1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Secure pages management: Migration of pages between normal and secure
4 * memory of KVM guests.
5 *
6 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7 */
8
9 /*
10 * A pseries guest can be run as secure guest on Ultravisor-enabled
11 * POWER platforms. On such platforms, this driver will be used to manage
12 * the movement of guest pages between the normal memory managed by
13 * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14 *
15 * The page-in or page-out requests from UV will come to HV as hcalls and
16 * HV will call back into UV via ultracalls to satisfy these page requests.
17 *
18 * Private ZONE_DEVICE memory equal to the amount of secure memory
19 * available in the platform for running secure guests is hotplugged.
20 * Whenever a page belonging to the guest becomes secure, a page from this
21 * private device memory is used to represent and track that secure page
22 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23 * shared between UV and HV. However such pages aren't represented by
24 * device private memory and mappings to shared memory exist in both
25 * UV and HV page tables.
26 */
27
28 /*
29 * Notes on locking
30 *
31 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32 * page-in and page-out requests for the same GPA. Concurrent accesses
33 * can either come via UV (guest vCPUs requesting for same page)
34 * or when HV and guest simultaneously access the same page.
35 * This mutex serializes the migration of page from HV(normal) to
36 * UV(secure) and vice versa. So the serialization points are around
37 * migrate_vma routines and page-in/out routines.
38 *
39 * Per-guest mutex comes with a cost though. Mainly it serializes the
40 * fault path as page-out can occur when HV faults on accessing secure
41 * guest pages. Currently UV issues page-in requests for all the guest
42 * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43 * not a cause for concern. Also currently the number of page-outs caused
44 * by HV touching secure pages is very very low. If an when UV supports
45 * overcommitting, then we might see concurrent guest driven page-outs.
46 *
47 * Locking order
48 *
49 * 1. kvm->srcu - Protects KVM memslots
50 * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52 * as sync-points for page-in/out
53 */
54
55 /*
56 * Notes on page size
57 *
58 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60 * secure GPAs at 64K page size and maintains one device PFN for each
61 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62 * for 64K page at a time.
63 *
64 * HV faulting on secure pages: When HV touches any secure page, it
65 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66 * UV splits and remaps the 2MB page if necessary and copies out the
67 * required 64K page contents.
68 *
69 * Shared pages: Whenever guest shares a secure page, UV will split and
70 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71 *
72 * HV invalidating a page: When a regular page belonging to secure
73 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74 * page size. Using 64K page size is correct here because any non-secure
75 * page will essentially be of 64K page size. Splitting by UV during sharing
76 * and page-out ensures this.
77 *
78 * Page fault handling: When HV handles page fault of a page belonging
79 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80 * Using 64K size is correct here too as UV would have split the 2MB page
81 * into 64k mappings and would have done page-outs earlier.
82 *
83 * In summary, the current secure pages handling code in HV assumes
84 * 64K page size and in fact fails any page-in/page-out requests of
85 * non-64K size upfront. If and when UV starts supporting multiple
86 * page-sizes, we need to break this assumption.
87 */
88
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <asm/ultravisor.h>
94 #include <asm/mman.h>
95 #include <asm/kvm_ppc.h>
96 #include <asm/kvm_book3s_uvmem.h>
97
98 static struct dev_pagemap kvmppc_uvmem_pgmap;
99 static unsigned long *kvmppc_uvmem_bitmap;
100 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
101
102 /*
103 * States of a GFN
104 * ---------------
105 * The GFN can be in one of the following states.
106 *
107 * (a) Secure - The GFN is secure. The GFN is associated with
108 * a Secure VM, the contents of the GFN is not accessible
109 * to the Hypervisor. This GFN can be backed by a secure-PFN,
110 * or can be backed by a normal-PFN with contents encrypted.
111 * The former is true when the GFN is paged-in into the
112 * ultravisor. The latter is true when the GFN is paged-out
113 * of the ultravisor.
114 *
115 * (b) Shared - The GFN is shared. The GFN is associated with a
116 * a secure VM. The contents of the GFN is accessible to
117 * Hypervisor. This GFN is backed by a normal-PFN and its
118 * content is un-encrypted.
119 *
120 * (c) Normal - The GFN is a normal. The GFN is associated with
121 * a normal VM. The contents of the GFN is accesible to
122 * the Hypervisor. Its content is never encrypted.
123 *
124 * States of a VM.
125 * ---------------
126 *
127 * Normal VM: A VM whose contents are always accessible to
128 * the hypervisor. All its GFNs are normal-GFNs.
129 *
130 * Secure VM: A VM whose contents are not accessible to the
131 * hypervisor without the VM's consent. Its GFNs are
132 * either Shared-GFN or Secure-GFNs.
133 *
134 * Transient VM: A Normal VM that is transitioning to secure VM.
135 * The transition starts on successful return of
136 * H_SVM_INIT_START, and ends on successful return
137 * of H_SVM_INIT_DONE. This transient VM, can have GFNs
138 * in any of the three states; i.e Secure-GFN, Shared-GFN,
139 * and Normal-GFN. The VM never executes in this state
140 * in supervisor-mode.
