• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <linux/mm.h>
27 #include <linux/kernel.h>
28 #include <asm/cacheflush.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include "bpf_jit.h"
34 
35 struct bpf_jit {
36 	u32 seen;		/* Flags to remember seen eBPF instructions */
37 	u32 seen_reg[16];	/* Array to remember which registers are used */
38 	u32 *addrs;		/* Array with relative instruction addresses */
39 	u8 *prg_buf;		/* Start of program */
40 	int size;		/* Size of program and literal pool */
41 	int size_prg;		/* Size of program */
42 	int prg;		/* Current position in program */
43 	int lit32_start;	/* Start of 32-bit literal pool */
44 	int lit32;		/* Current position in 32-bit literal pool */
45 	int lit64_start;	/* Start of 64-bit literal pool */
46 	int lit64;		/* Current position in 64-bit literal pool */
47 	int base_ip;		/* Base address for literal pool */
48 	int exit_ip;		/* Address of exit */
49 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
50 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
51 	int tail_call_start;	/* Tail call start offset */
52 	int excnt;		/* Number of exception table entries */
53 };
54 
55 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
56 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
57 #define SEEN_FUNC	BIT(2)		/* calls C functions */
58 #define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
59 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
60 
61 /*
62  * s390 registers
63  */
64 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
65 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
66 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
67 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
68 #define REG_0		REG_W0			/* Register 0 */
69 #define REG_1		REG_W1			/* Register 1 */
70 #define REG_2		BPF_REG_1		/* Register 2 */
71 #define REG_14		BPF_REG_0		/* Register 14 */
72 
73 /*
74  * Mapping of BPF registers to s390 registers
75  */
76 static const int reg2hex[] = {
77 	/* Return code */
78 	[BPF_REG_0]	= 14,
79 	/* Function parameters */
80 	[BPF_REG_1]	= 2,
81 	[BPF_REG_2]	= 3,
82 	[BPF_REG_3]	= 4,
83 	[BPF_REG_4]	= 5,
84 	[BPF_REG_5]	= 6,
85 	/* Call saved registers */
86 	[BPF_REG_6]	= 7,
87 	[BPF_REG_7]	= 8,
88 	[BPF_REG_8]	= 9,
89 	[BPF_REG_9]	= 10,
90 	/* BPF stack pointer */
91 	[BPF_REG_FP]	= 13,
92 	/* Register for blinding */
93 	[BPF_REG_AX]	= 12,
94 	/* Work registers for s390x backend */
95 	[REG_W0]	= 0,
96 	[REG_W1]	= 1,
97 	[REG_L]		= 11,
98 	[REG_15]	= 15,
99 };
100 
reg(u32 dst_reg,u32 src_reg)101 static inline u32 reg(u32 dst_reg, u32 src_reg)
102 {
103 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104 }
105 
reg_high(u32 reg)106 static inline u32 reg_high(u32 reg)
107 {
108 	return reg2hex[reg] << 4;
109 }
110 
reg_set_seen(struct bpf_jit * jit,u32 b1)111 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112 {
113 	u32 r1 = reg2hex[b1];
114 
115 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
116 		jit->seen_reg[r1] = 1;
117 }
118 
119 #define REG_SET_SEEN(b1)					\
120 ({								\
121 	reg_set_seen(jit, b1);					\
122 })
123 
124 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125 
126 /*
127  * EMIT macros for code generation
128  */
129 
130 #define _EMIT2(op)						\
131 ({								\
132 	if (jit->prg_buf)					\
133 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
134 	jit->prg += 2;						\
135 })
136 
137 #define EMIT2(op, b1, b2)					\
138 ({								\
139 	_EMIT2((op) | reg(b1, b2));				\
140 	REG_SET_SEEN(b1);					\
141 	REG_SET_SEEN(b2);					\
142 })
143 
144 #define _EMIT4(op)						\
145 ({								\
146 	if (jit->prg_buf)					\
147 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
148 	jit->prg += 4;						\
149 })
150 
151 #define EMIT4(op, b1, b2)					\
152 ({								\
153 	_EMIT4((op) | reg(b1, b2));				\
154 	REG_SET_SEEN(b1);					\
155 	REG_SET_SEEN(b2);					\
156 })
157 
158 #define EMIT4_RRF(op, b1, b2, b3)				\
159 ({								\
160 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
161 	REG_SET_SEEN(b1);					\
162 	REG_SET_SEEN(b2);					\
163 	REG_SET_SEEN(b3);					\
164 })
165 
166 #define _EMIT4_DISP(op, disp)					\
167 ({								\
168 	unsigned int __disp = (disp) & 0xfff;			\
169 	_EMIT4((op) | __disp);					\
170 })
171 
172 #define EMIT4_DISP(op, b1, b2, disp)				\
173 ({								\
174 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
175 		    reg_high(b2) << 8, (disp));			\
176 	REG_SET_SEEN(b1);					\
177 	REG_SET_SEEN(b2);					\
178 })
179 
180 #define EMIT4_IMM(op, b1, imm)					\
181 ({								\
182 	unsigned int __imm = (imm) & 0xffff;			\
183 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
184 	REG_SET_SEEN(b1);					\
185 })
186 
187 #define EMIT4_PCREL(op, pcrel)					\
188 ({								\
189 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
190 	_EMIT4((op) | __pcrel);					\
191 })
192 
193 #define EMIT4_PCREL_RIC(op, mask, target)			\
194 ({								\
195 	int __rel = ((target) - jit->prg) / 2;			\
196 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
197 })
198 
199 #define _EMIT6(op1, op2)					\
200 ({								\
201 	if (jit->prg_buf) {					\
202 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
203 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
204 	}							\
205 	jit->prg += 6;						\
206 })
207 
208 #define _EMIT6_DISP(op1, op2, disp)				\
209 ({								\
210 	unsigned int __disp = (disp) & 0xfff;			\
211 	_EMIT6((op1) | __disp, op2);				\
212 })
213 
214 #define _EMIT6_DISP_LH(op1, op2, disp)				\
215 ({								\
216 	u32 _disp = (u32) (disp);				\
217 	unsigned int __disp_h = _disp & 0xff000;		\
218 	unsigned int __disp_l = _disp & 0x00fff;		\
219 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
220 })
221 
222 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
223 ({								\
224 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
225 		       reg_high(b3) << 8, op2, disp);		\
226 	REG_SET_SEEN(b1);					\
227 	REG_SET_SEEN(b2);					\
228 	REG_SET_SEEN(b3);					\
229 })
230 
231 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
232 ({								\
233 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
234 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
235 	       (op2) | (mask) << 12);				\
236 	REG_SET_SEEN(b1);					\
237 	REG_SET_SEEN(b2);					\
238 })
239 
240 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
241 ({								\
