/third_party/mindspore/tests/ut/python/parallel/ |
D | test_conv2d.py | 27 strategy1=None, strategy2=None): argument 31 self.neg = P.Neg().shard(strategy2) 62 strategy2 = ((8, 1, 1, 1),) 63 … out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) 70 strategy2 = ((8, 1, 1, 1),) 72 strategy1=strategy1, strategy2=strategy2) 80 strategy2 = ((8, 1, 1, 1),) 82 strategy1=strategy1, strategy2=strategy2) 89 strategy2 = ((8, 1, 1, 1),) 91 strategy1=strategy1, strategy2=strategy2) [all …]
|
D | test_maxpool_avgpool.py | 27 strategy1=None, strategy2=None): argument 32 … self.max_pool = P.MaxPool(kernel_size=pool_kernel_size, strides=pool_strides).shard(strategy2) 42 strategy1=None, strategy2=None): argument 47 … self.avg_pool = P.AvgPool(kernel_size=pool_kernel_size, strides=pool_strides).shard(strategy2) 73 strategy2 = ((8, 1, 1, 1),) 75 strategy1=strategy1, strategy2=strategy2) 82 strategy2 = ((2, 1, 2, 2),) 84 strategy1=strategy1, strategy2=strategy2) 91 strategy2 = ((2, 1, 2, 2),) 93 strategy1=strategy1, strategy2=strategy2) [all …]
|
D | test_conv2d_transpose.py | 27 strategy1=None, strategy2=None): argument 31 self.neg = P.Neg().shard(strategy2) 42 strategy1=None, strategy2=None): argument 46 self.neg = P.Neg().shard(strategy2) 75 strategy2 = ((8, 1, 1, 1),) 76 … out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) 83 strategy2 = ((8, 1, 1, 1),) 84 … out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) 91 strategy2 = ((2, 1, 1, 4),) 93 strategy1=strategy1, strategy2=strategy2) [all …]
|
D | test_layer_norm_further.py | 28 strategy1=None, strategy2=None, strategy3=None): argument 34 self.begin_norm_axis, self.begin_params_axis).shard(strategy2) 52 strategy1=None, strategy2=None, strategy3=None): argument 58 self.begin_norm_axis, self.begin_params_axis).shard(strategy2) 76 strategy1=None, strategy2=None, strategy3=None): argument 82 self.begin_norm_axis, self.begin_params_axis).shard(strategy2) 100 strategy1=None, strategy2=None, strategy3=None): argument 106 self.begin_norm_axis, self.begin_params_axis).shard(strategy2) 122 strategy1=None, strategy2=None, strategy3=None): argument 128 self.begin_norm_axis, self.begin_params_axis).shard(strategy2) [all …]
|
D | test_gathernd_further.py | 48 def __init__(self, w1_shape, indices_shape, strategy1=None, strategy2=None, strategy3=None): argument 53 self.gathernd = P.GatherNd().shard(strategy2) 64 def __init__(self, w1_shape, indices_shape, strategy1=None, strategy2=None, strategy3=None): argument 69 self.gathernd = P.GatherNd().shard(strategy2) 79 def __init__(self, w1_shape, indices_shape, strategy1=None, strategy2=None, strategy3=None): argument 84 self.gathernd = P.GatherNd().shard(strategy2) 116 strategy2 = ((1, 1, 1), (8, 1, 1, 1)) 118 net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3) 128 strategy2 = ((1, 1, 1), (8, 1, 1, 1)) 130 net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3) [all …]
|
D | test_batchnorm.py | 26 strategy1=None, strategy2=None): argument 32 self.bn.bn_train.shard(strategy2) 57 strategy2 = ((8, 1, 1, 1), (1,), (1,), (1,), (1,)) 58 … out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) 65 strategy2 = ((2, 1, 2, 2), (1,), (1,), (1,), (1,)) 66 … out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) 73 strategy2 = ((1, 8, 1, 1), (8,), (8,), (8,), (8,)) 74 … out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) 79 def __init__(self, strategy1=None, strategy2=None): argument 83 self.relu = P.ReLU().shard(strategy2) [all …]
|