141 *
142 * Memory slot State.
143 * -----------------------------
144 * The state of a memory slot mirrors the state of the
145 * VM the memory slot is associated with.
146 *
147 * VM State transition.
148 * --------------------
149 *
150 * A VM always starts in Normal Mode.
151 *
152 * H_SVM_INIT_START moves the VM into transient state. During this
153 * time the Ultravisor may request some of its GFNs to be shared or
154 * secured. So its GFNs can be in one of the three GFN states.
155 *
156 * H_SVM_INIT_DONE moves the VM entirely from transient state to
157 * secure-state. At this point any left-over normal-GFNs are
158 * transitioned to Secure-GFN.
159 *
160 * H_SVM_INIT_ABORT moves the transient VM back to normal VM.
161 * All its GFNs are moved to Normal-GFNs.
162 *
163 * UV_TERMINATE transitions the secure-VM back to normal-VM. All
164 * the secure-GFN and shared-GFNs are tranistioned to normal-GFN
165 * Note: The contents of the normal-GFN is undefined at this point.
166 *
167 * GFN state implementation:
168 * -------------------------
169 *
170 * Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
171 * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
172 * set, and contains the value of the secure-PFN.
173 * It is associated with a normal-PFN; also called mem_pfn, when
174 * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
175 * The value of the normal-PFN is not tracked.
176 *
177 * Shared GFN is associated with a normal-PFN. Its pfn[] has
178 * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
179 * is not tracked.
180 *
181 * Normal GFN is associated with normal-PFN. Its pfn[] has
182 * no flag set. The value of the normal-PFN is not tracked.
183 *
184 * Life cycle of a GFN
185 * --------------------
186 *
187 * --------------------------------------------------------------
188 * | | Share | Unshare | SVM |H_SVM_INIT_DONE|
189 * | |operation |operation | abort/ | |
190 * | | | | terminate | |
191 * -------------------------------------------------------------
192 * | | | | | |
193 * | Secure | Shared | Secure |Normal |Secure |
194 * | | | | | |
195 * | Shared | Shared | Secure |Normal |Shared |
196 * | | | | | |
197 * | Normal | Shared | Secure |Normal |Secure |
198 * --------------------------------------------------------------
199 *
200 * Life cycle of a VM
201 * --------------------
202 *
203 * --------------------------------------------------------------------
204 * | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ |
205 * | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE |
206 * | | | | | | |
207 * --------- ----------------------------------------------------------
208 * | | | | | | |
209 * | Normal | Normal | Transient|Error |Error |Normal |
210 * | | | | | | |
211 * | Secure | Error | Error |Error |Error |Normal |
212 * | | | | | | |
213 * |Transient| N/A | Error |Secure |Normal |Normal |
214 * --------------------------------------------------------------------
215 */
216
217 #define KVMPPC_GFN_UVMEM_PFN (1UL << 63)
218 #define KVMPPC_GFN_MEM_PFN (1UL << 62)
219 #define KVMPPC_GFN_SHARED (1UL << 61)
220 #define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
221 #define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
222 #define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK)
223
224 struct kvmppc_uvmem_slot {
225 struct list_head list;
226 unsigned long nr_pfns;
227 unsigned long base_pfn;
228 unsigned long *pfns;
229 };
230 struct kvmppc_uvmem_page_pvt {
231 struct kvm *kvm;
232 unsigned long gpa;
233 bool skip_page_out;
234 bool remove_gfn;
235 };
236
kvmppc_uvmem_available(void)237 bool kvmppc_uvmem_available(void)
238 {
239 /*
240 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
241 * and our data structures have been initialized successfully.
242 */
243 return !!kvmppc_uvmem_bitmap;
244 }
245
kvmppc_uvmem_slot_init(struct kvm * kvm,const struct kvm_memory_slot * slot)246 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
247 {
248 struct kvmppc_uvmem_slot *p;
249
250 p = kzalloc(sizeof(*p), GFP_KERNEL);
251 if (!p)
252 return -ENOMEM;
253 p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
254 if (!p->pfns) {
255 kfree(p);
256 return -ENOMEM;
257 }
258 p->nr_pfns = slot->npages;
259 p->base_pfn = slot->base_gfn;
260
261 mutex_lock(&kvm->arch.uvmem_lock);
262 list_add(&p->list, &kvm->arch.uvmem_pfns);
263 mutex_unlock(&kvm->arch.uvmem_lock);
264
265 return 0;
266 }
267
268 /*
269 * All device PFNs are already released by the time we come here.
