1 /*
2 * Copyright (c) 2021 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "ecmascript/compiler/scheduler.h"
17 #include <cmath>
18 #include <stack>
19 #include "ecmascript/compiler/gate_accessor.h"
20 #include "ecmascript/compiler/verifier.h"
21
22 namespace panda::ecmascript::kungfu {
CalculateDominatorTree(const Circuit * circuit,std::vector<GateRef> & bbGatesList,std::unordered_map<GateRef,size_t> & bbGatesAddrToIdx,std::vector<size_t> & immDom)23 void Scheduler::CalculateDominatorTree(const Circuit *circuit,
24 std::vector<GateRef>& bbGatesList,
25 std::unordered_map<GateRef, size_t> &bbGatesAddrToIdx,
26 std::vector<size_t> &immDom)
27 {
28 GateAccessor acc(const_cast<Circuit*>(circuit));
29 std::unordered_map<GateRef, size_t> dfsTimestamp;
30 std::unordered_map<GateRef, size_t> dfsFatherIdx;
31 circuit->AdvanceTime();
32 {
33 size_t timestamp = 0;
34 std::deque<GateRef> pendingList;
35 auto startGate = acc.GetStateRoot();
36 acc.SetMark(startGate, MarkCode::VISITED);
37 pendingList.push_back(startGate);
38 while (!pendingList.empty()) {
39 auto curGate = pendingList.back();
40 dfsTimestamp[curGate] = timestamp++;
41 pendingList.pop_back();
42 bbGatesList.push_back(curGate);
43 if (acc.GetOpCode(curGate) != OpCode::LOOP_BACK) {
44 auto uses = acc.Uses(curGate);
45 for (auto useIt = uses.begin(); useIt != uses.end(); useIt++) {
46 if (useIt.GetIndex() < acc.GetStateCount(*useIt) &&
47 acc.IsState(*useIt) && acc.GetMark(*useIt) == MarkCode::NO_MARK) {
48 acc.SetMark(*useIt, MarkCode::VISITED);
49 pendingList.push_back(*useIt);
50 dfsFatherIdx[*useIt] = dfsTimestamp[curGate];
51 }
52 }
53 }
54 }
55 for (size_t idx = 0; idx < bbGatesList.size(); idx++) {
56 bbGatesAddrToIdx[bbGatesList[idx]] = idx;
57 }
58 }
59 immDom.resize(bbGatesList.size());
60 std::vector<size_t> semiDom(bbGatesList.size());
61 std::vector<std::vector<size_t> > semiDomTree(bbGatesList.size());
62 {
63 std::vector<size_t> parent(bbGatesList.size());
64 std::iota(parent.begin(), parent.end(), 0);
65 std::vector<size_t> minIdx(bbGatesList.size());
66 std::function<size_t(size_t)> unionFind = [&] (size_t idx) -> size_t {
67 size_t pIdx = parent[idx];
68 if (pIdx == idx) {
69 return idx;
70 }
71 size_t unionFindSetRoot = unionFind(pIdx);
72 if (semiDom[minIdx[idx]] > semiDom[minIdx[pIdx]]) {
73 minIdx[idx] = minIdx[pIdx];
74 }
75 return parent[idx] = unionFindSetRoot;
76 };
77 auto merge = [&] (size_t fatherIdx, size_t sonIdx) -> void {
78 size_t parentFatherIdx = unionFind(fatherIdx);
79 size_t parentSonIdx = unionFind(sonIdx);
80 parent[parentSonIdx] = parentFatherIdx;
81 };
82 std::iota(semiDom.begin(), semiDom.end(), 0);
83 semiDom[0] = semiDom.size();
84 for (size_t idx = bbGatesList.size() - 1; idx >= 1; idx--) {
85 std::vector<GateRef> preGates;
86 acc.GetInStates(bbGatesList[idx], preGates);
87 for (const auto &predGate : preGates) {
88 if (bbGatesAddrToIdx.count(predGate) > 0) {
89 size_t preGateIdx = bbGatesAddrToIdx[predGate];
90 if (preGateIdx < idx) {
91 semiDom[idx] = std::min(semiDom[idx], preGateIdx);
92 } else {
93 unionFind(preGateIdx);
94 semiDom[idx] = std::min(semiDom[idx], semiDom[minIdx[preGateIdx]]);
95 }
96 }
97 }
98 for (const auto &succDomIdx : semiDomTree[idx]) {
99 unionFind(succDomIdx);
100 if (idx == semiDom[minIdx[succDomIdx]]) {
101 immDom[succDomIdx] = idx;
102 } else {
103 immDom[succDomIdx] = minIdx[succDomIdx];
104 }
105 }
106 minIdx[idx] = idx;
107 merge(dfsFatherIdx[bbGatesList[idx]], idx);
108 semiDomTree[semiDom[idx]].push_back(idx);
