939 				appendPaddingVertices(triangleVertices, extraVertices);
940 
941 			triangleGen->appendTriangle(x, y, triangleVertices);
942 		}
943 	}
944 
945 	const auto			vertexBufferSize	= static_cast<VkDeviceSize>(de::dataSize(triangleVertices));
946 	const auto			vertexBufferInfo	= makeBufferCreateInfo(vertexBufferSize, (VK_BUFFER_USAGE_VERTEX_BUFFER_BIT));
947 	BufferWithMemory	vertexBuffer		(vkd, device, alloc, vertexBufferInfo, MemoryRequirement::HostVisible);
948 	auto&				vertexBufferAlloc	= vertexBuffer.getAllocation();
949 	const auto			vertexBufferOffset	= vertexBufferAlloc.getOffset();
950 	void*				vertexBufferData	= vertexBufferAlloc.getHostPtr();
951 
952 	deMemcpy(vertexBufferData, triangleVertices.data(), de::dataSize(triangleVertices));
953 	flushAlloc(vkd, device, vertexBufferAlloc);
954 
955 	// Index buffer if needed.
956 	de::MovePtr<BufferWithMemory>	indexBuffer;
957 	VkDeviceSize					indexBufferOffset = 0ull;
958 
959 	if (isIndexed)
960 	{
961 		// Indices will be given in reverse order, so they effectively also make the triangles have reverse winding order.
962 		std::vector<deUint32> indices;
963 		indices.reserve(vertexCount);
964 		for (deUint32 i = 0u; i < vertexCount; ++i)
965 			indices.push_back(vertexCount - i - 1u);
966 
967 		const auto	indexBufferSize		= static_cast<VkDeviceSize>(de::dataSize(indices));
968 		const auto	indexBufferInfo		= makeBufferCreateInfo(indexBufferSize, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
969 					indexBuffer			= de::MovePtr<BufferWithMemory>(new BufferWithMemory(vkd, device, alloc, indexBufferInfo, MemoryRequirement::HostVisible));
970 		auto&		indexBufferAlloc	= indexBuffer->getAllocation();
971 					indexBufferOffset	= indexBufferAlloc.getOffset();
972 		void*		indexBufferData		= indexBufferAlloc.getHostPtr();
973 
974 		deMemcpy(indexBufferData, indices.data(), de::dataSize(indices));
975 		flushAlloc(vkd, device, indexBufferAlloc);
976 	}
977 
978 	// Prepare draw information.
979 	const auto offsetType	= (m_params.vertexOffset ? tcu::just(m_params.vertexOffset->offsetType) : tcu::Nothing);
980 	const auto vertexOffset	= static_cast<deInt32>(extraVertices);
981 
982 	DrawInfoPacker drawInfos(m_params.drawType, offsetType, m_params.stride, m_params.drawCount, m_params.seed);
983 
984 	if (m_params.drawCount > 0u)
985 	{
986 		deUint32 vertexIndex = 0u;
987 		for (deUint32 drawIdx = 0u; drawIdx < m_params.drawCount; ++drawIdx)
988 		{
989 			// For indexed draws in mixed offset mode, taking into account vertex indices have been stored in reversed order and
990 			// there may be a padding in the vertex buffer after the first verticesPerDraw vertices, we need to use offset 0 in the
991 			// last draw call. That draw will contain the indices for the first verticesPerDraw vertices, which are stored without
992 			// any offset, while other draw calls will use indices which are off by extraVertices vertices. This will make sure not
993 			// every draw call will use the same offset and the implementation handles that.
994 			const auto drawOffset = ((isIndexed && (!isMixedMode || (moreThanOneDraw && drawIdx < m_params.drawCount - 1u))) ? vertexOffset : 0);
995 			drawInfos.addDrawInfo(vertexIndex, verticesPerDraw, drawOffset);
996 			vertexIndex += verticesPerDraw;
997 		}
998 	}
999 
1000 	beginCommandBuffer(vkd, cmdBuffer);
1001 
1002 	// Draw stuff.