270 */
kvmppc_uvmem_slot_free(struct kvm * kvm,const struct kvm_memory_slot * slot)271 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
272 {
273 struct kvmppc_uvmem_slot *p, *next;
274
275 mutex_lock(&kvm->arch.uvmem_lock);
276 list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
277 if (p->base_pfn == slot->base_gfn) {
278 vfree(p->pfns);
279 list_del(&p->list);
280 kfree(p);
281 break;
282 }
283 }
284 mutex_unlock(&kvm->arch.uvmem_lock);
285 }
286
kvmppc_mark_gfn(unsigned long gfn,struct kvm * kvm,unsigned long flag,unsigned long uvmem_pfn)287 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
288 unsigned long flag, unsigned long uvmem_pfn)
289 {
290 struct kvmppc_uvmem_slot *p;
291
292 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
293 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
294 unsigned long index = gfn - p->base_pfn;
295
296 if (flag == KVMPPC_GFN_UVMEM_PFN)
297 p->pfns[index] = uvmem_pfn | flag;
298 else
299 p->pfns[index] = flag;
300 return;
301 }
302 }
303 }
304
305 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,unsigned long uvmem_pfn,struct kvm * kvm)306 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
307 unsigned long uvmem_pfn, struct kvm *kvm)
308 {
309 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
310 }
311
312 /* mark the GFN as secure-GFN associated with a memory-PFN. */
kvmppc_gfn_secure_mem_pfn(unsigned long gfn,struct kvm * kvm)313 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
314 {
315 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
316 }
317
318 /* mark the GFN as a shared GFN. */
kvmppc_gfn_shared(unsigned long gfn,struct kvm * kvm)319 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
320 {
321 kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
322 }
323
324 /* mark the GFN as a non-existent GFN. */
kvmppc_gfn_remove(unsigned long gfn,struct kvm * kvm)325 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
326 {
327 kvmppc_mark_gfn(gfn, kvm, 0, 0);
328 }
329
330 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */
kvmppc_gfn_is_uvmem_pfn(unsigned long gfn,struct kvm * kvm,unsigned long * uvmem_pfn)331 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
332 unsigned long *uvmem_pfn)
333 {
334 struct kvmppc_uvmem_slot *p;
335
336 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
337 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
338 unsigned long index = gfn - p->base_pfn;
339
340 if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
341 if (uvmem_pfn)
342 *uvmem_pfn = p->pfns[index] &
343 KVMPPC_GFN_PFN_MASK;
344 return true;
345 } else
346 return false;
347 }
348 }
349 return false;
350 }
351
352 /*
353 * starting from *gfn search for the next available GFN that is not yet
354 * transitioned to a secure GFN. return the value of that GFN in *gfn. If a
355 * GFN is found, return true, else return false
356 *
357 * Must be called with kvm->arch.uvmem_lock held.
358 */
kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot * memslot,struct kvm * kvm,unsigned long * gfn)359 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
360 struct kvm *kvm, unsigned long *gfn)
361 {
362 struct kvmppc_uvmem_slot *p;
363 bool ret = false;
364 unsigned long i;
365
366 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
367 if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
368 break;
369 if (!p)
370 return ret;
371 /*
372 * The code below assumes, one to one correspondence between
373 * kvmppc_uvmem_slot and memslot.
374 */
375 for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
376 unsigned long index = i - p->base_pfn;
377
378 if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
379 *gfn = i;
380 ret = true;
381 break;
382 }
383 }
384 return ret;
385 }
386
kvmppc_memslot_page_merge(struct kvm * kvm,const struct kvm_memory_slot * memslot,bool merge)387 static int kvmppc_memslot_page_merge(struct kvm *kvm,
388 const struct kvm_memory_slot *memslot, bool merge)
389 {
390 unsigned long gfn = memslot->base_gfn;
391 unsigned long end, start = gfn_to_hva(kvm, gfn);
392 int ret = 0;
393 struct vm_area_struct *vma;
394 int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
395
396 if (kvm_is_error_hva(start))
397 return H_STATE;
398
399 end = start + (memslot->npages << PAGE_SHIFT);
400
401 mmap_write_lock(kvm->mm);
402 do {
403 vma = find_vma_intersection(kvm->mm, start, end);
404 if (!vma) {
405 ret = H_STATE;
406 break;
407 }
408 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
409 merge_flag, &vma->vm_flags);
410 if (ret) {
411 ret = H_STATE;
412 break;
413 }
414 start = vma->vm_end;
415 } while (end > vma->vm_end);
416
417 mmap_write_unlock(kvm->mm);
418 return ret;
419 }
420
__kvmppc_uvmem_memslot_delete(struct kvm * kvm,const struct kvm_memory_slot * memslot)421 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
422 const struct kvm_memory_slot *memslot)
423 {
424 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
425 kvmppc_uvmem_slot_free(kvm, memslot);
426 kvmppc_memslot_page_merge(kvm, memslot, true);
427 }