242 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
243 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
244 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
245 	REG_SET_SEEN(b1);					\
246 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
247 })
248 
249 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
250 ({								\
251 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
252 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
253 	REG_SET_SEEN(b1);					\
254 	REG_SET_SEEN(b2);					\
255 })
256 
257 #define EMIT6_PCREL_RILB(op, b, target)				\
258 ({								\
259 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
260 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
261 	REG_SET_SEEN(b);					\
262 })
263 
264 #define EMIT6_PCREL_RIL(op, target)				\
265 ({								\
266 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
267 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
268 })
269 
270 #define EMIT6_PCREL_RILC(op, mask, target)			\
271 ({								\
272 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
273 })
274 
275 #define _EMIT6_IMM(op, imm)					\
276 ({								\
277 	unsigned int __imm = (imm);				\
278 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
279 })
280 
281 #define EMIT6_IMM(op, b1, imm)					\
282 ({								\
283 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
284 	REG_SET_SEEN(b1);					\
285 })
286 
287 #define _EMIT_CONST_U32(val)					\
288 ({								\
289 	unsigned int ret;					\
290 	ret = jit->lit32;					\
291 	if (jit->prg_buf)					\
292 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
293 	jit->lit32 += 4;					\
294 	ret;							\
295 })
296 
297 #define EMIT_CONST_U32(val)					\
298 ({								\
299 	jit->seen |= SEEN_LITERAL;				\
300 	_EMIT_CONST_U32(val) - jit->base_ip;			\
301 })
302 
303 #define _EMIT_CONST_U64(val)					\
304 ({								\
305 	unsigned int ret;					\
306 	ret = jit->lit64;					\
307 	if (jit->prg_buf)					\
308 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
309 	jit->lit64 += 8;					\
310 	ret;							\
311 })
312 
313 #define EMIT_CONST_U64(val)					\
314 ({								\
315 	jit->seen |= SEEN_LITERAL;				\
316 	_EMIT_CONST_U64(val) - jit->base_ip;			\
317 })
318 
319 #define EMIT_ZERO(b1)						\
320 ({								\
321 	if (!fp->aux->verifier_zext) {				\
322 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
323 		EMIT4(0xb9160000, b1, b1);			\
324 		REG_SET_SEEN(b1);				\
325 	}							\
326 })
327 
328 /*
329  * Return whether this is the first pass. The first pass is special, since we
330  * don't know any sizes yet, and thus must be conservative.
331  */
is_first_pass(struct bpf_jit * jit)332 static bool is_first_pass(struct bpf_jit *jit)
333 {
334 	return jit->size == 0;
335 }
336 
337 /*
338  * Return whether this is the code generation pass. The code generation pass is
339  * special, since we should change as little as possible.
340  */
is_codegen_pass(struct bpf_jit * jit)341 static bool is_codegen_pass(struct bpf_jit *jit)
342 {
343 	return jit->prg_buf;
344 }
345 
346 /*
347  * Return whether "rel" can be encoded as a short PC-relative offset
348  */
is_valid_rel(int rel)349 static bool is_valid_rel(int rel)
350 {
351 	return rel >= -65536 && rel <= 65534;
352 }
353 
354 /*
355  * Return whether "off" can be reached using a short PC-relative offset
356  */
can_use_rel(struct bpf_jit * jit,int off)357 static bool can_use_rel(struct bpf_jit *jit, int off)
358 {
359 	return is_valid_rel(off - jit->prg);
360 }
361 
362 /*
363  * Return whether given displacement can be encoded using
364  * Long-Displacement Facility
365  */
is_valid_ldisp(int disp)366 static bool is_valid_ldisp(int disp)
367 {
368 	return disp >= -524288 && disp <= 524287;
369 }
370 
371 /*
372  * Return whether the next 32-bit literal pool entry can be referenced using
373  * Long-Displacement Facility
374  */
can_use_ldisp_for_lit32(struct bpf_jit * jit)375 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
376 {
377 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
378 }
379 
380 /*
381  * Return whether the next 64-bit literal pool entry can be referenced using
382  * Long-Displacement Facility
383  */
can_use_ldisp_for_lit64(struct bpf_jit * jit)384 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
385 {
386 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
387 }
388 
389 /*
390  * Fill whole space with illegal instructions
391  */
jit_fill_hole(void * area,unsigned int size)392 static void jit_fill_hole(void *area, unsigned int size)
393 {
394 	memset(area, 0, size);
395 }
396 
397 /*
398  * Save registers from "rs" (register start) to "re" (register end) on stack
399  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)400 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
401 {
402 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
403 
404 	if (rs == re)
405 		/* stg %rs,off(%r15) */
406 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
407 	else
408 		/* stmg %rs,%re,off(%r15) */
409 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
410 }
411 
412 /*
413  * Restore registers from "rs" (register start) to "re" (register end) on stack
414  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)415 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
416 {
417 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
418 
419 	if (jit->seen & SEEN_STACK)
420 		off += STK_OFF + stack_depth;
421 
422 	if (rs == re)
423 		/* lg %rs,off(%r15) */
424 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
425 	else
426 		/* lmg %rs,%re,off(%r15) */
427 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
428 }
429 
430 /*
431  * Return first seen register (from start)
432  */
get_start(struct bpf_jit * jit,int start)433 static int get_start(struct bpf_jit *jit, int start)
434 {
435 	int i;
436 
437 	for (i = start; i <= 15; i++) {
438 		if (jit->seen_reg[i])
439 			return i;
440 	}
441 	return 0;
442 }
443 
444 /*
445  * Return last seen register (from start) (gap >= 2)
446  */
get_end(struct bpf_jit * jit,int start)447 static int get_end(struct bpf_jit *jit, int start)
448 {
449 	int i;
450 
451 	for (i = start; i < 15; i++) {
452 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
453 			return i - 1;
454 	}
455 	return jit->seen_reg[15] ? 15 : 14;
456 }
457 
458 #define REGS_SAVE	1
459 #define REGS_RESTORE	0
460 /*
461  * Save and restore clobbered registers (6-15) on stack.
