• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section:nc_f_dist Noncentral F Distribution]
2
3``#include <boost/math/distributions/non_central_f.hpp>``
4
5   namespace boost{ namespace math{
6
7   template <class RealType = double,
8             class ``__Policy``   = ``__policy_class`` >
9   class non_central_f_distribution;
10
11   typedef non_central_f_distribution<> non_central_f;
12
13   template <class RealType, class ``__Policy``>
14   class non_central_f_distribution
15   {
16   public:
17      typedef RealType  value_type;
18      typedef Policy    policy_type;
19
20      // Constructor:
21      non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
22
23      // Accessor to degrees_of_freedom parameters v1 & v2:
24      RealType degrees_of_freedom1()const;
25      RealType degrees_of_freedom2()const;
26
27      // Accessor to non-centrality parameter lambda:
28      RealType non_centrality()const;
29   };
30
31   }} // namespaces
32
33The noncentral F distribution is a generalization of the __F_distrib.
34It is defined as the ratio
35
36[expression F = (X/v1) / (Y/v2)]
37
38where X is a noncentral [chi][super 2]
39random variable with /v1/ degrees of freedom and non-centrality parameter [lambda],
40and Y is a central [chi][super 2] random variable with /v2/ degrees of freedom.
41
42This gives the following PDF:
43
44[equation nc_f_ref1]
45
46where ['L[sub a][super b](c)] is a generalised Laguerre polynomial and ['B(a,b)] is the
47__beta function, or
48
49[equation nc_f_ref2]
50
51The following graph illustrates how the distribution changes
52for different values of [lambda]:
53
54[graph nc_f_pdf]
55
56[h4 Member Functions]
57
58      non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
59
60Constructs a non-central beta distribution with parameters /v1/ and /v2/
61and non-centrality parameter /lambda/.
62
63Requires /v1/ > 0, /v2/ > 0 and lambda >= 0, otherwise calls __domain_error.
64
65      RealType degrees_of_freedom1()const;
66
67Returns the parameter /v1/ from which this object was constructed.
68
69      RealType degrees_of_freedom2()const;
70
71Returns the parameter /v2/ from which this object was constructed.
72
73      RealType non_centrality()const;
74
75Returns the non-centrality parameter /lambda/ from which this object was constructed.
76
77[h4 Non-member Accessors]
78
79All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions]
80that are generic to all distributions are supported: __usual_accessors.
81
82The domain of the random variable is \[0, +[infin]\].
83
84[h4 Accuracy]
85
86This distribution is implemented in terms of the
87__non_central_beta_distrib: refer to that distribution for accuracy data.
88
89[h4 Tests]
90
91Since this distribution is implemented by adapting another distribution,
92the tests consist of basic sanity checks computed by the
93[@http://www.r-project.org/ R-2.5.1 Math library statistical
94package] and its pbeta and dbeta functions.
95
96[h4 Implementation]
97
98In the following table /v1/ and /v2/ are the first and second
99degrees of freedom parameters of the distribution, [lambda]
100is the non-centrality parameter,
101/x/ is the random variate, /p/ is the probability, and /q = 1-p/.
102
103[table
104[[Function][Implementation Notes]]
105[[pdf][Implemented in terms of the non-central beta PDF using the relation:
106
107[role serif_italic f(x;v1,v2;[lambda]) = (v1\/v2) / ((1+y)*(1+y)) * g(y\/(1+y);v1\/2,v2\/2;[lambda])]
108
109where [role serif_italic g(x; a, b; [lambda])] is the non central beta PDF, and:
110
111[role serif_italic y = x * v1 \/ v2]
112]]
113[[cdf][Using the relation:
114
115[role serif_italic p = B[sub y](v1\/2, v2\/2; [lambda])]
116
117where [role serif_italic B[sub x](a, b; [lambda])] is the noncentral beta distribution CDF and
118
119[role serif_italic y = x * v1 \/ v2]
120
121]]
122
123[[cdf complement][Using the relation:
124
125[role serif_italic q = 1 - B[sub y](v1\/2, v2\/2; [lambda])]
126
127where [role serif_italic 1 - B[sub x](a, b; [lambda])] is the complement of the
128noncentral beta distribution CDF and
129
130[role serif_italic y = x * v1 \/ v2]
131
132]]
133[[quantile][Using the relation:
134
135[role serif_italic x = (bx \/ (1-bx)) * (v1 \/ v2)]
136
137where
138
139[role serif_italic bx = Q[sub p][super -1](v1\/2, v2\/2; [lambda])]
140
141and
142
143[role serif_italic Q[sub p][super -1](v1\/2, v2\/2; [lambda])]
144
145is the noncentral beta quantile.
146
147]]
148[[quantile
149
150from the complement][
151Using the relation:
152
153[role serif_italic x = (bx \/ (1-bx)) * (v1 \/ v2)]
154
155where
156
157[role serif_italic bx = QC[sub q][super -1](v1\/2, v2\/2; [lambda])]
158
159and
160
161[role serif_italic QC[sub q][super -1](v1\/2, v2\/2; [lambda])]
162
163is the noncentral beta quantile from the complement.]]
164[[mean][[role serif_italic v2 * (v1 + l) \/ (v1 * (v2 - 2))]]]
165[[mode][By numeric maximalisation of the PDF.]]
166[[variance][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
167    Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.]  ]]
168[[skewness][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
169    Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
170    and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
171    Mathematica documentation]  ]]
172[[kurtosis and kurtosis excess]
173    [Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
174    Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
175    and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
176    Mathematica documentation]  ]]
177]
178
179Some analytic properties of noncentral distributions
180(particularly unimodality, and monotonicity of their modes)
181are surveyed and summarized by:
182
183Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
184
185[endsect] [/section:nc_f_dist]
186
187[/ nc_f.qbk
188  Copyright 2008 John Maddock and Paul A. Bristow.
189  Distributed under the Boost Software License, Version 1.0.
190  (See accompanying file LICENSE_1_0.txt or copy at
191  http://www.boost.org/LICENSE_1_0.txt).
192]
193
194