428
__kvmppc_uvmem_memslot_create(struct kvm * kvm,const struct kvm_memory_slot * memslot)429 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
430 const struct kvm_memory_slot *memslot)
431 {
432 int ret = H_PARAMETER;
433
434 if (kvmppc_memslot_page_merge(kvm, memslot, false))
435 return ret;
436
437 if (kvmppc_uvmem_slot_init(kvm, memslot))
438 goto out1;
439
440 ret = uv_register_mem_slot(kvm->arch.lpid,
441 memslot->base_gfn << PAGE_SHIFT,
442 memslot->npages * PAGE_SIZE,
443 0, memslot->id);
444 if (ret < 0) {
445 ret = H_PARAMETER;
446 goto out;
447 }
448 return 0;
449 out:
450 kvmppc_uvmem_slot_free(kvm, memslot);
451 out1:
452 kvmppc_memslot_page_merge(kvm, memslot, true);
453 return ret;
454 }
455
kvmppc_h_svm_init_start(struct kvm * kvm)456 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
457 {
458 struct kvm_memslots *slots;
459 struct kvm_memory_slot *memslot, *m;
460 int ret = H_SUCCESS;
461 int srcu_idx;
462
463 kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
464
465 if (!kvmppc_uvmem_bitmap)
466 return H_UNSUPPORTED;
467
468 /* Only radix guests can be secure guests */
469 if (!kvm_is_radix(kvm))
470 return H_UNSUPPORTED;
471
472 /* NAK the transition to secure if not enabled */
473 if (!kvm->arch.svm_enabled)
474 return H_AUTHORITY;
475
476 srcu_idx = srcu_read_lock(&kvm->srcu);
477
478 /* register the memslot */
479 slots = kvm_memslots(kvm);
480 kvm_for_each_memslot(memslot, slots) {
481 ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
482 if (ret)
483 break;
484 }
485
486 if (ret) {
487 slots = kvm_memslots(kvm);
488 kvm_for_each_memslot(m, slots) {
489 if (m == memslot)
490 break;
491 __kvmppc_uvmem_memslot_delete(kvm, memslot);
492 }
493 }
494
495 srcu_read_unlock(&kvm->srcu, srcu_idx);
496 return ret;
497 }
498
499 /*
500 * Provision a new page on HV side and copy over the contents
501 * from secure memory using UV_PAGE_OUT uvcall.
502 * Caller must held kvm->arch.uvmem_lock.
503 */
__kvmppc_svm_page_out(struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long page_shift,struct kvm * kvm,unsigned long gpa,struct page * fault_page)504 static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
505 unsigned long start,
506 unsigned long end, unsigned long page_shift,
507 struct kvm *kvm, unsigned long gpa, struct page *fault_page)
508 {
509 unsigned long src_pfn, dst_pfn = 0;
510 struct migrate_vma mig = { 0 };
511 struct page *dpage, *spage;
512 struct kvmppc_uvmem_page_pvt *pvt;
513 unsigned long pfn;
514 int ret = U_SUCCESS;
515
516 memset(&mig, 0, sizeof(mig));
517 mig.vma = vma;
518 mig.start = start;
519 mig.end = end;
520 mig.src = &src_pfn;
521 mig.dst = &dst_pfn;
522 mig.pgmap_owner = &kvmppc_uvmem_pgmap;
523 mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
524 mig.fault_page = fault_page;
525
526 /* The requested page is already paged-out, nothing to do */
527 if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
528 return ret;
529
530 ret = migrate_vma_setup(&mig);
531 if (ret)
532 return -1;
533
534 spage = migrate_pfn_to_page(*mig.src);
535 if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
536 goto out_finalize;
537
538 if (!is_zone_device_page(spage))
539 goto out_finalize;
540
541 dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
542 if (!dpage) {
543 ret = -1;
544 goto out_finalize;
545 }
546
547 lock_page(dpage);
548 pvt = spage->zone_device_data;
549 pfn = page_to_pfn(dpage);
550
551 /*
552 * This function is used in two cases:
553 * - When HV touches a secure page, for which we do UV_PAGE_OUT
554 * - When a secure page is converted to shared page, we *get*
555 * the page to essentially unmap the device page. In this
556 * case we skip page-out.
557 */
558 if (!pvt->skip_page_out)
559 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
560 gpa, 0, page_shift);
561
562 if (ret == U_SUCCESS)
563 *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
564 else {
565 unlock_page(dpage);
566 __free_page(dpage);
567 goto out_finalize;
568 }
569
570 migrate_vma_pages(&mig);
571
572 out_finalize:
573 migrate_vma_finalize(&mig);
574 return ret;
575 }
576
kvmppc_svm_page_out(struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long page_shift,struct kvm * kvm,unsigned long gpa,struct page * fault_page)577 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
578 unsigned long start, unsigned long end,
579 unsigned long page_shift,
580 struct kvm *kvm, unsigned long gpa,
581 struct page *fault_page)
582 {
583 int ret;
584
585 mutex_lock(&kvm->arch.uvmem_lock);
586 ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa,
587 fault_page);
588 mutex_unlock(&kvm->arch.uvmem_lock);
589
590 return ret;
591 }
592
593 /*
594 * Drop device pages that we maintain for the secure guest
595 *
596 * We first mark the pages to be skipped from UV_PAGE_OUT when there
597 * is HV side fault on these pages. Next we *get* these pages, forcing
598 * fault on them, do fault time migration to replace the device PTEs in
599 * QEMU page table with normal PTEs from newly allocated pages.