1003 	std::vector<VkClearValue> clearValues;
1004 	clearValues.reserve(2u);
1005 	clearValues.push_back(makeClearValueColorU32(0u, 0u, 0u, 0u));
1006 	clearValues.push_back(makeClearValueDepthStencil(((isMosaic || isIndexed) ? 0.0f : 1.0f), 0u));
1007 
1008 	if (m_params.useDynamicRendering)
1009 	{
1010 		// Transition color and depth stencil attachment to the proper initial layout for dynamic rendering
1011 		const auto colorPreBarrier = makeImageMemoryBarrier(
1012 			0u,
1013 			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
1014 			VK_IMAGE_LAYOUT_UNDEFINED,
1015 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
1016 			colorBuffer.get(), colorSubresourceRange);
1017 
1018 		vkd.cmdPipelineBarrier(
1019 			cmdBuffer,
1020 			VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
1021 			VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
1022 			0u, 0u, nullptr, 0u, nullptr, 1u, &colorPreBarrier);
1023 
1024 		const auto dsPreBarrier = makeImageMemoryBarrier(
1025 			0u,
1026 			VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
1027 			VK_IMAGE_LAYOUT_UNDEFINED,
1028 			VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
1029 			dsBuffer.get(), dsSubresourceRange);
1030 
1031 		vkd.cmdPipelineBarrier(
1032 			cmdBuffer,
1033 			VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
1034 			(VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT),
1035 			0u, 0u, nullptr, 0u, nullptr, 1u, &dsPreBarrier);
1036 
1037 		beginRendering(vkd, cmdBuffer, *colorBufferView, *dsBufferView, true, scissor, clearValues[0], clearValues[1],
1038 					   vk::VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, vk::VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
1039 					   VK_ATTACHMENT_LOAD_OP_CLEAR);
1040 	}
1041 	else
1042 		beginRenderPass(vkd, cmdBuffer, renderPass.get(), framebuffer.get(), scissor, static_cast<deUint32>(clearValues.size()), de::dataOrNull(clearValues));
1043 
1044 	for (deUint32 layerIdx = 0u; layerIdx < imageLayers; ++layerIdx)
1045 	{
1046 		if (layerIdx > 0u)
1047 			vkd.cmdNextSubpass(cmdBuffer, VK_SUBPASS_CONTENTS_INLINE);
1048 
1049 		vkd.cmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines[layerIdx].get());
1050 		vkd.cmdBindVertexBuffers(cmdBuffer, 0u, 1u, &vertexBuffer.get(), &vertexBufferOffset);
1051 		if (isIndexed)
1052 			vkd.cmdBindIndexBuffer(cmdBuffer, indexBuffer->get(), indexBufferOffset, VK_INDEX_TYPE_UINT32);
1053 
1054 		if (isIndexed)
1055 		{
1056 			const auto drawInfoPtr	= reinterpret_cast<const VkMultiDrawIndexedInfoEXT*>(drawInfos.drawInfoData());
1057 			const auto offsetPtr	= (isMixedMode ? nullptr : &vertexOffset);
1058 			vkd.cmdDrawMultiIndexedEXT(cmdBuffer, drawInfos.drawInfoCount(), drawInfoPtr, m_params.instanceCount, m_params.firstInstance, drawInfos.stride(), offsetPtr);
1059 		}
1060 		else
1061 		{
1062 			const auto drawInfoPtr = reinterpret_cast<const VkMultiDrawInfoEXT*>(drawInfos.drawInfoData());
1063 			vkd.cmdDrawMultiEXT(cmdBuffer, drawInfos.drawInfoCount(), drawInfoPtr, m_params.instanceCount, m_params.firstInstance, drawInfos.stride());
1064 		}
1065 	}
1066 
1067 	if (m_params.useDynamicRendering)
1068 		endRendering(vkd, cmdBuffer);
1069 	else
1070 		endRenderPass(vkd, cmdBuffer);
1071 
1072 	// Prepare images for copying.
1073 	const auto colorBufferBarrier = makeImageMemoryBarrier(
1074 		VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
1075 		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
1076 		colorBuffer.get(), colorSubresourceRange);
1077 	vkd.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, nullptr, 0u, nullptr, 1u, &colorBufferBarrier);
1078 
1079 	const auto dsBufferBarrier = makeImageMemoryBarrier(
1080 		VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
1081 		VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
1082 		dsBuffer.get(), dsSubresourceRange);
1083 	vkd.cmdPipelineBarrier(cmdBuffer, (VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT), VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, nullptr, 0u, nullptr, 1u, &dsBufferBarrier);
1084 
1085 	// Copy images to output buffers.