462  * We save/restore registers in chunks with gap >= 2 registers.
463  */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)464 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
465 {
466 	const int last = 15, save_restore_size = 6;
467 	int re = 6, rs;
468 
469 	if (is_first_pass(jit)) {
470 		/*
471 		 * We don't know yet which registers are used. Reserve space
472 		 * conservatively.
473 		 */
474 		jit->prg += (last - re + 1) * save_restore_size;
475 		return;
476 	}
477 
478 	do {
479 		rs = get_start(jit, re);
480 		if (!rs)
481 			break;
482 		re = get_end(jit, rs + 1);
483 		if (op == REGS_SAVE)
484 			save_regs(jit, rs, re);
485 		else
486 			restore_regs(jit, rs, re, stack_depth);
487 		re++;
488 	} while (re <= last);
489 }
490 
bpf_skip(struct bpf_jit * jit,int size)491 static void bpf_skip(struct bpf_jit *jit, int size)
492 {
493 	if (size >= 6 && !is_valid_rel(size)) {
494 		/* brcl 0xf,size */
495 		EMIT6_PCREL_RIL(0xc0f4000000, size);
496 		size -= 6;
497 	} else if (size >= 4 && is_valid_rel(size)) {
498 		/* brc 0xf,size */
499 		EMIT4_PCREL(0xa7f40000, size);
500 		size -= 4;
501 	}
502 	while (size >= 2) {
503 		/* bcr 0,%0 */
504 		_EMIT2(0x0700);
505 		size -= 2;
506 	}
507 }
508 
509 /*
510  * Emit function prologue
511  *
512  * Save registers and create stack frame if necessary.
513  * See stack frame layout desription in "bpf_jit.h"!
514  */
bpf_jit_prologue(struct bpf_jit * jit,u32 stack_depth)515 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
516 {
517 	if (jit->seen & SEEN_TAIL_CALL) {
518 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
519 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
520 	} else {
521 		/*
522 		 * There are no tail calls. Insert nops in order to have
523 		 * tail_call_start at a predictable offset.
524 		 */
525 		bpf_skip(jit, 6);
526 	}
527 	/* Tail calls have to skip above initialization */
528 	jit->tail_call_start = jit->prg;
529 	/* Save registers */
530 	save_restore_regs(jit, REGS_SAVE, stack_depth);
531 	/* Setup literal pool */
532 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
533 		if (!is_first_pass(jit) &&
534 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
535 			/* basr %l,0 */
536 			EMIT2(0x0d00, REG_L, REG_0);
537 			jit->base_ip = jit->prg;
538 		} else {
539 			/* larl %l,lit32_start */
540 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
541 			jit->base_ip = jit->lit32_start;
542 		}
543 	}
544 	/* Setup stack and backchain */
545 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
546 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
547 			/* lgr %w1,%r15 (backchain) */
548 			EMIT4(0xb9040000, REG_W1, REG_15);
549 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
550 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
551 		/* aghi %r15,-STK_OFF */
552 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
553 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
554 			/* stg %w1,152(%r15) (backchain) */
555 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
556 				      REG_15, 152);
557 	}
558 }
559 
560 /*
561  * Function epilogue
562  */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)563 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
564 {
565 	jit->exit_ip = jit->prg;
566 	/* Load exit code: lgr %r2,%b0 */
567 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
568 	/* Restore registers */
569 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
570 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
571 		jit->r14_thunk_ip = jit->prg;
572 		/* Generate __s390_indirect_jump_r14 thunk */
573 		if (test_facility(35)) {
574 			/* exrl %r0,.+10 */
575 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
576 		} else {
577 			/* larl %r1,.+14 */
578 			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
579 			/* ex 0,0(%r1) */
580 			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
581 		}
582 		/* j . */
583 		EMIT4_PCREL(0xa7f40000, 0);
584 	}
585 	/* br %r14 */
586 	_EMIT2(0x07fe);
587 
588 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
589 	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
590 		jit->r1_thunk_ip = jit->prg;
591 		/* Generate __s390_indirect_jump_r1 thunk */
592 		if (test_facility(35)) {
593 			/* exrl %r0,.+10 */
594 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
595 			/* j . */
596 			EMIT4_PCREL(0xa7f40000, 0);
597 			/* br %r1 */
598 			_EMIT2(0x07f1);
599 		} else {
600 			/* ex 0,S390_lowcore.br_r1_tampoline */
601 			EMIT4_DISP(0x44000000, REG_0, REG_0,
602 				   offsetof(struct lowcore, br_r1_trampoline));
603 			/* j . */
604 			EMIT4_PCREL(0xa7f40000, 0);
605 		}
606 	}
607 }
608 
get_probe_mem_regno(const u8 * insn)609 static int get_probe_mem_regno(const u8 *insn)
610 {
611 	/*
612 	 * insn must point to llgc, llgh, llgf or lg, which have destination
613 	 * register at the same position.