600 */
kvmppc_uvmem_drop_pages(const struct kvm_memory_slot * slot,struct kvm * kvm,bool skip_page_out)601 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
602 struct kvm *kvm, bool skip_page_out)
603 {
604 int i;
605 struct kvmppc_uvmem_page_pvt *pvt;
606 struct page *uvmem_page;
607 struct vm_area_struct *vma = NULL;
608 unsigned long uvmem_pfn, gfn;
609 unsigned long addr;
610
611 mmap_read_lock(kvm->mm);
612
613 addr = slot->userspace_addr;
614
615 gfn = slot->base_gfn;
616 for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
617
618 /* Fetch the VMA if addr is not in the latest fetched one */
619 if (!vma || addr >= vma->vm_end) {
620 vma = find_vma_intersection(kvm->mm, addr, addr+1);
621 if (!vma) {
622 pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
623 break;
624 }
625 }
626
627 mutex_lock(&kvm->arch.uvmem_lock);
628
629 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
630 uvmem_page = pfn_to_page(uvmem_pfn);
631 pvt = uvmem_page->zone_device_data;
632 pvt->skip_page_out = skip_page_out;
633 pvt->remove_gfn = true;
634
635 if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
636 PAGE_SHIFT, kvm, pvt->gpa, NULL))
637 pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
638 pvt->gpa, addr);
639 } else {
640 /* Remove the shared flag if any */
641 kvmppc_gfn_remove(gfn, kvm);
642 }
643
644 mutex_unlock(&kvm->arch.uvmem_lock);
645 }
646
647 mmap_read_unlock(kvm->mm);
648 }
649
kvmppc_h_svm_init_abort(struct kvm * kvm)650 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
651 {
652 int srcu_idx;
653 struct kvm_memory_slot *memslot;
654
655 /*
656 * Expect to be called only after INIT_START and before INIT_DONE.
657 * If INIT_DONE was completed, use normal VM termination sequence.
658 */
659 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
660 return H_UNSUPPORTED;
661
662 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
663 return H_STATE;
664
665 srcu_idx = srcu_read_lock(&kvm->srcu);
666
667 kvm_for_each_memslot(memslot, kvm_memslots(kvm))
668 kvmppc_uvmem_drop_pages(memslot, kvm, false);
669
670 srcu_read_unlock(&kvm->srcu, srcu_idx);
671
672 kvm->arch.secure_guest = 0;
673 uv_svm_terminate(kvm->arch.lpid);
674
675 return H_PARAMETER;
676 }
677
678 /*
679 * Get a free device PFN from the pool
680 *
681 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
682 * PFN will be used to keep track of the secure page on HV side.
683 *
684 * Called with kvm->arch.uvmem_lock held
685 */
kvmppc_uvmem_get_page(unsigned long gpa,struct kvm * kvm)686 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
687 {
688 struct page *dpage = NULL;
689 unsigned long bit, uvmem_pfn;
690 struct kvmppc_uvmem_page_pvt *pvt;
691 unsigned long pfn_last, pfn_first;
692
693 pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
694 pfn_last = pfn_first +
695 (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
696
697 spin_lock(&kvmppc_uvmem_bitmap_lock);
698 bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
699 pfn_last - pfn_first);
700 if (bit >= (pfn_last - pfn_first))
701 goto out;
702 bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
703 spin_unlock(&kvmppc_uvmem_bitmap_lock);
704
705 pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
706 if (!pvt)
707 goto out_clear;
708
709 uvmem_pfn = bit + pfn_first;
710 kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
711
712 pvt->gpa = gpa;
713 pvt->kvm = kvm;
714
715 dpage = pfn_to_page(uvmem_pfn);
716 dpage->zone_device_data = pvt;
717 get_page(dpage);
718 lock_page(dpage);
719 return dpage;
720 out_clear:
721 spin_lock(&kvmppc_uvmem_bitmap_lock);
722 bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
723 out:
724 spin_unlock(&kvmppc_uvmem_bitmap_lock);
725 return NULL;
726 }
727
728 /*
729 * Alloc a PFN from private device memory pool. If @pagein is true,
730 * copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
731 */
kvmppc_svm_page_in(struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long gpa,struct kvm * kvm,unsigned long page_shift,bool pagein)732 static int kvmppc_svm_page_in(struct vm_area_struct *vma,
733 unsigned long start,
734 unsigned long end, unsigned long gpa, struct kvm *kvm,
735 unsigned long page_shift,
736 bool pagein)
737 {
738 unsigned long src_pfn, dst_pfn = 0;
739 struct migrate_vma mig = { 0 };
740 struct page *spage;
741 unsigned long pfn;
742 struct page *dpage;
743 int ret = 0;
744
745 memset(&mig, 0, sizeof(mig));
746 mig.vma = vma;
747 mig.start = start;
748 mig.end = end;
749 mig.src = &src_pfn;
750 mig.dst = &dst_pfn;
751 mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
752
753 ret = migrate_vma_setup(&mig);
754 if (ret)
755 return ret;
756
757 if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
758 ret = -1;