1086 	for (deUint32 layerIdx = 0u; layerIdx < imageLayers; ++layerIdx)
1087 	{
1088 		const auto colorSubresourceLayers	= makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, layerIdx, 1u);
1089 		const auto colorCopyRegion			= makeBufferImageCopy(imageExtent, colorSubresourceLayers);
1090 		vkd.cmdCopyImageToBuffer(cmdBuffer, colorBuffer.get(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, outputBuffers[layerIdx]->get(), 1u, &colorCopyRegion);
1091 	}
1092 
1093 	// Note: this only copies the stencil aspect. See stencilOutBuffer creation.
1094 	for (deUint32 layerIdx = 0u; layerIdx < imageLayers; ++layerIdx)
1095 	{
1096 		const auto stencilSubresourceLayers	= makeImageSubresourceLayers(VK_IMAGE_ASPECT_STENCIL_BIT, 0u, layerIdx, 1u);
1097 		const auto stencilCopyRegion		= makeBufferImageCopy(imageExtent, stencilSubresourceLayers);
1098 		vkd.cmdCopyImageToBuffer(cmdBuffer, dsBuffer.get(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, stencilOutBuffers[layerIdx]->get(), 1u, &stencilCopyRegion);
1099 	}
1100 
1101 	// Prepare buffers for host reading.
1102 	const auto outputBufferBarrier		= makeMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT);
1103 	vkd.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 1u, &outputBufferBarrier, 0u, nullptr, 0u, nullptr);
1104 
1105 	endCommandBuffer(vkd, cmdBuffer);
1106 	submitCommandsAndWait(vkd, device, queue, cmdBuffer);
1107 
1108 	// Read output buffers and verify their contents.
1109 
1110 	// With stride zero, mosaic meshes increment the stencil buffer as many times as draw operations for affected pixels and
1111 	// overlapping meshes increment the stencil buffer only in the first draw operation (the rest fail the depth test) as many times
1112 	// as triangles per draw.
1113 	//
1114 	// With nonzero stride, mosaic meshes increment the stencil buffer once per pixel. Overlapping meshes increment it once per
1115 	// triangle.
1116 	const auto	stencilIncrements		=	((m_params.stride == 0u)
1117 											? (isMosaic ? drawInfos.drawInfoCount() : trianglesPerDraw)
1118 											: (isMosaic ? 1u : triangleCount));
1119 	const auto	maxInstanceIndex		= m_params.maxInstanceIndex();
1120 	const auto	colorVerificationFormat	= mapVkFormat(getVerificationFormat());
1121 	const auto	iWidth					= static_cast<int>(imageExtent.width);
1122 	const auto	iHeight					= static_cast<int>(imageExtent.height);
1123 	auto&		log						= m_context.getTestContext().getLog();
1124 	const auto	logMode					= tcu::CompareLogMode::COMPARE_LOG_ON_ERROR;
1125 
1126 	for (deUint32 layerIdx = 0u; layerIdx < imageLayers; ++layerIdx)
1127 	{
1128 		auto& outputBufferAlloc = outputBuffers[layerIdx]->getAllocation();
1129 		invalidateAlloc(vkd, device, outputBufferAlloc);
1130 		const void* outputBufferData = outputBufferAlloc.getHostPtr();
1131 
1132 		auto& stencilOutBufferAlloc = stencilOutBuffers[layerIdx]->getAllocation();
1133 		invalidateAlloc(vkd, device, stencilOutBufferAlloc);
1134 		const void* stencilOutBufferData = stencilOutBufferAlloc.getHostPtr();
1135 
1136 		tcu::ConstPixelBufferAccess	colorAccess				(colorVerificationFormat, iWidth, iHeight, 1, outputBufferData);
1137 		tcu::ConstPixelBufferAccess	stencilAccess			(tcuStencilFmt, iWidth, iHeight, 1, stencilOutBufferData);
1138 
1139 		// Generate reference images.
