• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Paul A. Bristow 2015
2 
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0.
5 // (See accompanying file LICENSE_1_0.txt
6 // or copy at http://www.boost.org/LICENSE_1_0.txt)
7 
8 // Comparison of finding roots using TOMS748, Newton-Raphson, Schroder & Halley algorithms.
9 
10 // Note that this file contains Quickbook mark-up as well as code
11 // and comments, don't change any of the special comment mark-ups!
12 
13 // root_finding_algorithms.cpp
14 
15 #include <boost/cstdlib.hpp>
16 #include <boost/config.hpp>
17 #include <boost/array.hpp>
18 #include <boost/type_traits/is_floating_point.hpp>
19 #include <boost/type_traits/is_fundamental.hpp>
20 
21 #include "table_type.hpp"
22 // Copy of i:\modular-boost\libs\math\test\table_type.hpp
23 // #include "handle_test_result.hpp"
24 // Copy of i:\modular - boost\libs\math\test\handle_test_result.hpp
25 
26 #include <boost/math/tools/roots.hpp>
27 //using boost::math::policies::policy;
28 //using boost::math::tools::newton_raphson_iterate;
29 //using boost::math::tools::halley_iterate; //
30 //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
31 //using boost::math::tools::bracket_and_solve_root;
32 //using boost::math::tools::toms748_solve;
33 //using boost::math::tools::schroder_iterate;
34 
35 #include <boost/math/special_functions/next.hpp> // For float_distance.
36 #include <tuple> // for tuple and make_tuple.
37 #include <boost/math/special_functions/cbrt.hpp> // For boost::math::cbrt.
38 
39 #include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
40 //#include <boost/multiprecision/cpp_dec_float.hpp> // is decimal.
41 using boost::multiprecision::cpp_bin_float_100;
42 using boost::multiprecision::cpp_bin_float_50;
43 
44 #include <boost/timer/timer.hpp>
45 #include <boost/system/error_code.hpp>
46 #include <boost/multiprecision/cpp_bin_float/io.hpp>
47 #include <boost/preprocessor/stringize.hpp>
48 
49 // STL
50 #include <iostream>
51 #include <iomanip>
52 #include <string>
53 #include <vector>
54 #include <limits>
55 #include <fstream> // std::ofstream
56 #include <cmath>
57 #include <typeinfo> // for type name using typid(thingy).name();
58 
59 #ifndef BOOST_ROOT
60 # define BOOST_ROOT i:/modular-boost/
61 #endif
62 // Need to find this
63 
64 #ifdef __FILE__
65 std::string sourcefilename = __FILE__;
66 #endif
67 
chop_last(std::string s)68 std::string chop_last(std::string s)
69 {
70    std::string::size_type pos = s.find_last_of("\\/");
71    if(pos != std::string::npos)
72       s.erase(pos);
73    else if(s.empty())
74       abort();
75    else
76       s.erase();
77    return s;
78 }
79 
make_root()80 std::string make_root()
81 {
82    std::string result;
83    if(sourcefilename.find_first_of(":") != std::string::npos)
84    {
85       result = chop_last(sourcefilename); // lose filename part
86       result = chop_last(result);   // lose /example/
87       result = chop_last(result);   // lose /math/
88       result = chop_last(result);   // lose /libs/
89    }
90    else
91    {
92       result = chop_last(sourcefilename); // lose filename part
93       if(result.empty())
94          result = ".";
95       result += "/../../..";
96    }
97    return result;
98 }
99 
short_file_name(std::string s)100 std::string short_file_name(std::string s)
101 {
102    std::string::size_type pos = s.find_last_of("\\/");
103    if(pos != std::string::npos)
104       s.erase(0, pos + 1);
105    return s;
106 }
107 
108 std::string boost_root = make_root();
109 
110 #ifdef _MSC_VER
111   std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_msvc.qbk");
112 #else // assume GCC
113   std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_gcc.qbk");
114 #endif
115 
116 std::ofstream fout (filename.c_str(), std::ios_base::out);
117 
118 //std::array<std::string, 6> float_type_names =
119 //{
120 //  "float", "double", "long double", "cpp_bin_128", "cpp_dec_50", "cpp_dec_100"
121 //};
122 
123 std::vector<std::string> algo_names =
124 {
125   "cbrt", "TOMS748", "Newton", "Halley", "Schr'''&#xf6;'''der"
126 };
127 
128 std::vector<int> max_digits10s;
129 std::vector<std::string> typenames; // Full computer generated type name.