759 goto out_finalize;
760 }
761
762 dpage = kvmppc_uvmem_get_page(gpa, kvm);
763 if (!dpage) {
764 ret = -1;
765 goto out_finalize;
766 }
767
768 if (pagein) {
769 pfn = *mig.src >> MIGRATE_PFN_SHIFT;
770 spage = migrate_pfn_to_page(*mig.src);
771 if (spage) {
772 ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
773 gpa, 0, page_shift);
774 if (ret)
775 goto out_finalize;
776 }
777 }
778
779 *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
780 migrate_vma_pages(&mig);
781 out_finalize:
782 migrate_vma_finalize(&mig);
783 return ret;
784 }
785
kvmppc_uv_migrate_mem_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot)786 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
787 const struct kvm_memory_slot *memslot)
788 {
789 unsigned long gfn = memslot->base_gfn;
790 struct vm_area_struct *vma;
791 unsigned long start, end;
792 int ret = 0;
793
794 mmap_read_lock(kvm->mm);
795 mutex_lock(&kvm->arch.uvmem_lock);
796 while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
797 ret = H_STATE;
798 start = gfn_to_hva(kvm, gfn);
799 if (kvm_is_error_hva(start))
800 break;
801
802 end = start + (1UL << PAGE_SHIFT);
803 vma = find_vma_intersection(kvm->mm, start, end);
804 if (!vma || vma->vm_start > start || vma->vm_end < end)
805 break;
806
807 ret = kvmppc_svm_page_in(vma, start, end,
808 (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
809 if (ret) {
810 ret = H_STATE;
811 break;
812 }
813
814 /* relinquish the cpu if needed */
815 cond_resched();
816 }
817 mutex_unlock(&kvm->arch.uvmem_lock);
818 mmap_read_unlock(kvm->mm);
819 return ret;
820 }
821
kvmppc_h_svm_init_done(struct kvm * kvm)822 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
823 {
824 struct kvm_memslots *slots;
825 struct kvm_memory_slot *memslot;
826 int srcu_idx;
827 long ret = H_SUCCESS;
828
829 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
830 return H_UNSUPPORTED;
831
832 /* migrate any unmoved normal pfn to device pfns*/
833 srcu_idx = srcu_read_lock(&kvm->srcu);
834 slots = kvm_memslots(kvm);
835 kvm_for_each_memslot(memslot, slots) {
836 ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
837 if (ret) {
838 /*
839 * The pages will remain transitioned.
840 * Its the callers responsibility to
841 * terminate the VM, which will undo
842 * all state of the VM. Till then
843 * this VM is in a erroneous state.
844 * Its KVMPPC_SECURE_INIT_DONE will
845 * remain unset.
846 */
847 ret = H_STATE;
848 goto out;
849 }
850 }
851
852 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
853 pr_info("LPID %d went secure\n", kvm->arch.lpid);
854
855 out:
856 srcu_read_unlock(&kvm->srcu, srcu_idx);
857 return ret;
858 }
859
860 /*
861 * Shares the page with HV, thus making it a normal page.
862 *
863 * - If the page is already secure, then provision a new page and share
864 * - If the page is a normal page, share the existing page
865 *
866 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
867 * to unmap the device page from QEMU's page tables.
868 */
kvmppc_share_page(struct kvm * kvm,unsigned long gpa,unsigned long page_shift)869 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
870 unsigned long page_shift)
871 {
872
873 int ret = H_PARAMETER;
874 struct page *uvmem_page;
875 struct kvmppc_uvmem_page_pvt *pvt;
876 unsigned long pfn;
877 unsigned long gfn = gpa >> page_shift;
878 int srcu_idx;
879 unsigned long uvmem_pfn;
880
881 srcu_idx = srcu_read_lock(&kvm->srcu);
882 mutex_lock(&kvm->arch.uvmem_lock);
883 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
884 uvmem_page = pfn_to_page(uvmem_pfn);
885 pvt = uvmem_page->zone_device_data;
886 pvt->skip_page_out = true;
887 /*
888 * do not drop the GFN. It is a valid GFN
889 * that is transitioned to a shared GFN.
890 */
891 pvt->remove_gfn = false;
892 }
893
894 retry:
895 mutex_unlock(&kvm->arch.uvmem_lock);
896 pfn = gfn_to_pfn(kvm, gfn);
897 if (is_error_noslot_pfn(pfn))
898 goto out;
899
900 mutex_lock(&kvm->arch.uvmem_lock);
901 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
902 uvmem_page = pfn_to_page(uvmem_pfn);
903 pvt = uvmem_page->zone_device_data;
904 pvt->skip_page_out = true;
905 pvt->remove_gfn = false; /* it continues to be a valid GFN */
906 kvm_release_pfn_clean(pfn);
907 goto retry;
908 }
909
910 if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
911 page_shift)) {
912 kvmppc_gfn_shared(gfn, kvm);
913 ret = H_SUCCESS;
914 }
915 kvm_release_pfn_clean(pfn);
916 mutex_unlock(&kvm->arch.uvmem_lock);
917 out:
918 srcu_read_unlock(&kvm->srcu, srcu_idx);
919 return ret;
920 }
921
922 /*
923 * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
924 *
925 * H_PAGE_IN_SHARED flag makes the page shared which means that the same
926 * memory in is visible from both UV and HV.