1140 		tcu::TextureLevel			refColorLevel		(colorVerificationFormat, iWidth, iHeight);
1141 		tcu::PixelBufferAccess		refColorAccess		= refColorLevel.getAccess();
1142 		tcu::TextureLevel			refStencilLevel		(tcuStencilFmt, iWidth, iHeight);
1143 		tcu::PixelBufferAccess		refStencilAccess	= refStencilLevel.getAccess();
1144 		tcu::IVec4					referenceColor;
1145 		int							referenceStencil;
1146 
1147 		for (int y = 0; y < iHeight; ++y)
1148 		for (int x = 0; x < iWidth; ++x)
1149 		{
1150 			const auto pixelNumber		= static_cast<deUint32>(y * iWidth + x);
1151 			const auto triangleIndex	= (isIndexed ? (pixelCount - 1u - pixelNumber) : pixelNumber); // Reverse order for indexed draws.
1152 
1153 			if (m_params.instanceCount == 0u || drawInfos.drawInfoCount() == 0u ||
1154 				(m_params.stride == 0u && triangleIndex >= trianglesPerDraw && isMosaic))
1155 			{
1156 				// Some pixels may not be drawn into when there are no instances or draws, or when the stride is zero in mosaic mode.
1157 				referenceColor		= tcu::IVec4(0, 0, 0, 0);
1158 				referenceStencil	= 0;
1159 			}
1160 			else
1161 			{
1162 				// This must match the vertex shader.
1163 				//
1164 				// With stride zero, the same block is drawn over and over again in each draw call. This affects both the draw index and
1165 				// the values in the depth/stencil buffer and, with overlapping meshes, only the first draw passes the depth test.
1166 				//
1167 				// With nonzero stride, the draw index depends on the triangle index and the number of triangles per draw and, for
1168 				// overlapping meshes, the draw index is always the last one.
1169 				const auto drawIndex =	(m_params.stride == 0u
1170 										? (isMosaic ? (drawInfos.drawInfoCount() - 1u) : 0u)
1171 										: (isMosaic ? (triangleIndex / trianglesPerDraw) : (drawInfos.drawInfoCount() - 1u)));
1172 				referenceColor = tcu::IVec4(
1173 					static_cast<int>((drawIndex >> 8) & 0xFFu),
1174 					static_cast<int>((drawIndex     ) & 0xFFu),
1175 					static_cast<int>(255u - maxInstanceIndex),
1176 					static_cast<int>(255u - layerIdx));
1177 
1178 				referenceStencil = static_cast<int>((m_params.instanceCount * stencilIncrements) % 256u); // VK_STENCIL_OP_INCREMENT_AND_WRAP.
1179 			}
1180 
1181 			refColorAccess.setPixel(referenceColor, x, y);
1182 			refStencilAccess.setPixStencil(referenceStencil, x, y);
1183 		}
1184 
1185 		const auto layerIdxStr		= de::toString(layerIdx);
1186 		const auto colorSetName		= "ColorTestResultLayer" + layerIdxStr;
1187 		const auto stencilSetName	= "StencilTestResultLayer" + layerIdxStr;
1188 
1189 		if (!tcu::intThresholdCompare(log, colorSetName.c_str(), "", refColorAccess, colorAccess, tcu::UVec4(0u, 0u, 0u, 0u), logMode))
1190 			return tcu::TestStatus::fail("Color image comparison failed; check log for more details");
1191 
1192 		if (!tcu::dsThresholdCompare(log, stencilSetName.c_str(), "", refStencilAccess, stencilAccess, 0.0f, logMode))
1193 			return tcu::TestStatus::fail("Stencil image comparison failed; check log for more details");
1194 	}
1195 
1196 	return tcu::TestStatus::pass("Pass");
1197 }
1198 
1199 } // anonymous
1200 
createDrawMultiExtTests(tcu::TestContext & testCtx,bool useDynamicRendering)1201 tcu::TestCaseGroup*	createDrawMultiExtTests (tcu::TestContext& testCtx, bool useDynamicRendering)
1202 {
1203 	using GroupPtr = de::MovePtr<tcu::TestCaseGroup>;
1204 