614 	 */
615 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
616 		return -1;
617 	if (insn[5] != 0x90 && /* llgc */
618 	    insn[5] != 0x91 && /* llgh */
619 	    insn[5] != 0x16 && /* llgf */
620 	    insn[5] != 0x04) /* lg */
621 		return -1;
622 	return insn[1] >> 4;
623 }
624 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)625 static bool ex_handler_bpf(const struct exception_table_entry *x,
626 			   struct pt_regs *regs)
627 {
628 	int regno;
629 	u8 *insn;
630 
631 	regs->psw.addr = extable_fixup(x);
632 	insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
633 	regno = get_probe_mem_regno(insn);
634 	if (WARN_ON_ONCE(regno < 0))
635 		/* JIT bug - unexpected instruction. */
636 		return false;
637 	regs->gprs[regno] = 0;
638 	return true;
639 }
640 
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)641 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
642 			     int probe_prg, int nop_prg)
643 {
644 	struct exception_table_entry *ex;
645 	s64 delta;
646 	u8 *insn;
647 	int prg;
648 	int i;
649 
650 	if (!fp->aux->extable)
651 		/* Do nothing during early JIT passes. */
652 		return 0;
653 	insn = jit->prg_buf + probe_prg;
654 	if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
655 		/* JIT bug - unexpected probe instruction. */
656 		return -1;
657 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
658 		/* JIT bug - gap between probe and nop instructions. */
659 		return -1;
660 	for (i = 0; i < 2; i++) {
661 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
662 			/* Verifier bug - not enough entries. */
663 			return -1;
664 		ex = &fp->aux->extable[jit->excnt];
665 		/* Add extable entries for probe and nop instructions. */
666 		prg = i == 0 ? probe_prg : nop_prg;
667 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
668 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
669 			/* JIT bug - code and extable must be close. */
670 			return -1;
671 		ex->insn = delta;
672 		/*
673 		 * Always land on the nop. Note that extable infrastructure
674 		 * ignores fixup field, it is handled by ex_handler_bpf().
675 		 */
676 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
677 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
678 			/* JIT bug - landing pad and extable must be close. */
679 			return -1;
680 		ex->fixup = delta;
681 		ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
682 		jit->excnt++;
683 	}
684 	return 0;
685 }
686 
687 /*
688  * Compile one eBPF instruction into s390x code
689  *
690  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
691  * stack space for the large switch statement.
692  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)693 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
694 				 int i, bool extra_pass, u32 stack_depth)
695 {
696 	struct bpf_insn *insn = &fp->insnsi[i];
697 	u32 dst_reg = insn->dst_reg;
698 	u32 src_reg = insn->src_reg;
699 	int last, insn_count = 1;
700 	u32 *addrs = jit->addrs;
701 	s32 imm = insn->imm;
702 	s16 off = insn->off;
703 	int probe_prg = -1;
704 	unsigned int mask;
705 	int nop_prg;
706 	int err;
707 
708 	if (BPF_CLASS(insn->code) == BPF_LDX &&
709 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
710 		probe_prg = jit->prg;
711 
712 	switch (insn->code) {
713 	/*
714 	 * BPF_MOV
715 	 */
716 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
717 		/* llgfr %dst,%src */
718 		EMIT4(0xb9160000, dst_reg, src_reg);
719 		if (insn_is_zext(&insn[1]))
720 			insn_count = 2;
721 		break;
722 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
723 		/* lgr %dst,%src */
724 		EMIT4(0xb9040000, dst_reg, src_reg);
725 		break;
726 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
727 		/* llilf %dst,imm */
728 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
729 		if (insn_is_zext(&insn[1]))
730 			insn_count = 2;
731 		break;
732 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
733 		/* lgfi %dst,imm */
734 		EMIT6_IMM(0xc0010000, dst_reg, imm);
735 		break;
736 	/*
737 	 * BPF_LD 64
738 	 */
739 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
740 	{
741 		/* 16 byte instruction that uses two 'struct bpf_insn' */
742 		u64 imm64;
743 
744 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
745 		/* lgrl %dst,imm */
746 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
747 		insn_count = 2;
748 		break;
749 	}
750 	/*
751 	 * BPF_ADD
752 	 */
753 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
754 		/* ar %dst,%src */
755 		EMIT2(0x1a00, dst_reg, src_reg);
756 		EMIT_ZERO(dst_reg);
757 		break;
758 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
759 		/* agr %dst,%src */
760 		EMIT4(0xb9080000, dst_reg, src_reg);
761 		break;
762 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
763 		if (imm != 0) {
764 			/* alfi %dst,imm */
765 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
766 		}
767 		EMIT_ZERO(dst_reg);
768 		break;
769 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
770 		if (!imm)
771 			break;
772 		/* agfi %dst,imm */
773 		EMIT6_IMM(0xc2080000, dst_reg, imm);
774 		break;
775 	/*
776 	 * BPF_SUB
777 	 */
778 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
779 		/* sr %dst,%src */
780 		EMIT2(0x1b00, dst_reg, src_reg);
781 		EMIT_ZERO(dst_reg);
782 		break;
783 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
784 		/* sgr %dst,%src */
785 		EMIT4(0xb9090000, dst_reg, src_reg);
786 		break;
787 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
788 		if (imm != 0) {
789 			/* alfi %dst,-imm */
790 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
791 		}
792 		EMIT_ZERO(dst_reg);
793 		break;
794 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
795 		if (!imm)
796 			break;
797 		if (imm == -0x80000000) {
798 			/* algfi %dst,0x80000000 */
799 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
800 		} else {
801 			/* agfi %dst,-imm */
802 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
803 		}
804 		break;
805 	/*
806 	 * BPF_MUL
807 	 */
808 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
809 		/* msr %dst,%src */
810 		EMIT4(0xb2520000, dst_reg, src_reg);
811 		EMIT_ZERO(dst_reg);
812 		break;
813 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
814 		/* msgr %dst,%src */
815 		EMIT4(0xb90c0000, dst_reg, src_reg);
816 		break;