130 std::vector<std::string> names; // short name.
131 
132 uintmax_t iters; // Global as iterations is not returned by rooting function.
133 
134 const int count = 1000000; // Number of iterations to average.
135 
136 struct root_info
137 { // for a floating-point type, float, double ...
138   std::size_t max_digits10; // for type.
139   std::string full_typename; // for type from type_id.name().
140   std::string short_typename; // for type "float", "double", "cpp_bin_float_50" ....
141 
142   std::size_t bin_digits;  // binary in floating-point type numeric_limits<T>::digits;
143   int get_digits; // fraction of maximum possible accuracy required.
144   // = digits * digits_accuracy
145   // Vector of values for each algorithm, std::cbrt, boost::math::cbrt, TOMS748, Newton, Halley.
146   //std::vector< boost::int_least64_t> times;  converted to int.
147   std::vector<int> times;
148   //boost::int_least64_t min_time = std::numeric_limits<boost::int_least64_t>::max(); // Used to normalize times (as int).
149   std::vector<double> normed_times;
150   boost::int_least64_t min_time = (std::numeric_limits<boost::int_least64_t>::max)(); // Used to normalize times.
151   std::vector<uintmax_t> iterations;
152   std::vector<long int> distances;
153   std::vector<cpp_bin_float_100> full_results;
154 }; // struct root_info
155 
156 std::vector<root_info> root_infos;  // One element for each type used.
157 
158 int type_no = -1; // float = 0, double = 1, ... indexing root_infos.
159 
build_test_name(const char * type_name,const char * test_name)160 inline std::string build_test_name(const char* type_name, const char* test_name)
161 {
162   std::string result(BOOST_COMPILER);
163   result += "|";
164   result += BOOST_STDLIB;
165   result += "|";
166   result += BOOST_PLATFORM;
167   result += "|";
168   result += type_name;
169   result += "|";
170   result += test_name;
171 #if defined(_DEBUG ) || !defined(NDEBUG)
172   result += "|";
173   result += " debug";
174 #else
175   result += "|";
176   result += " release";
177 #endif
178   result += "|";
179     return result;
180 }
181 
182 // No derivatives - using TOMS748 internally.
183 template <class T>
184 struct cbrt_functor_noderiv
185 { //  cube root of x using only function - no derivatives.
cbrt_functor_noderivcbrt_functor_noderiv186   cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
187   { // Constructor just stores value a to find root of.
188   }
operator ()cbrt_functor_noderiv189   T operator()(T const& x)
190   {
191     T fx = x*x*x - a; // Difference (estimate x^3 - a).
192     return fx;
193   }
194 private:
195   T a; // to be 'cube_rooted'.
196 }; // template <class T> struct cbrt_functor_noderiv
197 
198 template <class T>
cbrt_noderiv(T x)199 T cbrt_noderiv(T x)
200 { // return cube root of x using bracket_and_solve (using NO derivatives).
201   using namespace std;  // Help ADL of std functions.
202   using namespace boost::math::tools; // For bracket_and_solve_root.
203 
204   // Maybe guess should be double, or use enable_if to avoid warning about conversion double to float here?
205   T guess;
206   if (boost::is_fundamental<T>::value)
207   {
208     int exponent;
209     frexp(x, &exponent); // Get exponent of z (ignore mantissa).
210     guess = ldexp((T)1., exponent / 3); // Rough guess is to divide the exponent by three.
211   }
212   else
213   { // (boost::is_class<T>)
214     double dx = static_cast<double>(x);
215     guess = boost::math::cbrt<T>(dx); // Get guess using double.
216   }
217 
218   T factor = 2; // How big steps to take when searching.
219 
220   const boost::uintmax_t maxit = 50; // Limit to maximum iterations.
221   boost::uintmax_t it = maxit; // Initially our chosen max iterations, but updated with actual.
222   bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
223   // Some fraction of digits is used to control how accurate to try to make the result.
224   int get_digits = static_cast<int>(std::numeric_limits<T>::digits - 2);
225 
226   eps_tolerance<T> tol(get_digits); // Set the tolerance.
227   std::pair<T, T> r =
228     bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
229   iters = it;
230   T result = r.first + (r.second - r.first) / 2;  // Midway between brackets.
231   return result;
232 } // template <class T> T cbrt_noderiv(T x)
233 
234 
235 // Using 1st derivative only Newton-Raphson
236 
237 template <class T>
238 struct cbrt_functor_deriv
239 { // Functor also returning 1st derivative.
cbrt_functor_derivcbrt_functor_deriv240   cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
241   { // Constructor stores value a to find root of,
242     // for example: calling cbrt_functor_deriv<T>(x) to use to get cube root of x.