D | test_reduce_method_info.py | 85 def __init__(self, strategy1, strategy2, strategy3): argument 88 self.reduce_sum = P.ReduceSum(keep_dims=False).shard(strategy2) 99 strategy2 = ((4, 1, 2),) 101 net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) 112 def __init__(self, strategy1, strategy2, strategy3): argument 115 self.reduce_sum = P.ReduceSum(keep_dims=False).shard(strategy2) 126 strategy2 = ((2, 4, 1, 1),) 128 net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) 139 def __init__(self, strategy1, strategy2, strategy3): argument 142 self.reduce_sum = P.ReduceSum(keep_dims=False).shard(strategy2) [all …]
|
D | test_manual_embedding_lookup.py | 35 strategy2=None, argument 46 self.mul = P.Mul().shard(strategy2) 81 strategy2 = ((1, 2, 1), (1, 2, 1)) 83 net = Net(strategy1, strategy2, strategy3) 90 strategy2 = ((1, 4, 1), (1, 4, 1)) 92 net = Net(strategy1, strategy2, strategy3, split_tuple=(10, 20, 30, 4), param_shape=(64, 8)) 99 strategy2 = ((1, 4, 8), (1, 4, 8)) 101 net = Net(strategy1, strategy2, strategy3, split_tuple=(10, 20, 30, 4), param_shape=(64, 8)) 108 strategy2 = ((1, 2, 1), (1, 2, 1)) 110 …net = Net(strategy1, strategy2, strategy3, split_string="manual_split_with_offset", split_tuple=((… [all …]
|
D | test_manual_gatherv2.py | 28 strategy2=None, argument 38 self.mul = P.Mul().shard(strategy2) 74 strategy2 = ((1, 2, 1), (1, 2, 1)) 76 net = Net(strategy1, strategy2, strategy3) 83 strategy2 = ((1, 4, 1), (1, 4, 1)) 85 net = Net(strategy1, strategy2, strategy3, split_tuple=(10, 20, 30, 4), param_shape=(64, 8)) 92 strategy2 = ((1, 4, 8), (1, 4, 8)) 94 net = Net(strategy1, strategy2, strategy3, split_tuple=(10, 20, 30, 4), param_shape=(64, 8)) 101 strategy2 = ((1, 2, 1), (1, 2, 1)) 103 …net = Net(strategy1, strategy2, strategy3, split_string="manual_split_with_offset", split_tuple=((… [all …]
|
D | test_print.py | 26 strategy1=None, strategy2=None): argument 32 self.bn.bn_train.shard(strategy2) 60 strategy2 = ((8, 1, 1, 1), (1,), (1,), (1,), (1,)) 61 … out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) 69 strategy2 = ((2, 1, 2, 2), (1,), (1,), (1,), (1,)) 70 … out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) 78 strategy2 = ((1, 8, 1, 1), (8,), (8,), (8,), (8,)) 79 … out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) 84 def __init__(self, strategy1=None, strategy2=None): argument 88 self.relu = P.ReLU().shard(strategy2) [all …]
|
D | test_comparison_function_info.py | 58 def __init__(self, strategy1, strategy2): argument 61 self.equal = P.Equal().shard(strategy2) 70 strategy2 = ((4, 2), (4, 2)) 71 net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) 81 def __init__(self, strategy1, strategy2): argument 84 self.notequal = P.NotEqual().shard(strategy2) 93 strategy2 = ((4, 2), (4, 2)) 94 net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) 104 def __init__(self, strategy1, strategy2): argument 107 self.approximateEqual = P.ApproximateEqual(tolerance=0.5).shard(strategy2) [all …]
|
D | test_stridedslice.py | 26 …def __init__(self, weight, w2, begin, end, strides, strategy1=None, strategy2=None, is_parameter=T… argument 29 self.strided_slice = P.StridedSlice(begin_mask=mask).shard(strategy2) 48 def __init__(self, weight2, begin, end, strides, strategy1=None, strategy2=None): argument 51 self.strided_slice = P.StridedSlice().shard(strategy2) 81 strategy2 = ((2, 2, 2),) 82 … net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2, is_parameter=True) 90 strategy2 = ((1, 2, 2),) 91 … net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 2), strategy1, strategy2, is_parameter=True) 99 strategy2 = ((1, 2, 2),) 100 …net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2, is_parameter=True, … [all …]
|