817 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
818 		if (imm != 1) {
819 			/* msfi %r5,imm */
820 			EMIT6_IMM(0xc2010000, dst_reg, imm);
821 		}
822 		EMIT_ZERO(dst_reg);
823 		break;
824 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
825 		if (imm == 1)
826 			break;
827 		/* msgfi %dst,imm */
828 		EMIT6_IMM(0xc2000000, dst_reg, imm);
829 		break;
830 	/*
831 	 * BPF_DIV / BPF_MOD
832 	 */
833 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
834 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
835 	{
836 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
837 
838 		/* lhi %w0,0 */
839 		EMIT4_IMM(0xa7080000, REG_W0, 0);
840 		/* lr %w1,%dst */
841 		EMIT2(0x1800, REG_W1, dst_reg);
842 		/* dlr %w0,%src */
843 		EMIT4(0xb9970000, REG_W0, src_reg);
844 		/* llgfr %dst,%rc */
845 		EMIT4(0xb9160000, dst_reg, rc_reg);
846 		if (insn_is_zext(&insn[1]))
847 			insn_count = 2;
848 		break;
849 	}
850 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
851 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
852 	{
853 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
854 
855 		/* lghi %w0,0 */
856 		EMIT4_IMM(0xa7090000, REG_W0, 0);
857 		/* lgr %w1,%dst */
858 		EMIT4(0xb9040000, REG_W1, dst_reg);
859 		/* dlgr %w0,%dst */
860 		EMIT4(0xb9870000, REG_W0, src_reg);
861 		/* lgr %dst,%rc */
862 		EMIT4(0xb9040000, dst_reg, rc_reg);
863 		break;
864 	}
865 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
866 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
867 	{
868 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
869 
870 		if (imm == 1) {
871 			if (BPF_OP(insn->code) == BPF_MOD)
872 				/* lhgi %dst,0 */
873 				EMIT4_IMM(0xa7090000, dst_reg, 0);
874 			else
875 				EMIT_ZERO(dst_reg);
876 			break;
877 		}
878 		/* lhi %w0,0 */
879 		EMIT4_IMM(0xa7080000, REG_W0, 0);
880 		/* lr %w1,%dst */
881 		EMIT2(0x1800, REG_W1, dst_reg);
882 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
883 			/* dl %w0,<d(imm)>(%l) */
884 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
885 				      EMIT_CONST_U32(imm));
886 		} else {
887 			/* lgfrl %dst,imm */
888 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
889 					 _EMIT_CONST_U32(imm));
890 			jit->seen |= SEEN_LITERAL;
891 			/* dlr %w0,%dst */
892 			EMIT4(0xb9970000, REG_W0, dst_reg);
893 		}
894 		/* llgfr %dst,%rc */
895 		EMIT4(0xb9160000, dst_reg, rc_reg);
896 		if (insn_is_zext(&insn[1]))
897 			insn_count = 2;
898 		break;
899 	}
900 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
901 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
902 	{
903 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
904 
905 		if (imm == 1) {
906 			if (BPF_OP(insn->code) == BPF_MOD)
907 				/* lhgi %dst,0 */
908 				EMIT4_IMM(0xa7090000, dst_reg, 0);
909 			break;
910 		}
911 		/* lghi %w0,0 */
912 		EMIT4_IMM(0xa7090000, REG_W0, 0);
913 		/* lgr %w1,%dst */
914 		EMIT4(0xb9040000, REG_W1, dst_reg);
915 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
916 			/* dlg %w0,<d(imm)>(%l) */
917 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
918 				      EMIT_CONST_U64(imm));
919 		} else {
920 			/* lgrl %dst,imm */
921 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
922 					 _EMIT_CONST_U64(imm));
923 			jit->seen |= SEEN_LITERAL;
924 			/* dlgr %w0,%dst */
925 			EMIT4(0xb9870000, REG_W0, dst_reg);
926 		}
927 		/* lgr %dst,%rc */
928 		EMIT4(0xb9040000, dst_reg, rc_reg);
929 		break;
930 	}
931 	/*
932 	 * BPF_AND
933 	 */
934 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
935 		/* nr %dst,%src */
936 		EMIT2(0x1400, dst_reg, src_reg);
937 		EMIT_ZERO(dst_reg);
938 		break;
939 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
940 		/* ngr %dst,%src */
941 		EMIT4(0xb9800000, dst_reg, src_reg);
942 		break;
943 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
944 		/* nilf %dst,imm */
945 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
946 		EMIT_ZERO(dst_reg);
947 		break;
948 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
949 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
950 			/* ng %dst,<d(imm)>(%l) */
951 			EMIT6_DISP_LH(0xe3000000, 0x0080,
952 				      dst_reg, REG_0, REG_L,
953 				      EMIT_CONST_U64(imm));
954 		} else {
955 			/* lgrl %w0,imm */
956 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
957 					 _EMIT_CONST_U64(imm));
958 			jit->seen |= SEEN_LITERAL;
959 			/* ngr %dst,%w0 */
960 			EMIT4(0xb9800000, dst_reg, REG_W0);
961 		}
962 		break;
963 	/*
964 	 * BPF_OR
965 	 */
966 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
967 		/* or %dst,%src */
968 		EMIT2(0x1600, dst_reg, src_reg);
969 		EMIT_ZERO(dst_reg);
970 		break;
971 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
972 		/* ogr %dst,%src */
973 		EMIT4(0xb9810000, dst_reg, src_reg);
974 		break;
975 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
976 		/* oilf %dst,imm */
977 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
978 		EMIT_ZERO(dst_reg);
979 		break;
980 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
981 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
982 			/* og %dst,<d(imm)>(%l) */
983 			EMIT6_DISP_LH(0xe3000000, 0x0081,
984 				      dst_reg, REG_0, REG_L,
985 				      EMIT_CONST_U64(imm));
986 		} else {
987 			/* lgrl %w0,imm */
988 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
989 					 _EMIT_CONST_U64(imm));
990 			jit->seen |= SEEN_LITERAL;
991 			/* ogr %dst,%w0 */
992 			EMIT4(0xb9810000, dst_reg, REG_W0);
993 		}
994 		break;
995 	/*
996 	 * BPF_XOR
997 	 */
998 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
999 		/* xr %dst,%src */
1000 		EMIT2(0x1700, dst_reg, src_reg);
1001 		EMIT_ZERO(dst_reg);
1002 		break;
1003 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1004 		/* xgr %dst,%src */
1005 		EMIT4(0xb9820000, dst_reg, src_reg);
1006 		break;
1007 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1008 		if (imm != 0) {
1009 			/* xilf %dst,imm */
1010 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1011 		}
1012 		EMIT_ZERO(dst_reg);
1013 		break;
1014 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1015 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1016 			/* xg %dst,<d(imm)>(%l) */
