/third_party/mindspore/mindspore/nn/wrap/ |
D | grad_reducer.py | 83 def _tensors_allreduce(degree, mean, allgather, allreduce, allreduce_filter, grad): argument 99 grad = allreduce(grad) 101 grad = F.tensor_mul(grad, F.cast(degree, F.dtype(grad))) 102 return grad 103 return grad 107 def _tensors_allreduce_post(degree, mean, allreduce_filter, grad): argument 124 grad = F.tensor_mul(grad, F.cast(degree, F.dtype(grad))) 125 return grad 126 return grad 130 def _tensors_allreduce_ps(degree, mean, allgather, allreduce, allreduce_filter, grad, ps_parameter): argument [all …]
|
D | loss_scale.py | 33 def tensor_grad_scale(scale, grad): argument 34 return grad * F.cast(reciprocal(scale), F.dtype(grad)) 38 def tensor_grad_scale_row_tensor(scale, grad): argument 39 return RowTensor(grad.indices, 40 grad.values * F.cast(reciprocal(scale), F.dtype(grad.values)), 41 grad.dense_shape) 48 def _tensor_grad_overflow(grad): argument 49 return grad_overflow(grad) 53 def _tensor_grad_overflow_row_tensor(grad): argument 54 return grad_overflow(grad.values) [all …]
|
/third_party/mindspore/tests/ut/python/optimizer/ |
D | test_bprop_mindir.py | 53 self.grad = ops.GradOperation(get_all=True) 57 gout = self.grad(self.network)(*inputs) 70 grad = GradNet(relu) 71 grad.compile(x) 90 grad = GradNet(relu) 91 grad.compile(x) 97 grad = GradNet(identity) 98 grad.compile(x) 104 grad = GradNet(range_net) 105 grad.compile(x) [all …]
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/ |
D | gather_grad.cu | 23 __global__ void GatherGradKernel(const size_t num, const T *index, const S *grad, S *output, in GatherGradKernel() argument 41 MsAtomicAdd(output + read_id, grad[id]); in GatherGradKernel() 56 void GatherGrad(const T *index, const S *grad, S *output, const size_t dim_before_axis, in GatherGrad() argument 63 GatherGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, stream>>>(size, index, grad, output, in GatherGrad() 69 template void GatherGrad<int, double>(const int *index, const double *grad, double *output, 73 template void GatherGrad<int64_t, double>(const int64_t *index, const double *grad, double *output, 77 template void GatherGrad<int, float>(const int *index, const float *grad, float *output, 81 template void GatherGrad<int64_t, float>(const int64_t *index, const float *grad, float *output, 85 template void GatherGrad<int, half>(const int *index, const half *grad, half *output, 89 template void GatherGrad<int64_t, half>(const int64_t *index, const half *grad, half *output, [all …]
|
D | sparse_cross_entropy_cuda_impl.cu | 42 float *grad) { in CalCrossEntropyGradKernel() argument 46 grad[i * class_num + j] = (logits[i * class_num + j] - 1) / batch_size; in CalCrossEntropyGradKernel() 48 grad[i * class_num + j] = logits[i * class_num + j] / batch_size; in CalCrossEntropyGradKernel() 63 …EntropyGrad(const float *logits, T *labels, const int batch_size, const int class_num, float *grad, in CalCrossEntropyGrad() argument 66 … class_num, grad); in CalCrossEntropyGrad() 75 float *grad, cudaStream_t cuda_stream); 77 … const int class_num, float *grad, cudaStream_t cuda_stream);
|
/third_party/mindspore/tests/st/gradient/ |
D | test_jvp_graph.py | 22 from mindspore.nn.grad import Jvp 56 primal, grad = Jvp(net)(x, v) 58 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) 70 primal, grad = Jvp(net)(x, v) 72 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) 86 primal, grad = Jvp(net)(x, v) 91 assert isinstance(grad, tuple) 92 assert len(grad) == 2 93 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) 94 assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy()) [all …]
|