D | test_onehot.py | 57 def __init__(self, strategy1, strategy2): argument 60 self.gelu = P.GeLU().shard(strategy2) 68 def compile_graph(strategy1, strategy2, strategy3, strategy4, auto=False, onthot_axis=-1): argument 69 …net = GradWrap(_VirtualDatasetCell(NetWithLoss(Net(strategy1, strategy2), strategy3, strategy4, ax… 86 strategy2 = ((2, 8),) 89 compile_graph(strategy1, strategy2, strategy3, strategy4) 95 strategy2 = ((2, 8),) 98 compile_graph(strategy1, strategy2, strategy3, strategy4) 104 strategy2 = ((2, 8),) 108 compile_graph(strategy1, strategy2, strategy3, strategy4) [all …]
|
D | test_arithmetic.py | 57 def __init__(self, strategy1, strategy2): argument 60 self.sub = P.Sub().shard(strategy2) 70 strategy2 = ((4, 2), (4, 2)) 71 net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) 81 def __init__(self, strategy1, strategy2): argument 84 self.add = P.Add().shard(strategy2) 94 strategy2 = ((4, 2), (4, 2)) 95 net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) 105 def __init__(self, strategy1, strategy2): argument 108 self.mul = P.Mul().shard(strategy2) [all …]
|
D | test_unsortedsegmentsum.py | 35 def __init__(self, strategy1, strategy2, num_segments): argument 37 self.merge_op = P.UnsortedSegmentSum().shard((strategy1, strategy2)) 65 def compile_graph(x, y, segments, strategy1, strategy2, auto=False): argument 70 net = GradWrap(NetWithLoss(Net(strategy1, strategy2, segments))) 82 strategy2 = (8,) 83 compile_graph(x, y, num_segments, strategy1, strategy2) 92 strategy2 = (1,) 93 compile_graph(x, y, num_segments, strategy1, strategy2) 102 strategy2 = (4,) 103 compile_graph(x, y, num_segments, strategy1, strategy2) [all …]
|
D | test_unsortedsegmentmax.py | 35 def __init__(self, strategy1, strategy2, num_segments): argument 38 self.merge_op = P.UnsortedSegmentMax().shard((strategy1, strategy2)) 66 def compile_graph(x, y, segments, strategy1, strategy2, auto=False): argument 67 net = GradWrap(NetWithLoss(Net(strategy1, strategy2, segments))) 83 strategy2 = (8,) 84 compile_graph(x, y, num_segments, strategy1, strategy2) 93 strategy2 = (1,) 94 compile_graph(x, y, num_segments, strategy1, strategy2) 103 strategy2 = (4,) 104 compile_graph(x, y, num_segments, strategy1, strategy2) [all …]
|
D | test_tile.py | 25 def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True): argument 28 self.tile = P.Tile().shard(strategy2) 44 def __init__(self, weight2, strategy1=None, strategy2=None): argument 47 self.tile = P.Tile().shard(strategy2) 56 def __init__(self, weight, strategy1=None, strategy2=None, is_parameter=True): argument 59 self.tile = P.Tile().shard(strategy2) 92 strategy2 = ((2, 2, 2),) 93 net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) 100 strategy2 = ((2, 2, 1),) 101 net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) [all …]
|
D | test_unsortedsegmentmin.py | 35 def __init__(self, strategy1, strategy2, num_segments): argument 38 self.merge_op = P.UnsortedSegmentMin().shard((strategy1, strategy2)) 66 def compile_graph(x, y, segments, strategy1, strategy2, auto=False): argument 67 net = GradWrap(NetWithLoss(Net(strategy1, strategy2, segments))) 83 strategy2 = (8,) 84 compile_graph(x, y, num_segments, strategy1, strategy2) 93 strategy2 = (1,) 94 compile_graph(x, y, num_segments, strategy1, strategy2) 103 strategy2 = (4,) 104 compile_graph(x, y, num_segments, strategy1, strategy2) [all …]
|
D | test_o2_level.py | 48 …def __init__(self, weight, w2, begin, end, strides, strategy1=None, strategy2=None, is_parameter=T… argument 51 self.strided_slice = P.StridedSlice(begin_mask=mask).shard(strategy2) 71 def __init__(self, weight2, begin, end, strides, strategy1=None, strategy2=None): argument 74 self.strided_slice = P.StridedSlice().shard(strategy2) 107 strategy2 = ((2, 2, 2),) 109 strategy1, strategy2, is_parameter=True) 118 strategy2 = ((1, 2, 2),) 120 strategy1, strategy2, is_parameter=True) 129 strategy2 = ((1, 2, 2),) 131 strategy1, strategy2, is_parameter=True, mask=1) [all …]