1017 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1018 				      dst_reg, REG_0, REG_L,
1019 				      EMIT_CONST_U64(imm));
1020 		} else {
1021 			/* lgrl %w0,imm */
1022 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1023 					 _EMIT_CONST_U64(imm));
1024 			jit->seen |= SEEN_LITERAL;
1025 			/* xgr %dst,%w0 */
1026 			EMIT4(0xb9820000, dst_reg, REG_W0);
1027 		}
1028 		break;
1029 	/*
1030 	 * BPF_LSH
1031 	 */
1032 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1033 		/* sll %dst,0(%src) */
1034 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1035 		EMIT_ZERO(dst_reg);
1036 		break;
1037 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1038 		/* sllg %dst,%dst,0(%src) */
1039 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1040 		break;
1041 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1042 		if (imm != 0) {
1043 			/* sll %dst,imm(%r0) */
1044 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1045 		}
1046 		EMIT_ZERO(dst_reg);
1047 		break;
1048 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1049 		if (imm == 0)
1050 			break;
1051 		/* sllg %dst,%dst,imm(%r0) */
1052 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1053 		break;
1054 	/*
1055 	 * BPF_RSH
1056 	 */
1057 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1058 		/* srl %dst,0(%src) */
1059 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1060 		EMIT_ZERO(dst_reg);
1061 		break;
1062 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1063 		/* srlg %dst,%dst,0(%src) */
1064 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1065 		break;
1066 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1067 		if (imm != 0) {
1068 			/* srl %dst,imm(%r0) */
1069 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1070 		}
1071 		EMIT_ZERO(dst_reg);
1072 		break;
1073 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1074 		if (imm == 0)
1075 			break;
1076 		/* srlg %dst,%dst,imm(%r0) */
1077 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1078 		break;
1079 	/*
1080 	 * BPF_ARSH
1081 	 */
1082 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1083 		/* sra %dst,%dst,0(%src) */
1084 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1085 		EMIT_ZERO(dst_reg);
1086 		break;
1087 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1088 		/* srag %dst,%dst,0(%src) */
1089 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1090 		break;
1091 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1092 		if (imm != 0) {
1093 			/* sra %dst,imm(%r0) */
1094 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1095 		}
1096 		EMIT_ZERO(dst_reg);
1097 		break;
1098 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1099 		if (imm == 0)
1100 			break;
1101 		/* srag %dst,%dst,imm(%r0) */
1102 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1103 		break;
1104 	/*
1105 	 * BPF_NEG
1106 	 */
1107 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1108 		/* lcr %dst,%dst */
1109 		EMIT2(0x1300, dst_reg, dst_reg);
1110 		EMIT_ZERO(dst_reg);
1111 		break;
1112 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1113 		/* lcgr %dst,%dst */
1114 		EMIT4(0xb9030000, dst_reg, dst_reg);
1115 		break;
1116 	/*
1117 	 * BPF_FROM_BE/LE
1118 	 */
1119 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1120 		/* s390 is big endian, therefore only clear high order bytes */
1121 		switch (imm) {
1122 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1123 			/* llghr %dst,%dst */
1124 			EMIT4(0xb9850000, dst_reg, dst_reg);
1125 			if (insn_is_zext(&insn[1]))
1126 				insn_count = 2;
1127 			break;
1128 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1129 			if (!fp->aux->verifier_zext)
1130 				/* llgfr %dst,%dst */
1131 				EMIT4(0xb9160000, dst_reg, dst_reg);
1132 			break;
1133 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1134 			break;
1135 		}
1136 		break;
1137 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1138 		switch (imm) {
1139 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1140 			/* lrvr %dst,%dst */
1141 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1142 			/* srl %dst,16(%r0) */
1143 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1144 			/* llghr %dst,%dst */
1145 			EMIT4(0xb9850000, dst_reg, dst_reg);
1146 			if (insn_is_zext(&insn[1]))
1147 				insn_count = 2;
1148 			break;
1149 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1150 			/* lrvr %dst,%dst */
1151 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1152 			if (!fp->aux->verifier_zext)
1153 				/* llgfr %dst,%dst */
1154 				EMIT4(0xb9160000, dst_reg, dst_reg);
1155 			break;
1156 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1157 			/* lrvgr %dst,%dst */
1158 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1159 			break;
1160 		}
1161 		break;
1162 	/*
1163 	 * BPF_NOSPEC (speculation barrier)
1164 	 */
1165 	case BPF_ST | BPF_NOSPEC:
1166 		break;
1167 	/*
1168 	 * BPF_ST(X)
1169 	 */
1170 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1171 		/* stcy %src,off(%dst) */
1172 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1173 		jit->seen |= SEEN_MEM;
1174 		break;
1175 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1176 		/* sthy %src,off(%dst) */
1177 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1178 		jit->seen |= SEEN_MEM;
1179 		break;
1180 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1181 		/* sty %src,off(%dst) */
1182 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1183 		jit->seen |= SEEN_MEM;
1184 		break;
1185 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1186 		/* stg %src,off(%dst) */
1187 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1188 		jit->seen |= SEEN_MEM;
1189 		break;
1190 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1191 		/* lhi %w0,imm */
1192 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1193 		/* stcy %w0,off(dst) */
1194 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1195 		jit->seen |= SEEN_MEM;
1196 		break;
1197 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1198 		/* lhi %w0,imm */
1199 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1200 		/* sthy %w0,off(dst) */
1201 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1202 		jit->seen |= SEEN_MEM;
1203 		break;
1204 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1205 		/* llilf %w0,imm  */
