• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore.common.initializer import initializer
21from mindspore.common.parameter import Parameter
22from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
23from mindspore.ops import operations as P
24
25context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
26
27init()
28rank = get_rank()
29size = get_group_size()
30x = np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
31
32
33class Net(nn.Cell):
34    def __init__(self):
35        super(Net, self).__init__()
36        self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
37
38        self.op0 = "sum"
39        self.op1 = "max"
40        self.op2 = "min"
41        self.op3 = "prod"
42
43        self.reduce_scatter1 = P.ReduceScatter(self.op0, group=NCCL_WORLD_COMM_GROUP)
44        self.reduce_scatter2 = P.ReduceScatter(self.op1, group=NCCL_WORLD_COMM_GROUP)
45        self.reduce_scatter3 = P.ReduceScatter(self.op2, group=NCCL_WORLD_COMM_GROUP)
46
47    def construct(self):
48        return (self.reduce_scatter1(self.x),
49                self.reduce_scatter2(self.x),
50                self.reduce_scatter3(self.x))
51
52
53def test_ReduceScatter():
54    reduce_scatter = Net()
55    output = reduce_scatter()
56
57    sum_ones = np.ones([size, 1, 3, 3]).astype(np.float32) * 0
58    for i in range(size):
59        sum_ones += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1)
60    expect0 = sum_ones[rank: rank + 1]
61    diff0 = output[0].asnumpy() - expect0
62    error0 = np.ones(shape=expect0.shape) * 1.0e-5
63    assert np.all(diff0 < error0)
64    assert output[0].shape == expect0.shape
65
66    expect1 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * size
67    diff1 = output[1].asnumpy() - expect1
68    error1 = np.ones(shape=expect1.shape) * 1.0e-5
69    assert np.all(diff1 < error1)
70    assert output[1].shape == expect1.shape
71
72    expect2 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * 1
73    diff2 = output[2].asnumpy() - expect2
74    error2 = np.ones(shape=expect2.shape) * 1.0e-5
75    assert np.all(diff2 < error2)
76    assert output[2].shape == expect2.shape
77