/third_party/mindspore/tests/ut/python/parallel/ |
D | test_comparison_function_info.py | 60 self.matmul = P.MatMul().shard(strategy1) 64 out = self.matmul(x, y) 83 self.matmul = P.MatMul().shard(strategy1) 87 out = self.matmul(x, y) 106 self.matmul = P.MatMul().shard(strategy1) 110 out = self.matmul(x, y) 130 self.matmul = P.MatMul().shard(strategy1) 134 out = self.matmul(x, y) 154 self.matmul = P.MatMul().shard(strategy1) 158 out = self.matmul(x, y) [all …]
|
D | test_element_wise_function.py | 60 self.matmul = P.MatMul().shard(strategy1) 65 out = self.matmul(x, y) 86 self.matmul = P.MatMul().shard(strategy1) 91 out = self.matmul(x, y) 112 self.matmul = P.MatMul().shard(strategy1) 117 out = self.matmul(x, y) 137 self.matmul = P.MatMul().shard(strategy1) 142 out = self.matmul(x, y) 162 self.matmul = P.MatMul().shard(strategy1) 167 out = self.matmul(x, y) [all …]
|
D | test_arithmetic.py | 59 self.matmul = P.MatMul().shard(strategy1) 63 out = self.matmul(x, y) 83 self.matmul = P.MatMul().shard(strategy1) 87 out = self.matmul(x, y) 107 self.matmul = P.MatMul().shard(strategy1) 111 out = self.matmul(x, y) 130 self.matmul = P.MatMul().shard(strategy1) 134 out = self.matmul(x, y) 153 self.matmul = P.MatMul().shard(strategy1) 157 out = self.matmul(x, y) [all …]
|
D | test_auto_parallel_four_matmul.py | 91 self.matmul = P.MatMul() 94 out = self.matmul(x, y) 95 out = self.matmul(out, z) 96 out = self.matmul(out, w) 97 out = self.matmul(out, b) 117 self.matmul = P.MatMul() 120 out = self.matmul(x, y) 122 out = self.matmul(out, w)
|
D | test_loss_and_optimizer.py | 49 self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) 53 out = self.matmul(x, self.weight) 83 self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) 87 out = self.matmul(x, self.weight) 117 self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) 121 out = self.matmul(x, self.weight) 152 self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) 156 out = self.matmul(x, self.weight) 188 self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) 192 out = self.matmul(x, self.weight)
|
D | test_auto_parallel_arithmetic.py | 64 self.matmul = P.MatMul() 68 out = self.matmul(x, y) 93 self.matmul = P.MatMul() 97 out = self.matmul(x, y) 122 self.matmul = P.MatMul() 126 out = self.matmul(x, y) 151 self.matmul = P.MatMul() 155 out = self.matmul(x, y)
|
D | test_softmax_cross_entropy_loss.py | 59 self.matmul = P.MatMul(transpose_b=True).shard(strategy1) 63 out = self.matmul(x, y) 84 self.matmul = P.MatMul(transpose_b=True).shard(strategy1) 88 out = self.matmul(x, y) 109 self.matmul = P.MatMul(transpose_b=True) 113 out = self.matmul(x, y)
|
D | test_neighborexchange.py | 50 self.matmul = P.MatMul() 58 out = self.matmul(x1, x2) 78 self.matmul = P.MatMul() 85 out = self.matmul(x1, x2) 171 self.matmul = P.MatMul() 178 out = self.matmul(x1, x2) 199 self.matmul = P.MatMul() 207 out = self.matmul(x1, x2) 228 self.matmul = P.MatMul() 236 out = self.matmul(x1, x2) [all …]
|
D | test_control_flow.py | 61 self.matmul = P.MatMul() 66 out = self.matmul(x, self.weight) 74 self.matmul = P.MatMul().shard(strategy1) 84 out = self.matmul(x, self.weight)