1206 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1207 		/* sty %w0,off(%dst) */
1208 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1209 		jit->seen |= SEEN_MEM;
1210 		break;
1211 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1212 		/* lgfi %w0,imm */
1213 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1214 		/* stg %w0,off(%dst) */
1215 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1216 		jit->seen |= SEEN_MEM;
1217 		break;
1218 	/*
1219 	 * BPF_STX XADD (atomic_add)
1220 	 */
1221 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
1222 		/* laal %w0,%src,off(%dst) */
1223 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
1224 			      dst_reg, off);
1225 		jit->seen |= SEEN_MEM;
1226 		break;
1227 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
1228 		/* laalg %w0,%src,off(%dst) */
1229 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
1230 			      dst_reg, off);
1231 		jit->seen |= SEEN_MEM;
1232 		break;
1233 	/*
1234 	 * BPF_LDX
1235 	 */
1236 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1237 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1238 		/* llgc %dst,0(off,%src) */
1239 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1240 		jit->seen |= SEEN_MEM;
1241 		if (insn_is_zext(&insn[1]))
1242 			insn_count = 2;
1243 		break;
1244 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1245 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1246 		/* llgh %dst,0(off,%src) */
1247 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1248 		jit->seen |= SEEN_MEM;
1249 		if (insn_is_zext(&insn[1]))
1250 			insn_count = 2;
1251 		break;
1252 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1253 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1254 		/* llgf %dst,off(%src) */
1255 		jit->seen |= SEEN_MEM;
1256 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1257 		if (insn_is_zext(&insn[1]))
1258 			insn_count = 2;
1259 		break;
1260 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1261 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1262 		/* lg %dst,0(off,%src) */
1263 		jit->seen |= SEEN_MEM;
1264 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1265 		break;
1266 	/*
1267 	 * BPF_JMP / CALL
1268 	 */
1269 	case BPF_JMP | BPF_CALL:
1270 	{
1271 		u64 func;
1272 		bool func_addr_fixed;
1273 		int ret;
1274 
1275 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1276 					    &func, &func_addr_fixed);
1277 		if (ret < 0)
1278 			return -1;
1279 
1280 		REG_SET_SEEN(BPF_REG_5);
1281 		jit->seen |= SEEN_FUNC;
1282 		/* lgrl %w1,func */
1283 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1284 		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1285 			/* brasl %r14,__s390_indirect_jump_r1 */
1286 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1287 		} else {
1288 			/* basr %r14,%w1 */
1289 			EMIT2(0x0d00, REG_14, REG_W1);
1290 		}
1291 		/* lgr %b0,%r2: load return value into %b0 */
1292 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1293 		break;
1294 	}
1295 	case BPF_JMP | BPF_TAIL_CALL: {
1296 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1297 
1298 		/*
1299 		 * Implicit input:
1300 		 *  B1: pointer to ctx
1301 		 *  B2: pointer to bpf_array
1302 		 *  B3: index in bpf_array
1303 		 */
1304 		jit->seen |= SEEN_TAIL_CALL;
1305 
1306 		/*
1307 		 * if (index >= array->map.max_entries)
1308 		 *         goto out;
1309 		 */
1310 
1311 		/* llgf %w1,map.max_entries(%b2) */
1312 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1313 			      offsetof(struct bpf_array, map.max_entries));
1314 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1315 		/* clrj %b3,%w1,0xa,out */
1316 		patch_1_clrj = jit->prg;
1317 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1318 				 jit->prg);
1319 
1320 		/*
1321 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1322 		 *         goto out;
1323 		 */
1324 
1325 		if (jit->seen & SEEN_STACK)
1326 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1327 		else
1328 			off = STK_OFF_TCCNT;
1329 		/* lhi %w0,1 */
1330 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1331 		/* laal %w1,%w0,off(%r15) */
1332 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1333 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */
1334 		patch_2_clij = jit->prg;
1335 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT,
1336 				 2, jit->prg);
1337 
1338 		/*
1339 		 * prog = array->ptrs[index];
1340 		 * if (prog == NULL)
1341 		 *         goto out;
1342 		 */
1343 
1344 		/* llgfr %r1,%b3: %r1 = (u32) index */
1345 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1346 		/* sllg %r1,%r1,3: %r1 *= 8 */
1347 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1348 		/* ltg %r1,prog(%b2,%r1) */
1349 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1350 			      REG_1, offsetof(struct bpf_array, ptrs));
1351 		/* brc 0x8,out */
1352 		patch_3_brc = jit->prg;
1353 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1354 
1355 		/*
1356 		 * Restore registers before calling function
1357 		 */
1358 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1359 
1360 		/*
1361 		 * goto *(prog->bpf_func + tail_call_start);
1362 		 */
1363 
1364 		/* lg %r1,bpf_func(%r1) */
1365 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1366 			      offsetof(struct bpf_prog, bpf_func));
1367 		/* bc 0xf,tail_call_start(%r1) */
1368 		_EMIT4(0x47f01000 + jit->tail_call_start);
1369 		/* out: */
1370 		if (jit->prg_buf) {
1371 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1372 				(jit->prg - patch_1_clrj) >> 1;
1373 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1374 				(jit->prg - patch_2_clij) >> 1;
1375 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1376 				(jit->prg - patch_3_brc) >> 1;
1377 		}
1378 		break;
1379 	}
1380 	case BPF_JMP | BPF_EXIT: /* return b0 */
1381 		last = (i == fp->len - 1) ? 1 : 0;
1382 		if (last)
1383 			break;
1384 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1385 			/* brc 0xf, <exit> */
1386 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1387 		else
1388 			/* brcl 0xf, <exit> */
1389 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1390 		break;
1391 	/*
1392 	 * Branch relative (number of skipped instructions) to offset on
1393 	 * condition.