109 }
110 for (size_t idx = 1; idx < bbGatesList.size(); idx++) {
111 if (immDom[idx] != semiDom[idx]) {
112 immDom[idx] = immDom[immDom[idx]];
113 }
114 }
115 semiDom[0] = 0;
116 }
117 }
118
Run(const Circuit * circuit,ControlFlowGraph & result,const std::string & methodName,bool enableLog)119 void Scheduler::Run(const Circuit *circuit, ControlFlowGraph &result,
120 [[maybe_unused]] const std::string& methodName, [[maybe_unused]] bool enableLog)
121 {
122 #ifndef NDEBUG
123 if (!Verifier::Run(circuit, methodName, enableLog)) {
124 UNREACHABLE();
125 }
126 #endif
127 GateAccessor acc(const_cast<Circuit*>(circuit));
128 std::vector<GateRef> bbGatesList;
129 std::unordered_map<GateRef, size_t> bbGatesAddrToIdx;
130 std::vector<size_t> immDom;
131 Scheduler::CalculateDominatorTree(circuit, bbGatesList, bbGatesAddrToIdx, immDom);
132 ASSERT(result.size() == 0);
133 result.resize(bbGatesList.size());
134 for (size_t idx = 0; idx < bbGatesList.size(); idx++) {
135 result[idx].push_back(bbGatesList[idx]);
136 }
137 // assuming CFG is always reducible
138 std::vector<std::vector<size_t>> sonList(result.size());
139 for (size_t idx = 1; idx < immDom.size(); idx++) {
140 sonList[immDom[idx]].push_back(idx);
141 }
142 const size_t sizeLog = std::ceil(std::log2(static_cast<double>(result.size())) + 1);
143 std::vector<size_t> timeIn(result.size());
144 std::vector<size_t> timeOut(result.size());
145 std::vector<std::vector<size_t>> jumpUp;
146 jumpUp.assign(result.size(), std::vector<size_t>(sizeLog + 1));
147 {
148 size_t timestamp = 0;
149 struct DFSState {
150 size_t cur;
151 std::vector<size_t> &succList;
152 size_t idx;
153 };
154 std::stack<DFSState> dfsStack;
155 size_t root = 0;
156 dfsStack.push({root, sonList[root], 0});
157 timeIn[root] = timestamp++;
158 jumpUp[root][0] = root;
159 for (size_t stepSize = 1; stepSize <= sizeLog; stepSize++) {
160 auto jumpUpHalf = jumpUp[root][stepSize - 1];
161 jumpUp[root][stepSize] = jumpUp[jumpUpHalf][stepSize - 1];
162 }
163 while (!dfsStack.empty()) {
164 auto &curState = dfsStack.top();
165 auto &cur = curState.cur;
166 auto &succList = curState.succList;
167 auto &idx = curState.idx;
168 if (idx == succList.size()) {
169 timeOut[cur] = timestamp++;
170 dfsStack.pop();
171 continue;
172 }
173 const auto &succ = succList[idx];
174 dfsStack.push({succ, sonList[succ], 0});
175 timeIn[succ] = timestamp++;
176 jumpUp[succ][0] = cur;
177 for (size_t stepSize = 1; stepSize <= sizeLog; stepSize++) {
178 auto jumpUpHalf = jumpUp[succ][stepSize - 1];
179 jumpUp[succ][stepSize] = jumpUp[jumpUpHalf][stepSize - 1];
180 }
181 idx++;
182 }
183 }
184 auto isAncestor = [&](size_t nodeA, size_t nodeB) -> bool {
185 return (timeIn[nodeA] <= timeIn[nodeB]) && (timeOut[nodeA] >= timeOut[nodeB]);
186 };
187 auto lowestCommonAncestor = [&](size_t nodeA, size_t nodeB) -> size_t {
188 if (isAncestor(nodeA, nodeB)) {
189 return nodeA;
190 }
191 if (isAncestor(nodeB, nodeA)) {
192 return nodeB;
193 }
194 for (size_t stepSize = sizeLog + 1; stepSize > 0; stepSize--) {
195 if (!isAncestor(jumpUp[nodeA][stepSize - 1], nodeB)) {
196 nodeA = jumpUp[nodeA][stepSize - 1];
197 }
198 }
199 return jumpUp[nodeA][0];
200 };
201 {
202 std::vector<GateRef> order;
203 std::unordered_map<GateRef, size_t> lowerBound;
204 Scheduler::CalculateSchedulingLowerBound(circuit, bbGatesAddrToIdx, lowestCommonAncestor, lowerBound, &order);
205 for (const auto &schedulableGate : order) {
206 result[lowerBound.at(schedulableGate)].push_back(schedulableGate);