|
D | test_two_matmul.py | 134 self.matmul = P.MatMul().shard(strategy1) 135 self.matmul.add_prim_attr("forward_reduce_scatter", True) 139 out = self.matmul(x, y) 158 self.matmul = P.MatMul(transpose_b=True).shard(strategy1) 159 self.matmul.add_prim_attr("forward_reduce_scatter", True) 163 out = self.matmul(x, y)
|
D | test_optimizer_clone_weight.py | 48 self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) 52 out = self.matmul(x, self.weight) 83 self.matmul = P.MatMul(transpose_a=False, transpose_b=True).shard(strategy1) 87 out = self.matmul(x, self.weight)
|
D | test_auto_parallel_reshape.py | 56 self.matmul = P.MatMul() 61 out = self.matmul(out, self.matmul_weight) 104 self.matmul = P.MatMul() 110 out = self.matmul(out, self.matmul_weight) 130 self.matmul = P.MatMul() 137 out = self.matmul(out, self.matmul_weight) 159 self.matmul = P.MatMul() 164 out = self.matmul(out, self.matmul_weight) 185 self.matmul = P.MatMul() 192 out = self.matmul(out, w)
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/ |
D | matmul_biasadd_fusion.cc | 27 VectorRef matmul({matmul_var_, x0_, x1_}); in DefinePattern() local 28 VectorRef pattern({prim::kPrimBiasAdd, matmul, x2_}); in DefinePattern() 40 auto matmul = GetAnfNodeByVar(equiv, matmul_var_); in Process() local 41 if (matmul == nullptr || !matmul->isa<CNode>()) { in Process() 47 if (!IsStateEquivalent(node, matmul)) { in Process() 61 AnfAlgo::CopyNodeAttrs(matmul, new_node); in Process()
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_matmul_op.py | 29 self.matmul = P.MatMul() 32 return self.matmul(x, y) 39 self.matmul = P.MatMul() 44 return self.matmul(x, y) 50 self.matmul = C.matmul 53 return self.matmul(x, y) 67 expect1 = np.matmul(x1, y1) 73 expect2 = np.matmul(x2, y2) 88 expect = np.matmul(x, y) 105 expect = np.matmul(x, y) [all …]
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/ascend/buffer_fusion/ |
D | matmul_confusiontranspose_fusion_pass.cc | 31 auto matmul = cnode->input(kIndex1); in MatchMatmulConfusionTranpose() local 32 MS_EXCEPTION_IF_NULL(matmul); in MatchMatmulConfusionTranpose() 33 if (matmul->isa<CNode>() && (AnfAlgo::CheckPrimitiveType(matmul, prim::kPrimMatMul) || in MatchMatmulConfusionTranpose() 34 AnfAlgo::CheckPrimitiveType(matmul, prim::kPrimBatchMatMul))) { in MatchMatmulConfusionTranpose() 35 std::unordered_set<AnfNodePtr> record{cnode, matmul}; in MatchMatmulConfusionTranpose()
|
/third_party/mindspore/tests/st/ops/ascend/test_tbe_ops/ |
D | test_matmul.py | 27 self.matmul = P.MatMul() 31 return self.matmul(x1_, x2_) 40 matmul = Net() 41 output = matmul(Tensor(x1), Tensor(x2)) 47 matmul = Net() 48 output = matmul(Tensor(x1), Tensor(x2))
|
D | test_matmul_failed.py | 29 self.matmul = P.MatMul(transpose_b=True) 33 return self.matmul(x1_, x2_) 41 matmul = Net() 42 output = matmul(Tensor(x1), Tensor(x2))
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/graph_kernel/ |