|
D | test_element_wise_function.py | 58 def __init__(self, strategy1, strategy2): argument 61 self.pow = P.Pow().shard(strategy2) 72 strategy2 = ((4, 2), ()) 73 net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) 84 def __init__(self, strategy1, strategy2): argument 87 self.exp = P.Exp().shard(strategy2) 98 strategy2 = ((4, 2),) 99 net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) 110 def __init__(self, strategy1, strategy2): argument 113 self.log = P.Log().shard(strategy2) [all …]
|
D | test_slice.py | 26 def __init__(self, weight, w2, begin, end, strategy1=None, strategy2=None, is_parameter=True): argument 29 self.slice = P.Slice().shard(strategy2) 47 def __init__(self, weight2, begin, end, strategy1=None, strategy2=None): argument 50 self.slice = P.Slice().shard(strategy2) 79 strategy2 = ((2, 2, 2),) 80 net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=True) 87 strategy2 = ((1, 4, 2),) 88 net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2) 95 strategy2 = ((1, 4, 2),) 96 net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), strategy1, strategy2, is_parameter=False) [all …]
|
D | test_resizebilinear.py | 29 strategy1=None, strategy2=None): argument 34 self.resize_bilinear = P.ResizeBilinear((16, 16)).shard(strategy2) 47 strategy1=None, strategy2=None): argument 52 self.resize_neighbor = P.ResizeNearestNeighbor((16, 16)).shard(strategy2) 93 strategy2 = ((8, 1, 1, 1),) 95 strategy1=strategy1, strategy2=strategy2) 102 strategy2 = ((4, 2, 1, 1),) 104 strategy1=strategy1, strategy2=strategy2) 111 strategy2 = ((2, 1, 1, 1),) 113 strategy1=strategy1, strategy2=strategy2) [all …]
|
D | test_concat.py | 24 def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True): argument 31 self.mul = P.Mul().shard(strategy2) 41 def __init__(self, weight, strategy1=None, strategy2=None, axis=0): argument 44 self.concat = P.Concat(axis=axis).shard(strategy2) 54 def __init__(self, weight, weight2, weight3, strategy1=None, strategy2=None, is_parameter=True): argument 61 self.mul = P.Mul().shard(strategy2) 94 strategy2 = ((1, 4, 2), (1, 4, 2)) 95 net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) 102 strategy2 = ((1, 4, 2), (1, 4, 2)) 103 net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True) [all …]
|
D | test_parameter_multi_users.py | 25 def __init__(self, mul_weight, strategy1=None, strategy2=None): argument 28 self.mul2 = P.Mul().shard(strategy2) 38 def __init__(self, mul_weight, strategy1=None, strategy2=None): argument 41 self.mul2 = P.Mul().shard(strategy2) 51 def __init__(self, mul_weight, strategy1=None, strategy2=None): argument 54 self.mul2 = P.MatMul().shard(strategy2) 80 strategy2 = ((16, 1), (16, 1)) 81 net = Net(_w, strategy1, strategy2) 88 strategy2 = ((4, 4), (4, 4)) 89 net = Net(_w, strategy1, strategy2) [all …]
|
D | test_gather_v2.py | 50 def __init__(self, axis=0, strategy1=None, strategy2=None, shape=None, target=""): argument 55 self.mul = P.Mul().shard(strategy2) 68 strategy2 = ((4, 2, 1), (4, 2, 1)) 69 net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) 81 strategy2 = ((4, 2, 1), (4, 2, 1)) 82 net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) 94 strategy2 = ((4, 2, 1), (4, 2, 1)) 95 net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) 107 strategy2 = ((4, 2, 1), (4, 2, 1)) 108 net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) [all …]
|