243   }
operator ()cbrt_functor_deriv244   std::pair<T, T> operator()(T const& x)
245   { // Return both f(x) and f'(x).
246     T fx = x*x*x - a; // Difference (estimate x^3 - value).
247     T dx = 3 * x*x; // 1st derivative = 3x^2.
248     return std::make_pair(fx, dx); // 'return' both fx and dx.
249   }
250 private:
251   T a; // to be 'cube_rooted'.
252 };
253 
254 template <class T>
cbrt_deriv(T x)255 T cbrt_deriv(T x)
256 { // return cube root of x using 1st derivative and Newton_Raphson.
257   using namespace boost::math::tools;
258   int exponent;
259   T guess;
260   if(boost::is_fundamental<T>::value)
261   {
262      frexp(x, &exponent); // Get exponent of z (ignore mantissa).
263      guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
264   }
265   else
266      guess = boost::math::cbrt(static_cast<double>(x));
267   T min = guess / 2; // Minimum possible value is half our guess.
268   T max = 2 * guess; // Maximum possible value is twice our guess.
269   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
270   const boost::uintmax_t maxit = 20;
271   boost::uintmax_t it = maxit;
272   T result = newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
273   iters = it;
274   return result;
275 }
276 
277 // Using 1st and 2nd derivatives with Halley algorithm.
278 
279 template <class T>
280 struct cbrt_functor_2deriv
281 { // Functor returning both 1st and 2nd derivatives.
cbrt_functor_2derivcbrt_functor_2deriv282   cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
283   { // Constructor stores value a to find root of, for example:
284     // calling cbrt_functor_2deriv<T>(x) to get cube root of x,
285   }
operator ()cbrt_functor_2deriv286   std::tuple<T, T, T> operator()(T const& x)
287   { // Return both f(x) and f'(x) and f''(x).
288     T fx = x*x*x - a; // Difference (estimate x^3 - value).
289     T dx = 3 * x*x; // 1st derivative = 3x^2.
290     T d2x = 6 * x; // 2nd derivative = 6x.
291     return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
292   }
293 private:
294   T a; // to be 'cube_rooted'.
295 };
296 
297 template <class T>
cbrt_2deriv(T x)298 T cbrt_2deriv(T x)
299 { // return cube root of x using 1st and 2nd derivatives and Halley.
300   //using namespace std;  // Help ADL of std functions.
301   using namespace boost::math::tools;
302   int exponent;
303   T guess;
304   if(boost::is_fundamental<T>::value)
305   {
306      frexp(x, &exponent); // Get exponent of z (ignore mantissa).
307      guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
308   }
309   else
310      guess = boost::math::cbrt(static_cast<double>(x));
311   T min = guess / 2; // Minimum possible value is half our guess.
312   T max = 2 * guess; // Maximum possible value is twice our guess.
313   // digits used to control how accurate to try to make the result.
314   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
315   boost::uintmax_t maxit = 20;
316   boost::uintmax_t it = maxit;
317   T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, it);
318   iters = it;
319   return result;
320 }
321 
322 // Using 1st and 2nd derivatives using Schroder algorithm.
323 
324 template <class T>
cbrt_2deriv_s(T x)325 T cbrt_2deriv_s(T x)
326 { // return cube root of x using 1st and 2nd derivatives and Schroder algorithm.
327   //using namespace std;  // Help ADL of std functions.
328   using namespace boost::math::tools;
329   int exponent;
330   T guess;
331   if(boost::is_fundamental<T>::value)
332   {
333      frexp(x, &exponent); // Get exponent of z (ignore mantissa).
334      guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
335   }
336   else
337      guess = boost::math::cbrt(static_cast<double>(x));
338   T min = guess / 2; // Minimum possible value is half our guess.
339   T max = 2 * guess; // Maximum possible value is twice our guess.
340   // digits used to control how accurate to try to make the result.