D | insert_pad.cc | 105 std::tuple<bool, bool, bool> NeedPad(const CNodePtr &matmul, vec *pad_shape_a, vec *pad_shape_b, ve… in NeedPad() argument 107 auto mm_attrs = AnfAlgo::GetCNodePrimitive(matmul)->attrs(); in NeedPad() 114 auto shape_a = AnfAlgo::GetInputDeviceShape(matmul, 0); in NeedPad() 115 auto shape_b = AnfAlgo::GetInputDeviceShape(matmul, 1); in NeedPad() 133 SetNodeAttrSafely("Akg", MakeValue(false), matmul); in NeedPad() 136 SetNodeAttrSafely("Akg", MakeValue(true), matmul); in NeedPad() 149 void InsertPad(const CNodePtr &matmul, const FuncGraphPtr &func_graph, const FuncGraphManagerPtr &m… in InsertPad() argument 152 AnfNodePtrList pad_inp = {NewValueNode(opt::kPrimPadAkg), matmul->input(input_index)}; in InsertPad() 163 std::vector<TypeId> pad_type = {AnfAlgo::GetPrevNodeOutputInferDataType(matmul, 0)}; in InsertPad() 172 std::vector<std::string> input_formats = AnfAlgo::GetAllInputFormats(matmul); in InsertPad() [all …]
|
/third_party/mindspore/tests/syntax/simple_expression/ |
D | test_super.py | 31 self.matmul = P.MatMul() 35 out = self.matmul(x, y) 50 self.matmul = P.MatMul() 54 out = self.matmul(x, y) 69 self.matmul = P.MatMul() 73 out = self.matmul(x, y)
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/ascend/format_type/ |
D | dynamic_rnn_grad_reformat.cc | 37 auto matmul = CheckAnfNodeIfCNodeAndInputSize(split_v->input(1), kMatMulInputTensorNum); in Process() local 38 MS_EXCEPTION_IF_NULL(matmul); in Process() 39 auto input_node_with_idx = AnfAlgo::GetPrevNodeOutput(matmul, 0); in Process() 48 auto matmul_kernel_build_info = AnfAlgo::GetSelectKernelBuildInfo(matmul); in Process() 58 AnfAlgo::SetSelectKernelBuildInfo(matmul_new_builder->Build(), matmul.get()); in Process() 59 AnfAlgo::SetNodeAttr("insert_backend", MakeValue(true), matmul); in Process()
|
/third_party/mindspore/tests/st/ops/ascend/ |
D | test_matmul.py | 29 self.matmul = P.MatMul() 33 return self.matmul(x1_, x2_) 41 matmul = Net() 42 output = matmul(Tensor(x1), Tensor(x2))
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/gpu/ |
D | matmul_biasadd_fusion.cc | 77 const AnfNodePtr &matmul = AnfAlgo::GetInputNode(utils::cast<CNodePtr>(node), 0); in Process() local 78 MS_EXCEPTION_IF_NULL(matmul); in Process() 79 auto outlist = GetRealNodeUsedList(graph, matmul); in Process() 96 AnfAlgo::CopyNodeAttrs(matmul, fused_node); in Process()
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_sparse_tensor_dense_matmul_op.py | 30 self.matmul = nn.SparseTensorDenseMatmul(adjoint_st, adjoint_dt) 33 return self.matmul(indices, values, dens_shape, dense) 67 out_np = np.matmul(sparse_np, dense_np) 97 out_np = np.matmul(np.transpose(sparse_np, perm), dense_np) 127 out_np = np.matmul(sparse_np, np.transpose(dense_np, perm)) 157 out_np = np.matmul(np.transpose(sparse_np, perm), np.transpose(dense_np, perm))
|
/third_party/mindspore/tests/st/ops/graph_kernel/ |
D | test_matmul.py | 26 self.matmul = P.MatMul(transpose_a=True, transpose_b=True) 29 return self.matmul(x, y) 34 self.matmul = P.MatMul(transpose_a=True, transpose_b=True) 38 res = self.matmul(x, y)
|
/third_party/mindspore/mindspore/lite/src/ops/populate/ |
D | affine_populate.cc | 24 static void ReleaseParam(AffineParameter *affine, MatMulParameter *matmul) { in ReleaseParam() argument 28 if (matmul != nullptr) { in ReleaseParam() 29 free(matmul); in ReleaseParam()
|