207 }
208 std::vector<GateRef> argList;
209 acc.GetOuts(acc.GetArgRoot(), argList);
210 std::sort(argList.begin(), argList.end(), [&](const GateRef &lhs, const GateRef &rhs) -> bool {
211 return acc.TryGetValue(lhs) > acc.TryGetValue(rhs);
212 });
213 for (const auto &arg : argList) {
214 result.front().push_back(arg);
215 }
216 for (const auto &bbGate : bbGatesList) {
217 auto uses = acc.Uses(bbGate);
218 for (auto i = uses.begin(); i != uses.end(); i++) {
219 GateRef succGate = *i;
220 if (acc.GetMetaData(succGate)->IsFixed()) {
221 result[bbGatesAddrToIdx.at(acc.GetIn(succGate, 0))].push_back(succGate);
222 }
223 }
224 }
225 }
226 if (enableLog) {
227 Print(&result, circuit);
228 }
229 }
230
CalculateSchedulingUpperBound(const Circuit * circuit,const std::unordered_map<GateRef,size_t> & bbGatesAddrToIdx,const std::function<bool (size_t,size_t)> & isAncestor,const std::vector<GateRef> & schedulableGatesList,std::unordered_map<GateRef,size_t> & upperBound)231 bool Scheduler::CalculateSchedulingUpperBound(const Circuit *circuit,
232 const std::unordered_map<GateRef, size_t> &bbGatesAddrToIdx,
233 const std::function<bool(size_t, size_t)> &isAncestor,
234 const std::vector<GateRef> &schedulableGatesList,
235 std::unordered_map<GateRef, size_t> &upperBound)
236 {
237 GateAccessor acc(const_cast<Circuit*>(circuit));
238 struct DFSState {
239 GateRef curGate = Circuit::NullGate();
240 std::vector<GateRef> predGates;
241 size_t idx = 0;
242 size_t curUpperBound = 0;
243 };
244 DFSState emptyState = {Circuit::NullGate(), std::vector<GateRef>(0), 0, 0};
245 bool getReturn = false;
246 std::optional<size_t> returnValue = 0;
247 std::stack<DFSState> dfsStack;
248 auto CheckUnschedulable = [&](GateRef gate) -> void {
249 if (upperBound.count(gate) > 0) {
250 returnValue = upperBound[gate];
251 getReturn = true;
252 } else if (acc.GetMetaData(gate)->IsProlog() || acc.GetMetaData(gate)->IsRoot()) {
253 returnValue = 0;
254 getReturn = true;
255 } else if (acc.GetMetaData(gate)->IsFixed()) {
256 returnValue = bbGatesAddrToIdx.at(acc.GetIn(gate, 0));
257 getReturn = true;
258 } else if (acc.GetMetaData(gate)->IsState()) {
259 returnValue = bbGatesAddrToIdx.at(gate);
260 getReturn = true;
261 }
262 // then gate is schedulable
263 };
264 for (const auto &schedulableGate : schedulableGatesList) {
265 if (upperBound.count(schedulableGate) != 0) {
266 continue;
267 }
268 getReturn = false;
269 CheckUnschedulable(schedulableGate);
270 if (getReturn) {
271 continue;
272 }
273 dfsStack.push(emptyState);
274 auto &rootState = dfsStack.top();
275 auto &rootPredGates = rootState.predGates;
276 rootState.curGate = schedulableGate;
277 acc.GetIns(schedulableGate, rootPredGates);
278 while (!dfsStack.empty()) {
279 auto &curState = dfsStack.top();
280 auto &curGate = curState.curGate;
281 const auto &predGates = curState.predGates;
282 auto &idx = curState.idx;
283 auto &curUpperBound = curState.curUpperBound;
284 if (idx == predGates.size()) {
285 upperBound[curGate] = curUpperBound;
286 returnValue = curUpperBound;
287 dfsStack.pop();
288 getReturn = true;
289 continue;
290 }
291 if (getReturn) {
292 if (!returnValue.has_value()) {
293 break;
294 }
295 auto predUpperBound = returnValue.value();
296 if (!isAncestor(curUpperBound, predUpperBound) && !isAncestor(predUpperBound, curUpperBound)) {
297 PrintUpperBoundError(circuit, curGate, predUpperBound, curUpperBound);
298 returnValue = std::nullopt;
299 break;
300 }
301 if (isAncestor(curUpperBound, predUpperBound)) {