341   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
342   const boost::uintmax_t maxit = 20;
343   boost::uintmax_t it = maxit;
344   T result = schroder_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, it);
345   iters = it;
346   return result;
347 } // template <class T> T cbrt_2deriv_s(T x)
348 
349 
350 
351 template <typename T>
test_root(cpp_bin_float_100 big_value,cpp_bin_float_100 answer,const char * type_name)352 int test_root(cpp_bin_float_100 big_value, cpp_bin_float_100 answer, const char* type_name)
353 {
354   //T value = 28.; // integer (exactly representable as floating-point)
355   // whose cube root is *not* exactly representable.
356   // Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits.
357   // 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895
358 
359   std::size_t max_digits = 2 + std::numeric_limits<T>::digits * 3010 / 10000;
360   // For new versions use max_digits10
361   // std::cout.precision(std::numeric_limits<T>::max_digits10);
362   std::cout.precision(max_digits);
363   std::cout << std::showpoint << std::endl; // Trailing zeros too.
364 
365   root_infos.push_back(root_info());
366   type_no++;  // Another type.
367 
368   root_infos[type_no].max_digits10 = max_digits;
369   root_infos[type_no].full_typename = typeid(T).name(); // Full typename.
370   root_infos[type_no].short_typename = type_name; // Short typename.
371 
372   root_infos[type_no].bin_digits = std::numeric_limits<T>::digits;
373 
374   root_infos[type_no].get_digits = std::numeric_limits<T>::digits;
375 
376   T to_root = static_cast<T>(big_value);
377   T result; // root
378   T ans = static_cast<T>(answer);
379   int algo = 0; // Count of algorithms used.
380 
381   using boost::timer::nanosecond_type;
382   using boost::timer::cpu_times;
383   using boost::timer::cpu_timer;
384 
385   cpu_times now; // Holds wall, user and system times.
386   T sum = 0;
387 
388   // std::cbrt is much the fastest, but not useful for this comparison because it only handles fundamental types.
389   // Using enable_if allows us to avoid a compile fail with multiprecision types, but still distorts the results too much.
390 
391   //{
392   //  algorithm_names.push_back("std::cbrt");
393   //  cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
394   //  ti.start();
395   //  for (long i = 0; i < count; ++i)
396   //  {
397   //    stdcbrt(big_value);
398   //  }
399   //  now = ti.elapsed();
400   //  int time = static_cast<int>(now.user / count);
401   //  root_infos[type_no].times.push_back(time); // CPU time taken per root.
402   //  if (time < root_infos[type_no].min_time)
403   //  {
404   //    root_infos[type_no].min_time = time;
405   //  }
406   //  ti.stop();
407   //  long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
408   //  root_infos[type_no].distances.push_back(distance);
409   //  root_infos[type_no].iterations.push_back(0); // Not known.
410   //  root_infos[type_no].full_results.push_back(result);
411   //  algo++;
412   //}
413   //{
414   //  //algorithm_names.push_back("boost::math::cbrt"); // .
415   //  cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
416   //  ti.start();
417   //  for (long i = 0; i < count; ++i)
418   //  {
419   //    result = boost::math::cbrt(to_root); //
420   //  }
421   //  now = ti.elapsed();
422   //  int time = static_cast<int>(now.user / count);
423   //  root_infos[type_no].times.push_back(time); // CPU time taken.
424   //  ti.stop();
425   //  if (time < root_infos[type_no].min_time)
426   //  {
427   //    root_infos[type_no].min_time = time;
428   //  }
429   //  long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
430   //  root_infos[type_no].distances.push_back(distance);
431   //  root_infos[type_no].iterations.push_back(0); // Iterations not knowable.
432   //  root_infos[type_no].full_results.push_back(result);
433   //}
434 
435 
436 
437   {
438     //algorithm_names.push_back("boost::math::cbrt"); // .
439     result = 0;
440     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
441     ti.start();
442     for (long i = 0; i < count; ++i)
443     {
444       result = boost::math::cbrt(to_root); //
445       sum += result;
446     }
447     now = ti.elapsed();
448 
449     long time = static_cast<long>(now.user/1000); // convert nanoseconds to microseconds (assuming this is resolution).
450     root_infos[type_no].times.push_back(time); // CPU time taken.
451     ti.stop();
452     if (time < root_infos[type_no].min_time)
453     {
454       root_infos[type_no].min_time = time;
455     }
456     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
457     root_infos[type_no].distances.push_back(distance);
458     root_infos[type_no].iterations.push_back(0); // Iterations not knowable.