1205 	GroupPtr drawMultiGroup (new tcu::TestCaseGroup(testCtx, "multi_draw", "VK_EXT_multi_draw tests"));
1206 
1207 	const struct
1208 	{
1209 		MeshType	meshType;
1210 		const char*	name;
1211 	} meshTypeCases[] =
1212 	{
1213 		{ MeshType::MOSAIC,			"mosaic"		},
1214 		{ MeshType::OVERLAPPING,	"overlapping"	},
1215 	};
1216 
1217 	const struct
1218 	{
1219 		DrawType	drawType;
1220 		const char*	name;
1221 	} drawTypeCases[] =
1222 	{
1223 		{ DrawType::NORMAL,		"normal"	},
1224 		{ DrawType::INDEXED,	"indexed"	},
1225 	};
1226 
1227 	const struct
1228 	{
1229 		tcu::Maybe<VertexOffsetType>	vertexOffsetType;
1230 		const char*						name;
1231 	} offsetTypeCases[] =
1232 	{
1233 		{ tcu::Nothing,							""			},
1234 		{ VertexOffsetType::MIXED,				"mixed"		},
1235 		{ VertexOffsetType::CONSTANT_RANDOM,	"random"	},
1236 		{ VertexOffsetType::CONSTANT_PACK,		"packed"	},
1237 	};
1238 
1239 	const struct
1240 	{
1241 		deUint32	drawCount;
1242 		const char*	name;
1243 	} drawCountCases[] =
1244 	{
1245 		{ 0u,					"no_draws"	},
1246 		{ 1u,					"one_draw"	},
1247 		{ 16u,					"16_draws"	},
1248 		{ getTriangleCount(),	"max_draws"	},
1249 	};
1250 
1251 	const struct
1252 	{
1253 		int			extraBytes;
1254 		const char*	name;
1255 	} strideCases[] =
1256 	{
1257 		{ -1,		"stride_zero"		},
1258 		{  0,		"standard_stride"	},
1259 		{  4,		"stride_extra_4"	},
1260 		{ 12,		"stride_extra_12"	},
1261 	};
1262 
1263 	const struct
1264 	{
1265 		deUint32	firstInstance;
1266 		deUint32	instanceCount;
1267 		const char*	name;
1268 	} instanceCases[] =
1269 	{
1270 		{	0u,		0u,		"no_instances"			},
1271 		{	0u,		1u,		"1_instance"			},
1272 		{	0u,		10u,	"10_instances"			},
1273 		{	3u,		2u,		"2_instances_base_3"	},
1274 	};
1275 
1276 	const struct
1277 	{
1278 		bool		useTessellation;
1279 		bool		useGeometry;
1280 		const char*	name;
1281 	} shaderCases[] =
1282 	{
1283 		{ false,	false,		"vert_only"	},
1284 		{ false,	true,		"with_geom"	},
1285 		{ true,		false,		"with_tess"	},
1286 		{ true,		true,		"tess_geom"	},
1287 	};
1288 
1289 	const struct
1290 	{
1291 		bool		multiview;
1292 		const char*	name;
1293 	} multiviewCases[] =
1294 	{
1295 		{ false,	"single_view"	},
1296 		{ true,		"multiview"		},
1297 	};
1298 
1299 	constexpr deUint32 kSeed = 1621260419u;
1300 
1301 	for (const auto& meshTypeCase : meshTypeCases)
1302 	{
1303 		GroupPtr meshTypeGroup(new tcu::TestCaseGroup(testCtx, meshTypeCase.name, ""));
1304 
1305 		for (const auto& drawTypeCase : drawTypeCases)
1306 		{
1307 			for (const auto& offsetTypeCase : offsetTypeCases)
1308 			{
1309 				const auto hasOffsetType = static_cast<bool>(offsetTypeCase.vertexOffsetType);
1310 				if ((drawTypeCase.drawType == DrawType::NORMAL && hasOffsetType) ||
1311 					(drawTypeCase.drawType == DrawType::INDEXED && !hasOffsetType))
1312 				{
1313 					continue;
1314 				}
1315 
1316 				std::string drawGroupName = drawTypeCase.name;
1317 				if (hasOffsetType)
1318 					drawGroupName += std::string("_") + offsetTypeCase.name;
1319 
1320 				GroupPtr drawTypeGroup(new tcu::TestCaseGroup(testCtx, drawGroupName.c_str(), ""));
1321 
1322 				for (const auto& drawCountCase : drawCountCases)
1323 				{
1324 					GroupPtr drawCountGroup(new tcu::TestCaseGroup(testCtx, drawCountCase.name, ""));
1325 
1326 					for (const auto& strideCase : strideCases)
1327 					{
1328 						GroupPtr strideGroup(new tcu::TestCaseGroup(testCtx, strideCase.name, ""));
1329 