302 curUpperBound = predUpperBound;
303 }
304 getReturn = false;
305 idx++;
306 } else {
307 const auto &predGate = predGates[idx];
308 CheckUnschedulable(predGate);
309 if (getReturn) {
310 continue;
311 }
312 dfsStack.push(emptyState);
313 auto &newState = dfsStack.top();
314 auto &newPredGates = newState.predGates;
315 newState.curGate = predGate;
316 acc.GetIns(predGate, newPredGates);
317 }
318 }
319 if (!returnValue.has_value()) {
320 return false;
321 }
322 }
323 return true;
324 }
325
PrintUpperBoundError(const Circuit * circuit,GateRef curGate,GateRef predUpperBound,GateRef curUpperBound)326 void Scheduler::PrintUpperBoundError(const Circuit *circuit, GateRef curGate,
327 GateRef predUpperBound, GateRef curUpperBound)
328 {
329 GateAccessor ac(const_cast<Circuit*>(circuit));
330 LOG_COMPILER(ERROR) << "[Verifier][Error] Scheduling upper bound of gate (id="
331 << ac.GetId(curGate)
332 << ") does not exist, current-upper-bound = "
333 << curUpperBound << ", pred-upper-bound = "
334 << predUpperBound << ", there is no dominator relationship between them.";
335 }
336
CalculateSchedulingLowerBound(const Circuit * circuit,const std::unordered_map<GateRef,size_t> & bbGatesAddrToIdx,const std::function<size_t (size_t,size_t)> & lowestCommonAncestor,std::unordered_map<GateRef,size_t> & lowerBound,std::vector<GateRef> * order)337 void Scheduler::CalculateSchedulingLowerBound(const Circuit *circuit,
338 const std::unordered_map<GateRef, size_t> &bbGatesAddrToIdx,
339 const std::function<size_t(size_t, size_t)> &lowestCommonAncestor,
340 std::unordered_map<GateRef, size_t> &lowerBound,
341 std::vector<GateRef> *order)
342 {
343 GateAccessor acc(const_cast<Circuit*>(circuit));
344 std::unordered_map<GateRef, size_t> useCount;
345 std::vector<GateRef> bbAndFixedGatesList;
346 for (const auto &item : bbGatesAddrToIdx) {
347 bbAndFixedGatesList.push_back(item.first);
348 auto uses = acc.Uses(item.first);
349 for (auto i = uses.begin(); i != uses.end(); i++) {
350 GateRef succGate = *i;
351 if (acc.GetMetaData(succGate)->IsFixed()) {
352 bbAndFixedGatesList.push_back(succGate);
353 }
354 }
355 }
356 struct DFSVisitState {
357 std::vector<GateRef> prevGates;
358 size_t idx = 0;
359 };
360 DFSVisitState emptyVisitState = {std::vector<GateRef>(0), 0};
361 std::stack<DFSVisitState> dfsVisitStack;
362 for (const auto &gate : bbAndFixedGatesList) {
363 dfsVisitStack.push(emptyVisitState);
364 auto &rootState = dfsVisitStack.top();
365 auto &rootPrevGates = rootState.prevGates;
366 acc.GetIns(gate, rootPrevGates);
367 while (!dfsVisitStack.empty()) {
368 auto &curState = dfsVisitStack.top();
369 auto &prevGates = curState.prevGates;
370 auto &idx = curState.idx;
371 if (idx == prevGates.size()) {
372 dfsVisitStack.pop();
373 continue;
374 }
375 const auto &prevGate = prevGates[idx];
376 if (!acc.GetMetaData(prevGate)->IsSchedulable()) {
377 ++idx;
378 continue;
379 }
380 useCount[prevGate]++;
381 if (useCount[prevGate] == 1) {
382 dfsVisitStack.push(emptyVisitState);
383 auto &newState = dfsVisitStack.top();
384 auto &newPrevGates = newState.prevGates;
385 acc.GetIns(prevGate, newPrevGates);
386 }
387 ++idx;
388 }
389 }
390 struct DFSFinishState {
391 GateRef curGate = Circuit::NullGate();
392 std::vector<GateRef> prevGates;
393 size_t idx = 0;
394 };
395 DFSFinishState emptyFinishState = {Circuit::NullGate(), std::vector<GateRef>(0), 0};
396 std::stack<DFSFinishState> dfsFinishStack;
397 for (const auto &gate : bbAndFixedGatesList) {