459     root_infos[type_no].full_results.push_back(result);
460   }
461   {
462     //algorithm_names.push_back("TOMS748"); //
463     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
464     ti.start();
465     for (long i = 0; i < count; ++i)
466     {
467       result = cbrt_noderiv<T>(to_root); //
468       sum += result;
469     }
470     now = ti.elapsed();
471 //    int time = static_cast<int>(now.user / count);
472     long time = static_cast<long>(now.user/1000);
473     root_infos[type_no].times.push_back(time); // CPU time taken.
474     if (time < root_infos[type_no].min_time)
475     {
476       root_infos[type_no].min_time = time;
477     }
478     ti.stop();
479     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
480     root_infos[type_no].distances.push_back(distance);
481     root_infos[type_no].iterations.push_back(iters); //
482     root_infos[type_no].full_results.push_back(result);
483   }
484   {
485    // algorithm_names.push_back("Newton"); // algorithm
486     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
487     ti.start();
488     for (long i = 0; i < count; ++i)
489     {
490       result = cbrt_deriv(to_root); //
491       sum += result;
492     }
493     now = ti.elapsed();
494 //    int time = static_cast<int>(now.user / count);
495     long time = static_cast<long>(now.user/1000);
496     root_infos[type_no].times.push_back(time); // CPU time taken.
497     if (time < root_infos[type_no].min_time)
498     {
499       root_infos[type_no].min_time = time;
500     }
501 
502     ti.stop();
503     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
504     root_infos[type_no].distances.push_back(distance);
505     root_infos[type_no].iterations.push_back(iters); //
506     root_infos[type_no].full_results.push_back(result);
507   }
508   {
509   //algorithm_names.push_back("Halley"); // algorithm
510     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
511     ti.start();
512     for (long i = 0; i < count; ++i)
513     {
514       result = cbrt_2deriv(to_root); //
515       sum += result;
516     }
517     now = ti.elapsed();
518 //    int time = static_cast<int>(now.user / count);
519     long time = static_cast<long>(now.user/1000);
520     root_infos[type_no].times.push_back(time); // CPU time taken.
521     ti.stop();
522     if (time < root_infos[type_no].min_time)
523     {
524       root_infos[type_no].min_time = time;
525     }
526     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
527     root_infos[type_no].distances.push_back(distance);
528     root_infos[type_no].iterations.push_back(iters); //
529     root_infos[type_no].full_results.push_back(result);
530   }
531 
532   {
533    // algorithm_names.push_back("Shroeder"); // algorithm
534     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
535     ti.start();
536     for (long i = 0; i < count; ++i)
537     {
538       result = cbrt_2deriv_s(to_root); //
539       sum += result;
540     }
541     now = ti.elapsed();
542 //    int time = static_cast<int>(now.user / count);
543     long time = static_cast<long>(now.user/1000);
544     root_infos[type_no].times.push_back(time); // CPU time taken.
545     if (time < root_infos[type_no].min_time)
546     {
547       root_infos[type_no].min_time = time;
548     }
549     ti.stop();
550     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
551     root_infos[type_no].distances.push_back(distance);
552     root_infos[type_no].iterations.push_back(iters); //
553     root_infos[type_no].full_results.push_back(result);
554   }
555   for (size_t i = 0; i != root_infos[type_no].times.size(); i++)
556   { // Normalize times.
557     double normed_time = static_cast<double>(root_infos[type_no].times[i]);
558     normed_time /= root_infos[type_no].min_time;
559     root_infos[type_no].normed_times.push_back(normed_time);
560   }
561   algo++;
562   std::cout << "Accumulated sum was " << sum << std::endl;
563   return algo;  // Count of how many algorithms used.
564 } // test_root
565 
table_root_info(cpp_bin_float_100 full_value,cpp_bin_float_100 full_answer)566 void table_root_info(cpp_bin_float_100 full_value, cpp_bin_float_100 full_answer)
567 {
568    // Fill the elements.