D | test_jvp_pynative.py | 22 from mindspore.nn.grad import Jvp 55 primal, grad = Jvp(net)(x, v) 57 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) 69 primal, grad = Jvp(net)(x, v) 71 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) 85 primal, grad = Jvp(net)(x, v) 90 assert isinstance(grad, tuple) 91 assert len(grad) == 2 92 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) 93 assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy()) [all …]
|
D | test_vjp_pynative.py | 21 from mindspore.nn.grad import Vjp 45 primal, grad = Vjp(net)(x, v) 47 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) 63 primal, grad = Vjp(net)(x, y, (v, v)) 68 assert isinstance(grad, tuple) 69 assert len(grad) == 2 70 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) 71 assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy())
|
D | test_vjp_graph.py | 21 from mindspore.nn.grad import Vjp 45 primal, grad = Vjp(net)(x, v) 47 assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) 63 primal, grad = Vjp(net)(x, y, (v, v)) 68 assert isinstance(grad, tuple) 69 assert len(grad) == 2 70 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) 71 assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy())
|
/third_party/skia/tests/ |
D | ShaderOpacityTest.cpp | 61 auto grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() local 62 REPORTER_ASSERT(reporter, grad); in test_gradient() 63 REPORTER_ASSERT(reporter, grad->isOpaque()); in test_gradient() 68 grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() 69 REPORTER_ASSERT(reporter, grad); in test_gradient() 70 REPORTER_ASSERT(reporter, !grad->isOpaque()); in test_gradient() 75 grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() 76 REPORTER_ASSERT(reporter, grad); in test_gradient() 77 REPORTER_ASSERT(reporter, !grad->isOpaque()); in test_gradient() 82 grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() [all …]
|
/third_party/flutter/skia/tests/ |
D | ShaderOpacityTest.cpp | 58 auto grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() local 59 REPORTER_ASSERT(reporter, grad); in test_gradient() 60 REPORTER_ASSERT(reporter, grad->isOpaque()); in test_gradient() 65 grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() 66 REPORTER_ASSERT(reporter, grad); in test_gradient() 67 REPORTER_ASSERT(reporter, !grad->isOpaque()); in test_gradient() 72 grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() 73 REPORTER_ASSERT(reporter, grad); in test_gradient() 74 REPORTER_ASSERT(reporter, !grad->isOpaque()); in test_gradient() 79 grad = SkGradientShader::MakeLinear(pts, colors, pos, count, mode); in test_gradient() [all …]
|
/third_party/mindspore/tests/st/auto_monad/ |
D | test_effect_optimizer.py | 34 def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad): argument 36 beta2_power, lr, beta1, beta2, epsilon, grad) 56 grad = Tensor(np.random.rand(3, 3, 3).astype(np.float32)) 58 beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad) 71 def construct(self, beta1_power, lr, beta1, beta2, epsilon, grad): argument 73 beta1_power, lr, beta1, beta2, epsilon, grad) 92 grad = Tensor(np.random.rand(3, 3).astype(np.float32)) 93 new_var, new_m, new_v = net(beta1_power, lr, beta1, beta2, epsilon, grad) 106 def construct(self, lr, rho, epsilon, grad): argument 108 self.accum_update, lr, rho, epsilon, grad) [all …]
|
/third_party/mindspore/tests/st/high_grad/ |
D | test_highgrad_train.py | 30 def __init__(self, grad, network, wrt_params=False, real_inputs_count=None): argument 33 self.grad = grad 34 self.sens_param = self.grad.sens_param 43 return self.grad(self.network, self.params)(*inputs) 44 return self.grad(self.network)(*inputs) 49 return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs) 50 return self.grad(self.network)(*real_inputs, sense_param_inputs) 59 super().__init__(grad=GradOperation(sens_param=sens_param), 82 def __init__(self, grad, loss): argument 84 self.grad = grad [all …]