1330 						for (const auto& instanceCase : instanceCases)
1331 						{
1332 							GroupPtr instanceGroup(new tcu::TestCaseGroup(testCtx, instanceCase.name, ""));
1333 
1334 							for (const auto& shaderCase : shaderCases)
1335 							{
1336 								GroupPtr shaderGroup(new tcu::TestCaseGroup(testCtx, shaderCase.name, ""));
1337 
1338 								for (const auto& multiviewCase : multiviewCases)
1339 								{
1340 									if (useDynamicRendering && multiviewCase.multiview)
1341 										continue;
1342 
1343 									GroupPtr multiviewGroup(new tcu::TestCaseGroup(testCtx, multiviewCase.name, ""));
1344 
1345 									const auto	isIndexed	= (drawTypeCase.drawType == DrawType::INDEXED);
1346 									const auto	isPacked	= (offsetTypeCase.vertexOffsetType && *offsetTypeCase.vertexOffsetType == VertexOffsetType::CONSTANT_PACK);
1347 									const auto	baseStride	= ((isIndexed && !isPacked) ? sizeof(VkMultiDrawIndexedInfoEXT) : sizeof(VkMultiDrawInfoEXT));
1348 									const auto&	extraBytes	= strideCase.extraBytes;
1349 									const auto	testOffset	= (isIndexed ? tcu::just(VertexOffsetParams{*offsetTypeCase.vertexOffsetType, 0u }) : tcu::Nothing);
1350 									deUint32	testStride	= 0u;
1351 
1352 									if (extraBytes >= 0)
1353 										testStride = static_cast<deUint32>(baseStride) + static_cast<deUint32>(extraBytes);
1354 
1355 									// For overlapping triangles we will skip instanced drawing.
1356 									if (instanceCase.instanceCount > 1u && meshTypeCase.meshType == MeshType::OVERLAPPING)
1357 										continue;
1358 
1359 									TestParams params =
1360 									{
1361 										meshTypeCase.meshType,			//	MeshType						meshType;
1362 										drawTypeCase.drawType,			//	DrawType						drawType;
1363 										drawCountCase.drawCount,		//	deUint32						drawCount;
1364 										instanceCase.instanceCount,		//	deUint32						instanceCount;
1365 										instanceCase.firstInstance,		//	deUint32						firstInstance;
1366 										testStride,						//	deUint32						stride;
1367 										testOffset,						//	tcu::Maybe<VertexOffsetParams>>	vertexOffset;	// Only used for indexed draws.
1368 										kSeed,							//	deUint32						seed;
1369 										shaderCase.useTessellation,		//	bool							useTessellation;
1370 										shaderCase.useGeometry,			//	bool							useGeometry;
1371 										multiviewCase.multiview,		//	bool							multiview;
1372 										useDynamicRendering,			//	bool							useDynamicRendering;
1373 									};
1374 
1375 									multiviewGroup->addChild(new MultiDrawTest(testCtx, "no_offset", "", params));
1376 
1377 									if (isIndexed)
1378 									{
1379 										params.vertexOffset->offset = 6u;
1380 										multiviewGroup->addChild(new MultiDrawTest(testCtx, "offset_6", "", params));
1381 									}
1382 
1383 									shaderGroup->addChild(multiviewGroup.release());
1384 								}
1385 
1386 								instanceGroup->addChild(shaderGroup.release());
1387 							}
1388 
1389 							strideGroup->addChild(instanceGroup.release());
1390 						}
1391 
1392 						drawCountGroup->addChild(strideGroup.release());
1393 					}
1394 
1395 					drawTypeGroup->addChild(drawCountGroup.release());
1396 				}
1397 
1398 				meshTypeGroup->addChild(drawTypeGroup.release());
1399 			}
1400 		}
1401 
1402 		drawMultiGroup->addChild(meshTypeGroup.release());
1403 	}
1404 
1405 	return drawMultiGroup.release();
1406 }
1407 
1408 } // Draw
1409 } // vkt
1410