569   test_root<float>(full_value, full_answer, "float");
570   test_root<double>(full_value, full_answer, "double");
571   test_root<long double>(full_value, full_answer, "long double");
572   test_root<cpp_bin_float_50>(full_value, full_answer, "cpp_bin_float_50");
573   //test_root<cpp_bin_float_100>(full_value, full_answer, "cpp_bin_float_100");
574 
575   std::cout << root_infos.size() << " floating-point types tested:" << std::endl;
576 #ifndef NDEBUG
577   std::cout << "Compiled in debug mode." << std::endl;
578 #else
579   std::cout << "Compiled in optimise mode." << std::endl;
580 #endif
581 
582 
583   for (size_t tp = 0; tp != root_infos.size(); tp++)
584   { // For all types:
585 
586     std::cout << std::endl;
587 
588     std::cout << "Floating-point type = " << root_infos[tp].short_typename << std::endl;
589     std::cout << "Floating-point type = " << root_infos[tp].full_typename << std::endl;
590     std::cout << "Max_digits10 = " << root_infos[tp].max_digits10 << std::endl;
591     std::cout << "Binary digits = " << root_infos[tp].bin_digits << std::endl;
592     std::cout << "Accuracy digits = " << root_infos[tp].get_digits - 2 << ", " << static_cast<int>(root_infos[tp].get_digits * 0.6) << ", " << static_cast<int>(root_infos[tp].get_digits * 0.4) << std::endl;
593     std::cout << "min_time = " << root_infos[tp].min_time << std::endl;
594 
595     std::cout << std::setprecision(root_infos[tp].max_digits10 ) << "Roots = ";
596     std::copy(root_infos[tp].full_results.begin(), root_infos[tp].full_results.end(), std::ostream_iterator<cpp_bin_float_100>(std::cout, " "));
597     std::cout << std::endl;
598 
599     // Header row.
600     std::cout << "Algorithm         " << "Iterations  " << "Times  " << "Norm_times  " << "Distance" << std::endl;
601 
602     // Row for all algorithms.
603     for (unsigned algo = 0; algo != algo_names.size(); algo++)
604     {
605       std::cout
606         << std::left << std::setw(20) << algo_names[algo] << "  "
607         << std::setw(8) << std::setprecision(2) << root_infos[tp].iterations[algo] << "  "
608         << std::setw(8) << std::setprecision(5) << root_infos[tp].times[algo] << " "
609         << std::setw(8) << std::setprecision(3) << root_infos[tp].normed_times[algo] << " "
610         << std::setw(8) << std::setprecision(2) << root_infos[tp].distances[algo]
611         << std::endl;
612     } // for algo
613   } // for tp
614 
615   // Print info as Quickbook table.
616 #if 0
617   fout << "[table:cbrt_5  Info for float, double, long double and cpp_bin_float_50\n"
618     << "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header.
619 
620   for (size_t tp = 0; tp != root_infos.size(); tp++)
621   { // For all types:
622     fout << "["
623      <<  "[" << root_infos[tp].short_typename << "]"
624       << "[" << root_infos[tp].max_digits10 << "]"  // max_digits10
625       << "["  << root_infos[tp].bin_digits << "]"// < "Binary digits
626       << "["  << root_infos[tp].get_digits << "]]\n"; // Accuracy digits.
627   } // tp
628   fout << "] [/table cbrt_5] \n" << std::endl;
629 #endif
630   // Prepare Quickbook table of floating-point types.
631   fout << "[table:cbrt_4 Cube root(28) for float, double, long double and cpp_bin_float_50\n"
632     << "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n"
633     << "[[Algorithm]";
634   for (size_t tp = 0; tp != root_infos.size(); tp++)
635   { // For all types:
636     fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]";
637   }
638   fout << "]" << std::endl;
639 
640   // Row for all algorithms.
641   for (size_t algo = 0; algo != algo_names.size(); algo++)
642   {
643     fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]";
644     for (size_t tp = 0; tp != root_infos.size(); tp++)
645     { // For all types:
646 
647        fout
648           << "[" << std::right << std::showpoint
649           << std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "]["
650           << std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "][";
651        if(fabs(root_infos[tp].normed_times[algo]) <= 1.05)
652           fout << "[role blue " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]";
653        else if(fabs(root_infos[tp].normed_times[algo]) > 4)
654           fout << "[role red " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]";
655        else
656           fout << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo];
657        fout
658         << "]["
659         << std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]";
660     } // tp
661      fout <<"]" << std::endl;
662   } // for algo
663   fout << "] [/end of table cbrt_4]\n";
664 } // void table_root_info
665 
main()666 int main()
667 {
668   using namespace boost::multiprecision;
669   using namespace boost::math;
670 
671   try
672   {
673     std::cout << "Tests run with " << BOOST_COMPILER << ", "
674       << BOOST_STDLIB << ", " << BOOST_PLATFORM << ", ";
675 
676     if (fout.is_open())
677     {
678       std::cout << "\nOutput to " << filename << std::endl;
679     }
680     else
681     { // Failed to open.