927 */
kvmppc_h_svm_page_in(struct kvm * kvm,unsigned long gpa,unsigned long flags,unsigned long page_shift)928 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
929 unsigned long flags,
930 unsigned long page_shift)
931 {
932 unsigned long start, end;
933 struct vm_area_struct *vma;
934 int srcu_idx;
935 unsigned long gfn = gpa >> page_shift;
936 int ret;
937
938 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
939 return H_UNSUPPORTED;
940
941 if (page_shift != PAGE_SHIFT)
942 return H_P3;
943
944 if (flags & ~H_PAGE_IN_SHARED)
945 return H_P2;
946
947 if (flags & H_PAGE_IN_SHARED)
948 return kvmppc_share_page(kvm, gpa, page_shift);
949
950 ret = H_PARAMETER;
951 srcu_idx = srcu_read_lock(&kvm->srcu);
952 mmap_read_lock(kvm->mm);
953
954 start = gfn_to_hva(kvm, gfn);
955 if (kvm_is_error_hva(start))
956 goto out;
957
958 mutex_lock(&kvm->arch.uvmem_lock);
959 /* Fail the page-in request of an already paged-in page */
960 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
961 goto out_unlock;
962
963 end = start + (1UL << page_shift);
964 vma = find_vma_intersection(kvm->mm, start, end);
965 if (!vma || vma->vm_start > start || vma->vm_end < end)
966 goto out_unlock;
967
968 if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
969 true))
970 goto out_unlock;
971
972 ret = H_SUCCESS;
973
974 out_unlock:
975 mutex_unlock(&kvm->arch.uvmem_lock);
976 out:
977 mmap_read_unlock(kvm->mm);
978 srcu_read_unlock(&kvm->srcu, srcu_idx);
979 return ret;
980 }
981
982
983 /*
984 * Fault handler callback that gets called when HV touches any page that
985 * has been moved to secure memory, we ask UV to give back the page by
986 * issuing UV_PAGE_OUT uvcall.
987 *
988 * This eventually results in dropping of device PFN and the newly
989 * provisioned page/PFN gets populated in QEMU page tables.
990 */
kvmppc_uvmem_migrate_to_ram(struct vm_fault * vmf)991 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
992 {
993 struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
994
995 if (kvmppc_svm_page_out(vmf->vma, vmf->address,
996 vmf->address + PAGE_SIZE, PAGE_SHIFT,
997 pvt->kvm, pvt->gpa, vmf->page))
998 return VM_FAULT_SIGBUS;
999 else
1000 return 0;
1001 }
1002
1003 /*
1004 * Release the device PFN back to the pool
1005 *
1006 * Gets called when secure GFN tranistions from a secure-PFN
1007 * to a normal PFN during H_SVM_PAGE_OUT.
1008 * Gets called with kvm->arch.uvmem_lock held.
1009 */
kvmppc_uvmem_page_free(struct page * page)1010 static void kvmppc_uvmem_page_free(struct page *page)
1011 {
1012 unsigned long pfn = page_to_pfn(page) -
1013 (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
1014 struct kvmppc_uvmem_page_pvt *pvt;
1015
1016 spin_lock(&kvmppc_uvmem_bitmap_lock);
1017 bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
1018 spin_unlock(&kvmppc_uvmem_bitmap_lock);
1019
1020 pvt = page->zone_device_data;
1021 page->zone_device_data = NULL;
1022 if (pvt->remove_gfn)
1023 kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1024 else
1025 kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1026 kfree(pvt);
1027 }
1028
1029 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
1030 .page_free = kvmppc_uvmem_page_free,
1031 .migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
1032 };
1033
1034 /*
1035 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
1036 */
1037 unsigned long
kvmppc_h_svm_page_out(struct kvm * kvm,unsigned long gpa,unsigned long flags,unsigned long page_shift)1038 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
1039 unsigned long flags, unsigned long page_shift)
1040 {
1041 unsigned long gfn = gpa >> page_shift;
1042 unsigned long start, end;
1043 struct vm_area_struct *vma;
1044 int srcu_idx;
1045 int ret;
1046
1047 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
1048 return H_UNSUPPORTED;
1049
1050 if (page_shift != PAGE_SHIFT)
1051 return H_P3;
1052
1053 if (flags)
1054 return H_P2;
1055
1056 ret = H_PARAMETER;
1057 srcu_idx = srcu_read_lock(&kvm->srcu);
1058 mmap_read_lock(kvm->mm);
1059 start = gfn_to_hva(kvm, gfn);
1060 if (kvm_is_error_hva(start))
1061 goto out;
1062
1063 end = start + (1UL << page_shift);
1064 vma = find_vma_intersection(kvm->mm, start, end);
1065 if (!vma || vma->vm_start > start || vma->vm_end < end)
1066 goto out;
1067
