• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore as ms
19from mindspore import context, Tensor, Parameter
20from mindspore.common.api import _cell_graph_executor
21from mindspore.nn import Cell, TrainOneStepCell, Momentum
22from mindspore.ops import operations as P
23
24
25class Net(Cell):
26    def __init__(self, weight, w2, begin, end, strides, strategy1=None, strategy2=None, is_parameter=True, mask=0):
27        super().__init__()
28        self.mul = P.Mul().shard(strategy1)
29        self.strided_slice = P.StridedSlice(begin_mask=mask).shard(strategy2)
30        if is_parameter:
31            self.weight = Parameter(weight, "w1")
32        else:
33            self.weight = weight
34        self.mul2 = P.Mul()
35        self.weight2 = Parameter(w2, "w2")
36        self.begin = begin
37        self.end = end
38        self.strides = strides
39
40    def construct(self, x, b):
41        out = self.strided_slice(self.weight, self.begin, self.end, self.strides)
42        out = self.mul(x, out)
43        out = self.mul2(out, self.weight2)
44        return out
45
46
47class Net2(Cell):
48    def __init__(self, weight2, begin, end, strides, strategy1=None, strategy2=None):
49        super().__init__()
50        self.mul = P.Mul().shard(strategy1)
51        self.strided_slice = P.StridedSlice().shard(strategy2)
52        self.weight2 = Parameter(weight2, "w2")
53        self.begin = begin
54        self.end = end
55        self.strides = strides
56
57    def construct(self, x, b):
58        out = self.mul(x, self.weight2)
59        out = self.strided_slice(out, self.begin, self.end, self.strides)
60        return out
61
62
63_x = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
64_w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32)
65_w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
66_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
67
68
69def compile_net(net):
70    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
71    train_net = TrainOneStepCell(net, optimizer)
72    train_net.set_auto_parallel()
73    train_net.set_train()
74    _cell_graph_executor.compile(train_net, _x, _b)
75    context.reset_auto_parallel_context()
76
77
78def test_stridedslice_no_fully_fetch_split_error():
79    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
80    strategy1 = ((2, 2, 2), (2, 2, 2))
81    strategy2 = ((2, 2, 2),)
82    net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2, is_parameter=True)
83    with pytest.raises(RuntimeError):
84        compile_net(net)
85
86
87def test_stridedslice_strides_no_1_split_error():
88    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
89    strategy1 = ((2, 2, 2), (2, 2, 2))
90    strategy2 = ((1, 2, 2),)
91    net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 2), strategy1, strategy2, is_parameter=True)
92    with pytest.raises(RuntimeError):
93        compile_net(net)
94
95
96def test_stridedslice_mask_no_0_split_error():
97    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
98    strategy1 = ((2, 2, 2), (2, 2, 2))
99    strategy2 = ((1, 2, 2),)
100    net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2, is_parameter=True, mask=1)
101    with pytest.raises(RuntimeError):
102        compile_net(net)
103
104
105def test_stridedslice_begin_size_smaller():
106    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
107    strategy1 = ((1, 4, 1), (1, 4, 2))
108    strategy2 = ((1, 4, 2),)
109    net = Net(_w1, _w2, (0, 0), (128, 64), (1, 1), strategy1, strategy2, is_parameter=True)
110    compile_net(net)
111
112
113def test_stridedslice_parameter():
114    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
115    strategy1 = ((1, 4, 1), (1, 4, 2))
116    strategy2 = ((1, 4, 2),)
117    net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2, is_parameter=True)
118    compile_net(net)
119
120
121def test_stridedslice_tensor():
122    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
123    strategy1 = ((1, 4, 1), (1, 4, 2))
124    strategy2 = ((1, 4, 2),)
125    net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2, is_parameter=False)
126    compile_net(net)
127
128
129def test_stridedslice_parameter_no_full_split():
130    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
131    strategy1 = ((1, 4, 1), (1, 4, 2))
132    strategy2 = ((1, 2, 2),)
133    net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1), strategy1, strategy2, is_parameter=True)
134    compile_net(net)
135
136
137def test_stridedslice_output():
138    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
139    strategy1 = ((1, 8, 1), (1, 8, 1))
140    strategy2 = ((1, 8, 1),)
141    net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2)
142    compile_net(net)
143
144
145def test_stridedslice_output_no_full_split():
146    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
147    strategy1 = ((1, 8, 1), (1, 8, 1))
148    strategy2 = ((1, 4, 1),)
149    net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2)
150    compile_net(net)
151
152
153def test_stridedslice_no_strategy():
154    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
155    strategy1 = ((1, 8, 1), (1, 8, 1))
156    strategy2 = None
157    net = Net2(_w2, (0, 0, 0), (128, 64, 1), (1, 1, 1), strategy1, strategy2)
158    compile_net(net)
159
160
161def test_stridedslice_auto_parallel():
162    context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
163    net = Net2(_w2, (0, 0, 0), (32, 64, 1), (1, 1, 1))
164    compile_net(net)
165