682       std::cout << " Open file " << filename << " for output failed!" << std::endl;
683       std::cout << "error" << errno << std::endl;
684       return boost::exit_failure;
685     }
686 
687     fout <<
688       "[/""\n"
689       "Copyright 2015 Paul A. Bristow.""\n"
690       "Copyright 2015 John Maddock.""\n"
691       "Distributed under the Boost Software License, Version 1.0.""\n"
692       "(See accompanying file LICENSE_1_0.txt or copy at""\n"
693       "http://www.boost.org/LICENSE_1_0.txt).""\n"
694       "]""\n"
695       << std::endl;
696     std::string debug_or_optimize;
697 #ifdef _DEBUG
698 #if (_DEBUG == 0)
699     debug_or_optimize = "Compiled in debug mode.";
700 #else
701     debug_or_optimize = "Compiled in optimise mode.";
702 #endif
703 #endif
704 
705     // Print out the program/compiler/stdlib/platform names as a Quickbook comment:
706     fout << "\n[h5 Program " << short_file_name(sourcefilename) << ", "
707       << BOOST_COMPILER << ", "
708       << BOOST_STDLIB << ", "
709       << BOOST_PLATFORM << (sizeof(void*) == 8 ? ", x64" : ", x86")
710       << debug_or_optimize << "[br]"
711       << count << " evaluations of each of " << algo_names.size() << " root_finding algorithms."
712       << "]"
713       << std::endl;
714 
715     std::cout << count << " evaluations of root_finding." << std::endl;
716 
717     BOOST_MATH_CONTROL_FP;
718 
719     cpp_bin_float_100 full_value("28");
720 
721     cpp_bin_float_100 full_answer ("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");
722 
723     std::copy(max_digits10s.begin(), max_digits10s.end(), std::ostream_iterator<int>(std::cout, " "));
724     std::cout << std::endl;
725 
726     table_root_info(full_value, full_answer);
727 
728 
729     return boost::exit_success;
730   }
731   catch (std::exception const& ex)
732   {
733     std::cout << "exception thrown: " << ex.what() << std::endl;
734     return boost::exit_failure;
735   }
736 } // int main()
737 
738 /*
739 debug
740 
741 1>  float, maxdigits10 = 9
742 1>  6 algorithms used.
743 1>  Digits required = 24.0000000
744 1>  find root of 28.0000000, expected answer = 3.03658897
745 1>  Times 156 312 18750 4375 3437 3906
746 1>  Iterations: 0 0 8 6 4 5
747 1>  Distance: 0 0 -1 0 0 0
748 1>  Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
749 
750 release
751 
752 1>  float, maxdigits10 = 9
753 1>  6 algorithms used.
754 1>  Digits required = 24.0000000
755 1>  find root of 28.0000000, expected answer = 3.03658897
756 1>  Times 0 312 6875 937 937 937
757 1>  Iterations: 0 0 8 6 4 5
758 1>  Distance: 0 0 -1 0 0 0
759 1>  Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
760 
761 
762 1>
763 1>  5 algorithms used:
764 1>  10 algorithms used:
765 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
766 1>  2 types compared.
767 1>  Precision of full type = 102 decimal digits
768 1>  Find root of 28.000000000000000,
769 1>  Expected answer = 3.0365889718756625
770 1>  typeid(T).name()float, maxdigits10 = 9
771 1>  find root of 28.0000000, expected answer = 3.03658897
772 1>
773 1>  Iterations: 0 8 6 4 5
774 1>  Times 468 8437 4375 3593 4062
775 1>  Min Time 468
776 1>  Normalized Times 1.00 18.0 9.35 7.68 8.68
777 1>  Distance: 0 -1 0 0 0
778 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
779 1>  ==================================================================
780 1>  typeid(T).name()double, maxdigits10 = 17
781 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
782 1>
783 1>  Iterations: 0 11 7 5 6
784 1>  Times 312 15000 4531 3906 4375
785 1>  Min Time 312
786 1>  Normalized Times 1.00 48.1 14.5 12.5 14.0
787 1>  Distance: 1 2 0 0 0
788 1>  Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
789 1>  ==================================================================
790 
791 
792 Release
793 
794 1>  5 algorithms used:
795 1>  10 algorithms used:
796 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
797 1>  2 types compared.
