/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/ |
D | instance_norm_impl.cu | 63 … float *dgamma, float *dbeta, const float *ws_dgamma, const float *ws_dbeta) { in ComputeMeanKernel() argument 77 dbeta[cur_local_index] = tmp; in ComputeMeanKernel() 83 float *dgamma, float *dbeta, const float *ws_dgamma, const float *ws_dbeta, in ComputeMean() argument 87 thread_num, N, C, dgamma, dbeta, ws_dgamma, ws_dbeta); in ComputeMean()
|
D | instance_norm_impl.cuh | 25 void ComputeMean(const size_t N, const size_t C, float *dgamma, float *dbeta, const float *ws_dgamm…
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp32_grad/ |
D | layernorm_grad.c | 31 float dbeta = 0.0f; in LayerNormGrad() local 35 dbeta += dy[j]; in LayerNormGrad() 38 db[i] = dbeta; in LayerNormGrad()
|
/third_party/mindspore/mindspore/_extends/graph_kernel/expanders/ |
D | batchnorm_grad.py | 51 …dbeta = graph_builder.emit('ReduceSum', [input_dy], attrs={'reduce_axis': reduce_axis, 'keep_dims'… 80 tmp_b = graph_builder.emit('Mul', [num_rec_v, dbeta]) 103 dbeta.data_format = self.outputs[2]['format'] 105 return dx, dgamma, dbeta
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp16_grad/ |
D | layernorm_grad.c | 28 float dbeta = 0.0f; in LayerNormFp16Grad() local 32 dbeta += dy[j]; in LayerNormFp16Grad() 35 db[i] = (float16_t)dbeta; in LayerNormFp16Grad()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/ |
D | layer_norm_grad_cpu_kernel.cc | 99 T dbeta = (T)0.0; in LaunchKernel() local 103 dbeta += dy[j]; in LaunchKernel() 106 db[param_index] = dbeta; in LaunchKernel()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/nn/ |
D | instance_norm_grad_gpu_kernel.h | 73 auto dbeta = GetDeviceAddress<float>(outputs, 2); in Launch() local 99 … ComputeMean(N, C, dgamma, dbeta, ws_dgamma, ws_dbeta, reinterpret_cast<cudaStream_t>(stream_ptr)); in Launch()
|
/third_party/boost/boost/geometry/formulas/ |
D | sjoberg_intersection.hpp | 898 CT const dbeta = (lon1_minus_lon2 + lon1_diff - lon2_diff) / dbeta_denom; in newton_method() local 900 CT const abs_dbeta = math::abs(dbeta); in newton_method() 909 if (math::equals(dbeta, c0)) in newton_method() 916 beta = beta - dbeta; in newton_method() 1111 CT const dbeta = beta_new - beta; in converge_07_update() local 1115 return math::equals(dbeta, c0); in converge_07_update()
|
/third_party/mindspore/tests/vm_impl/ |
D | vm_me.py | 139 dbeta = np.sum(dout, axis=0) 140 return dx, dgamma, dbeta 149 dx, dgamma, dbeta = _batch_norm_grad(dy, x, scale, save_mean, save_inv_variance) 152 return dx, dgamma, dbeta
|
/third_party/boost/libs/math/doc/distributions/ |
D | nc_f.qbk | 94 package] and its pbeta and dbeta functions.
|
/third_party/mindspore/mindspore/ops/_grad/ |
D | grad_nn_ops.py | 696 dbeta = out[2] 697 return dx, dgamma, dbeta, zeros_like(mean), zeros_like(variance)
|
/third_party/boost/libs/math/reporting/performance/ |
D | test_distributions.cpp | 622 …beta.run_timed_tests([](const std::vector<double>& v, double x) { return dbeta(x, v[0], v[1], 0);… in main()
|