|
/third_party/mindspore/mindspore/ops/_grad_experimental/ |
D | grad_nn_ops.py | 31 … grad = ctc_loss_grad(dout[1], log_probs, targets, input_lengths, target_lengths, out[0], out[1]) 32 grad = transpose(grad, (1, 0, 2)) 33 return grad, zeros_like(targets), zeros_like(input_lengths), zeros_like(target_lengths) 41 grad = G.SoftMarginLossGrad(reduction=self.reduction) 44 dx = grad(predict, label, dout) 45 dy = grad(label, predict, dout) 66 grad = G.HShrinkGrad(self.lambd) 69 dx = grad(gradients, features)
|
/third_party/mindspore/tests/st/pynative/dynamic_shape/ |
D | test_pynative_control_flow.py | 32 self.grad = P.GradOperation(get_all=True, get_by_list=True, sens_param=sens) 37 out = self.grad(self.net, self.params)(*x) 89 grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32)) 90 out_good.backward(gradient=grad) 92 assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01) 93 assert np.allclose(comparenet.weight.grad.numpy(), backout[1][0].asnumpy(), 0.01, 0.01) 101 torch_input.grad.zero_() 103 grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32)) 104 out_good.backward(gradient=grad) 106 assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01) [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_gather_grad_op.py | 44 grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], 50 output = grad_net(x, index, grad) 63 grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], 69 output = grad_net(x, index, grad) 82 grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], 88 output = grad_net(x, index, grad) 101 grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], 107 output = grad_net(x, index, grad) 120 grad = Tensor(np.array([[0.9031, 0.0890, 0.2779, 0.3198, 0.5710], 124 output = G.GatherDGrad(dim, x_shape)(index, grad) [all …]
|
D | test_sparse_apply_proximal_adagrad_op.py | 36 def construct(self, grad, indices): argument 37 … self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices) 40 def add_testcase(var, accum, lr, l1, l2, grad, indices): argument 42 return net(grad, indices) 53 grad = Tensor(np.ones(9).reshape(3, 3).astype(np.float32) * 8) 55 output1, output2 = add_testcase(var, accum, lr, l1, l2, grad, indices) 74 grad = Tensor(np.ones(9).reshape(3, 3).astype(np.float32) * 8) 77 net(grad, indices) 96 grad = Tensor(np.ones(9).reshape(3, 3).astype(np.float32) * 8) 98 output1, output2 = add_testcase(var, accum, lr, l1, l2, grad, indices) [all …]
|
/third_party/mindspore/tests/mindspore_test_framework/utils/ |
D | bprop_util.py | 37 self.grad = grad_op 47 return self.grad(self.func, self.params)(*inputs, self.sens) 49 return self.grad(self.func, self.params)(*inputs) 51 return self.grad(self.func)(*inputs, self.sens) 53 return self.grad(self.func)(*inputs) 89 grad = Bprop(func, wrt_params, params, grad_op, grads_wrt_outputs) 95 return grad(*inputs) 100 return grad(*inputs)
|
/third_party/mindspore/mindspore/ccsrc/transform/graph_ir/op_declare/ |
D | nn_training_ops_declare.cc | 22 …{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(lr)}, {4, INPUT_DESC(grad)}, {5, INPU… 45 {10, INPUT_DESC(grad)}}; 54 {10, INPUT_DESC(grad)}}; 65 …radD) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(lr)}, {4, INPUT_DESC(grad)}}; 72 …dV2D) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(lr)}, {4, INPUT_DESC(grad)}}; 82 {7, INPUT_DESC(grad)}}; 89 {1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(grad)}, {4, INPUT_DESC(indices)}}; 107 {7, INPUT_DESC(grad)}}; 115 … {7, INPUT_DESC(beta2)}, {8, INPUT_DESC(epsilon)}, {9, INPUT_DESC(grad)}}; 129 {7, INPUT_DESC(grad)}}; [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_gather_d_grad_op.py | 41 self.grad = GradOperation(get_all=True, sens_param=True) 46 return self.grad(self.network)(inputx, index, output_grad) 59 grad = NetGatherDGrad(gatherd) 61 output_grad = grad(Tensor(x), Tensor(index), Tensor(dout)) 77 grad = NetGatherDGrad(gatherd) 79 output_grad = grad(Tensor(x), Tensor(index), Tensor(dout)) 95 grad = NetGatherDGrad(gatherd) 97 output_grad = grad(Tensor(x), Tensor(index), Tensor(dout)) 113 grad = NetGatherDGrad(gatherd) 115 output = grad(Tensor(x), Tensor(index), Tensor(dout))
|
D | test_softplus_grad_op.py | 40 self.grad = C.GradOperation(get_all=True, sens_param=True) 44 gout = self.grad(self.network)(input_data, sens) 60 grad = Grad(net) 62 output = grad(x_ms, dy_ms) 75 grad = Grad(net) 76 output = grad(Tensor(x_np), Tensor(dy_np)) 89 grad = Grad(net) 90 output = grad(Tensor(x_np), Tensor(dy_np))
|
/third_party/mindspore/tests/ut/python/ops/ |
D | test_dynamic_shape.py | 36 def construct(self, grad, indices): argument 37 … self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices) 49 def construct(self, grad, inp): argument 52 new_grad = self.cast(new_grad, mstype.float32) + grad 56 grad = Tensor(np.random.rand(1, 80).astype(np.float32)) 58 net(grad, indices) 70 def construct(self, grad, indices): argument 71 out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) 83 def construct(self, grad, inp): argument 86 new_grad = self.cast(new_grad, mstype.float32) + grad [all …]
|
/third_party/mindspore/tests/ut/python/pynative_mode/ |
D | test_graph_param_cases.py | 32 def __init__(self, grad, network, wrt_params=False, real_inputs_count=None): argument 35 self.grad = grad 36 self.sens_param = self.grad.sens_param 45 return self.grad(self.network, self.params)(*inputs) 48 return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs) 51 return self.grad(self.network)(*inputs) 54 return self.grad(self.network)(*real_inputs, sense_param_inputs) 63 super().__init__(grad=C.GradOperation(sens_param=sens_param), 73 super().__init__(grad=C.GradOperation(get_all=True, sens_param=sens_param),
|
/third_party/boost/libs/yap/example/ |
D | autodiff_example.cpp | 305 vector<double> grad; in BOOST_AUTO_TEST_CASE() local 306 double val1 = grad_reverse(root,list,grad); in BOOST_AUTO_TEST_CASE() 311 CHECK_CLOSE(grad[i],x1g[i]); in BOOST_AUTO_TEST_CASE() 334 vector<double> grad; in BOOST_AUTO_TEST_CASE() local 335 grad_reverse(root,nodes,grad); in BOOST_AUTO_TEST_CASE() 339 CHECK_CLOSE(grad[0],x1g); in BOOST_AUTO_TEST_CASE() 354 vector<double> grad; in BOOST_AUTO_TEST_CASE() local 355 double val = grad_reverse(x1,nodes,grad); in BOOST_AUTO_TEST_CASE() 356 CHECK_CLOSE(grad[0],1); in BOOST_AUTO_TEST_CASE() 365 grad.clear(); in BOOST_AUTO_TEST_CASE() [all …]
|
/third_party/mindspore/tests/st/pynative/ms_function/ |
D | test_pynative_ms_function.py | 49 grad = P.GradOperation(get_all=True, get_by_list=True, sens_param=False) 50 out_grad = grad(ConvBnReLU)(inputs) 82 grad = P.GradOperation(get_all=True, get_by_list=True, sens_param=False) 84 grad_first = grad(net, ParameterTuple(net.trainable_params()))(inputs) 90 grad_second = grad(net, ParameterTuple(net.trainable_params()))(inputs) 139 grad = P.GradOperation(get_all=True, get_by_list=True, sens_param=False) 141 grad_first = grad(net, ParameterTuple(net.trainable_params()))(inputs) 148 grad_second = grad(net, ParameterTuple(net.trainable_params()))(inputs) 194 grad = P.GradOperation(get_all=True, get_by_list=True, sens_param=False) 196 grad_first = grad(net, ParameterTuple(net.trainable_params()))(inputs) [all …]
|