798 1>  Precision of full type = 102 decimal digits
799 1>  Find root of 28.000000000000000,
800 1>  Expected answer = 3.0365889718756625
801 1>  typeid(T).name()float, maxdigits10 = 9
802 1>  find root of 28.0000000, expected answer = 3.03658897
803 1>
804 1>  Iterations: 0 8 6 4 5
805 1>  Times 312 781 937 937 937
806 1>  Min Time 312
807 1>  Normalized Times 1.00 2.50 3.00 3.00 3.00
808 1>  Distance: 0 -1 0 0 0
809 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
810 1>  ==================================================================
811 1>  typeid(T).name()double, maxdigits10 = 17
812 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
813 1>
814 1>  Iterations: 0 11 7 5 6
815 1>  Times 312 1093 937 937 937
816 1>  Min Time 312
817 1>  Normalized Times 1.00 3.50 3.00 3.00 3.00
818 1>  Distance: 1 2 0 0 0
819 1>  Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
820 1>  ==================================================================
821 
822 
823 
824 1>  5 algorithms used:
825 1>  15 algorithms used:
826 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
827 1>  3 types compared.
828 1>  Precision of full type = 102 decimal digits
829 1>  Find root of 28.00000000000000000000000000000000000000000000000000,
830 1>  Expected answer = 3.036588971875662519420809578505669635581453977248111
831 1>  typeid(T).name()float, maxdigits10 = 9
832 1>  find root of 28.0000000, expected answer = 3.03658897
833 1>
834 1>  Iterations: 0 8 6 4 5
835 1>  Times 156 781 937 1093 937
836 1>  Min Time 156
837 1>  Normalized Times 1.00 5.01 6.01 7.01 6.01
838 1>  Distance: 0 -1 0 0 0
839 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
840 1>  ==================================================================
841 1>  typeid(T).name()double, maxdigits10 = 17
842 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
843 1>
844 1>  Iterations: 0 11 7 5 6
845 1>  Times 312 1093 937 937 937
846 1>  Min Time 312
847 1>  Normalized Times 1.00 3.50 3.00 3.00 3.00
848 1>  Distance: 1 2 0 0 0
849 1>  Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
850 1>  ==================================================================
851 1>  typeid(T).name()class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,0>, maxdigits10 = 52
852 1>  find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111
853 1>
854 1>  Iterations: 0 13 9 6 7
855 1>  Times 8750 177343 30312 52968 58125
856 1>  Min Time 8750
857 1>  Normalized Times 1.00 20.3 3.46 6.05 6.64
858 1>  Distance: 0 0 -1 0 0
859 1>  Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106
860 1>  ==================================================================
861 
862 Reduce accuracy required to 0.5
863 
864 1>  5 algorithms used:
865 1>  15 algorithms used:
866 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder
867 1>  3 floating_point types compared.
868 1>  Precision of full type = 102 decimal digits
869 1>  Find root of 28.00000000000000000000000000000000000000000000000000,
870 1>  Expected answer = 3.036588971875662519420809578505669635581453977248111
871 1>  typeid(T).name() = float, maxdigits10 = 9
872 1>  Digits accuracy fraction required = 0.500000000
873 1>  find root of 28.0000000, expected answer = 3.03658897
874 1>
875 1>  Iterations: 0 8 5 3 4
876 1>  Times 156 5937 1406 1250 1250
877 1>  Min Time 156
878 1>  Normalized Times 1.0 38. 9.0 8.0 8.0
879 1>  Distance: 0 -1 0 0 0
880 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
881 1>  ==================================================================
882 1>  typeid(T).name() = double, maxdigits10 = 17
883 1>  Digits accuracy fraction required = 0.50000000000000000
884 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
885 1>
886 1>  Iterations: 0 8 6 4 5
887 1>  Times 156 6250 1406 1406 1250
888 1>  Min Time 156
889 1>  Normalized Times 1.0 40. 9.0 9.0 8.0
890 1>  Distance: 1 3695766 0 0 0
891 1>  Roots: 3.0365889718756622 3.0365889702344129 3.0365889718756627 3.0365889718756627 3.0365889718756627
892 1>  ==================================================================
893 1>  typeid(T).name() = class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,0>, maxdigits10 = 52
894 1>  Digits accuracy fraction required = 0.5000000000000000000000000000000000000000000000000000
895 1>  find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111
896 1>
897 1>  Iterations: 0 11 8 5 6
898 1>  Times 11562 239843 34843 47500 47812
899 1>  Min Time 11562
900 1>  Normalized Times 1.0 21. 3.0 4.1 4.1
901 1>  Distance: 0 0 -1 0 0
902 1>  Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106
903 1>  ==================================================================
904 
905 
906 
907 */
908