1068 if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL))
1069 ret = H_SUCCESS;
1070 out:
1071 mmap_read_unlock(kvm->mm);
1072 srcu_read_unlock(&kvm->srcu, srcu_idx);
1073 return ret;
1074 }
1075
kvmppc_send_page_to_uv(struct kvm * kvm,unsigned long gfn)1076 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
1077 {
1078 unsigned long pfn;
1079 int ret = U_SUCCESS;
1080
1081 pfn = gfn_to_pfn(kvm, gfn);
1082 if (is_error_noslot_pfn(pfn))
1083 return -EFAULT;
1084
1085 mutex_lock(&kvm->arch.uvmem_lock);
1086 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
1087 goto out;
1088
1089 ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
1090 0, PAGE_SHIFT);
1091 out:
1092 kvm_release_pfn_clean(pfn);
1093 mutex_unlock(&kvm->arch.uvmem_lock);
1094 return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
1095 }
1096
kvmppc_uvmem_memslot_create(struct kvm * kvm,const struct kvm_memory_slot * new)1097 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
1098 {
1099 int ret = __kvmppc_uvmem_memslot_create(kvm, new);
1100
1101 if (!ret)
1102 ret = kvmppc_uv_migrate_mem_slot(kvm, new);
1103
1104 return ret;
1105 }
1106
kvmppc_uvmem_memslot_delete(struct kvm * kvm,const struct kvm_memory_slot * old)1107 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
1108 {
1109 __kvmppc_uvmem_memslot_delete(kvm, old);
1110 }
1111
kvmppc_get_secmem_size(void)1112 static u64 kvmppc_get_secmem_size(void)
1113 {
1114 struct device_node *np;
1115 int i, len;
1116 const __be32 *prop;
1117 u64 size = 0;
1118
1119 /*
1120 * First try the new ibm,secure-memory nodes which supersede the
1121 * secure-memory-ranges property.
1122 * If we found some, no need to read the deprecated ones.
1123 */
1124 for_each_compatible_node(np, NULL, "ibm,secure-memory") {
1125 prop = of_get_property(np, "reg", &len);
1126 if (!prop)
1127 continue;
1128 size += of_read_number(prop + 2, 2);
1129 }
1130 if (size)
1131 return size;
1132
1133 np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
1134 if (!np)
1135 goto out;
1136
1137 prop = of_get_property(np, "secure-memory-ranges", &len);
1138 if (!prop)
1139 goto out_put;
1140
1141 for (i = 0; i < len / (sizeof(*prop) * 4); i++)
1142 size += of_read_number(prop + (i * 4) + 2, 2);
1143
1144 out_put:
1145 of_node_put(np);
1146 out:
1147 return size;
1148 }
1149
kvmppc_uvmem_init(void)1150 int kvmppc_uvmem_init(void)
1151 {
1152 int ret = 0;
1153 unsigned long size;
1154 struct resource *res;
1155 void *addr;
1156 unsigned long pfn_last, pfn_first;
1157
1158 size = kvmppc_get_secmem_size();
1159 if (!size) {
1160 /*
1161 * Don't fail the initialization of kvm-hv module if
1162 * the platform doesn't export ibm,uv-firmware node.
1163 * Let normal guests run on such PEF-disabled platform.
1164 */
1165 pr_info("KVMPPC-UVMEM: No support for secure guests\n");
1166 goto out;
1167 }
1168
1169 res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
1170 if (IS_ERR(res)) {
1171 ret = PTR_ERR(res);
1172 goto out;
1173 }
1174
1175 kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
1176 kvmppc_uvmem_pgmap.range.start = res->start;
1177 kvmppc_uvmem_pgmap.range.end = res->end;
1178 kvmppc_uvmem_pgmap.nr_range = 1;
1179 kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
1180 /* just one global instance: */
1181 kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
1182 addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
1183 if (IS_ERR(addr)) {
1184 ret = PTR_ERR(addr);
1185 goto out_free_region;
1186 }
1187
1188 pfn_first = res->start >> PAGE_SHIFT;
1189 pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
1190 kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
1191 sizeof(unsigned long), GFP_KERNEL);
1192 if (!kvmppc_uvmem_bitmap) {
1193 ret = -ENOMEM;
1194 goto out_unmap;
1195 }
1196
1197 pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
1198 return ret;
1199 out_unmap:
1200 memunmap_pages(&kvmppc_uvmem_pgmap);
1201 out_free_region:
1202 release_mem_region(res->start, size);
1203 out:
1204 return ret;
1205 }
1206
kvmppc_uvmem_free(void)1207 void kvmppc_uvmem_free(void)
1208 {
1209 if (!kvmppc_uvmem_bitmap)
1210 return;
1211
1212 memunmap_pages(&kvmppc_uvmem_pgmap);
1213 release_mem_region(kvmppc_uvmem_pgmap.range.start,
1214 range_len(&kvmppc_uvmem_pgmap.range));
1215 kfree(kvmppc_uvmem_bitmap);
1216 }
1217