398 dfsFinishStack.push(emptyFinishState);
399 auto &rootState = dfsFinishStack.top();
400 auto &rootPrevGates = rootState.prevGates;
401 rootState.curGate = gate;
402 acc.GetIns(gate, rootPrevGates);
403 while (!dfsFinishStack.empty()) {
404 auto &curState = dfsFinishStack.top();
405 auto &curGate = curState.curGate;
406 auto &prevGates = curState.prevGates;
407 auto &idx = curState.idx;
408 if (idx == prevGates.size()) {
409 dfsFinishStack.pop();
410 continue;
411 }
412 const auto &prevGate = prevGates[idx];
413 if (!acc.GetMetaData(prevGate)->IsSchedulable()) {
414 ++idx;
415 continue;
416 }
417 useCount[prevGate]--;
418 size_t curLowerBound;
419 if (acc.GetMetaData(curGate)->IsState()) { // cur_opcode would not be STATE_ENTRY
420 curLowerBound = bbGatesAddrToIdx.at(curGate);
421 } else if (acc.GetMetaData(curGate)->IsFixed()) {
422 ASSERT(idx > 0);
423 curLowerBound = bbGatesAddrToIdx.at(acc.GetIn(acc.GetIn(curGate, 0), idx - 1));
424 } else {
425 curLowerBound = lowerBound.at(curGate);
426 }
427 if (lowerBound.count(prevGate) == 0) {
428 lowerBound[prevGate] = curLowerBound;
429 } else {
430 lowerBound[prevGate] = lowestCommonAncestor(lowerBound[prevGate], curLowerBound);
431 }
432 if (useCount[prevGate] == 0) {
433 if (order != nullptr) {
434 order->push_back(prevGate);
435 }
436 dfsFinishStack.push(emptyFinishState);
437 auto &newState = dfsFinishStack.top();
438 auto &newPrevGates = newState.prevGates;
439 newState.curGate = prevGate;
440 acc.GetIns(prevGate, newPrevGates);
441 }
442 ++idx;
443 }
444 }
445 }
446
Print(const std::vector<std::vector<GateRef>> * cfg,const Circuit * circuit)447 void Scheduler::Print(const std::vector<std::vector<GateRef>> *cfg, const Circuit *circuit)
448 {
449 GateAccessor acc(const_cast<Circuit*>(circuit));
450 std::vector<GateRef> bbGatesList;
451 std::unordered_map<GateRef, size_t> bbGatesAddrToIdx;
452 std::vector<size_t> immDom;
453 Scheduler::CalculateDominatorTree(circuit, bbGatesList, bbGatesAddrToIdx, immDom);
454 LOG_COMPILER(INFO) << "==================================== Scheduling ==================================";
455 for (size_t bbIdx = 0; bbIdx < cfg->size(); bbIdx++) {
456 auto opcode = acc.GetOpCode((*cfg)[bbIdx].front());
457 LOG_COMPILER(INFO) << "B" << bbIdx << "_" << opcode << ":"
458 << " immDom=" << immDom[bbIdx];
459 LOG_COMPILER(INFO) << " pred=[";
460 bool isFirst = true;
461 GateRef head = cfg->at(bbIdx).front();
462 auto ins = acc.Ins(head);
463 for (auto i = ins.begin(); i != ins.end(); i++) {
464 GateRef predState = *i;
465 if (acc.GetMetaData(predState)->IsState() ||
466 acc.GetOpCode(predState) == OpCode::STATE_ENTRY) {
467 LOG_COMPILER(INFO) << (isFirst ? "" : " ") << bbGatesAddrToIdx.at(predState);
468 isFirst = false;
469 }
470 }
471 LOG_COMPILER(INFO) << "] succ=[";
472 isFirst = true;
473 GateRef h = cfg->at(bbIdx).front();
474 auto uses = acc.Uses(h);
475 for (auto i = uses.begin(); i != uses.end(); i++) {
476 GateRef succState = *i;
477 if (acc.GetMetaData(succState)->IsState() ||
478 acc.GetOpCode(succState) == OpCode::STATE_ENTRY) {
479 LOG_COMPILER(INFO) << (isFirst ? "" : " ") << bbGatesAddrToIdx.at(succState);
480 isFirst = false;
481 }
482 }
483 LOG_COMPILER(INFO) << "]";
484 for (size_t instIdx = (*cfg)[bbIdx].size(); instIdx > 0; instIdx--) {
485 acc.Print((*cfg)[bbIdx][instIdx - 1]);
486 }
487 }
488 LOG_COMPILER(INFO) << "==================================== Scheduling ==================================";
489 }
490 } // namespace panda::ecmascript::kungfu
491