1394 	 *
1395 	 * Condition code to mask mapping:
1396 	 *
1397 	 * CC | Description	   | Mask
1398 	 * ------------------------------
1399 	 * 0  | Operands equal	   |	8
1400 	 * 1  | First operand low  |	4
1401 	 * 2  | First operand high |	2
1402 	 * 3  | Unused		   |	1
1403 	 *
1404 	 * For s390x relative branches: ip = ip + off_bytes
1405 	 * For BPF relative branches:	insn = insn + off_insns + 1
1406 	 *
1407 	 * For example for s390x with offset 0 we jump to the branch
1408 	 * instruction itself (loop) and for BPF with offset 0 we
1409 	 * branch to the instruction behind the branch.
1410 	 */
1411 	case BPF_JMP | BPF_JA: /* if (true) */
1412 		mask = 0xf000; /* j */
1413 		goto branch_oc;
1414 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1415 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1416 		mask = 0x2000; /* jh */
1417 		goto branch_ks;
1418 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1419 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1420 		mask = 0x4000; /* jl */
1421 		goto branch_ks;
1422 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1423 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1424 		mask = 0xa000; /* jhe */
1425 		goto branch_ks;
1426 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1427 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1428 		mask = 0xc000; /* jle */
1429 		goto branch_ks;
1430 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1431 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1432 		mask = 0x2000; /* jh */
1433 		goto branch_ku;
1434 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1435 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1436 		mask = 0x4000; /* jl */
1437 		goto branch_ku;
1438 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1439 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1440 		mask = 0xa000; /* jhe */
1441 		goto branch_ku;
1442 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1443 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1444 		mask = 0xc000; /* jle */
1445 		goto branch_ku;
1446 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1447 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1448 		mask = 0x7000; /* jne */
1449 		goto branch_ku;
1450 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1451 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1452 		mask = 0x8000; /* je */
1453 		goto branch_ku;
1454 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1455 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1456 		mask = 0x7000; /* jnz */
1457 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1458 			/* llilf %w1,imm (load zero extend imm) */
1459 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1460 			/* nr %w1,%dst */
1461 			EMIT2(0x1400, REG_W1, dst_reg);
1462 		} else {
1463 			/* lgfi %w1,imm (load sign extend imm) */
1464 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1465 			/* ngr %w1,%dst */
1466 			EMIT4(0xb9800000, REG_W1, dst_reg);
1467 		}
1468 		goto branch_oc;
1469 
1470 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1471 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1472 		mask = 0x2000; /* jh */
1473 		goto branch_xs;
1474 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1475 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1476 		mask = 0x4000; /* jl */
1477 		goto branch_xs;
1478 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1479 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1480 		mask = 0xa000; /* jhe */
1481 		goto branch_xs;
1482 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1483 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1484 		mask = 0xc000; /* jle */
1485 		goto branch_xs;
1486 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1487 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1488 		mask = 0x2000; /* jh */
1489 		goto branch_xu;
1490 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1491 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1492 		mask = 0x4000; /* jl */
1493 		goto branch_xu;
1494 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1495 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1496 		mask = 0xa000; /* jhe */
1497 		goto branch_xu;
1498 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1499 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1500 		mask = 0xc000; /* jle */
1501 		goto branch_xu;
1502 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1503 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1504 		mask = 0x7000; /* jne */
1505 		goto branch_xu;
1506 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1507 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1508 		mask = 0x8000; /* je */
1509 		goto branch_xu;
1510 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1511 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1512 	{
1513 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1514 
1515 		mask = 0x7000; /* jnz */
1516 		/* nrk or ngrk %w1,%dst,%src */
1517 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1518 			  REG_W1, dst_reg, src_reg);
1519 		goto branch_oc;
1520 branch_ks:
1521 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1522 		/* cfi or cgfi %dst,imm */
1523 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1524 			  dst_reg, imm);
1525 		if (!is_first_pass(jit) &&
1526 		    can_use_rel(jit, addrs[i + off + 1])) {
1527 			/* brc mask,off */
1528 			EMIT4_PCREL_RIC(0xa7040000,
1529 					mask >> 12, addrs[i + off + 1]);
1530 		} else {
1531 			/* brcl mask,off */
1532 			EMIT6_PCREL_RILC(0xc0040000,
1533 					 mask >> 12, addrs[i + off + 1]);
1534 		}
1535 		break;
1536 branch_ku:
1537 		/* lgfi %w1,imm (load sign extend imm) */
1538 		src_reg = REG_1;
1539 		EMIT6_IMM(0xc0010000, src_reg, imm);
1540 		goto branch_xu;
1541 branch_xs:
1542 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1543 		if (!is_first_pass(jit) &&
1544 		    can_use_rel(jit, addrs[i + off + 1])) {
1545 			/* crj or cgrj %dst,%src,mask,off */
1546 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1547 				    dst_reg, src_reg, i, off, mask);
1548 		} else {
1549 			/* cr or cgr %dst,%src */
1550 			if (is_jmp32)
1551 				EMIT2(0x1900, dst_reg, src_reg);
1552 			else
1553 				EMIT4(0xb9200000, dst_reg, src_reg);
1554 			/* brcl mask,off */
1555 			EMIT6_PCREL_RILC(0xc0040000,
1556 					 mask >> 12, addrs[i + off + 1]);
1557 		}
1558 		break;
1559 branch_xu:
1560 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1561 		if (!is_first_pass(jit) &&
1562 		    can_use_rel(jit, addrs[i + off + 1])) {
1563 			/* clrj or clgrj %dst,%src,mask,off */
1564 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1565 				    dst_reg, src_reg, i, off, mask);
1566 		} else {
1567 			/* clr or clgr %dst,%src */
1568 			if (is_jmp32)
1569 				EMIT2(0x1500, dst_reg, src_reg);
1570 			else
1571 				EMIT4(0xb9210000, dst_reg, src_reg);
1572 			/* brcl mask,off */
1573 			EMIT6_PCREL_RILC(0xc0040000,
1574 					 mask >> 12, addrs[i + off + 1]);
1575 		}
1576 		break;
1577 branch_oc:
1578 		if (!is_first_pass(jit) &&
1579 		    can_use_rel(jit, addrs[i + off + 1])) {
1580 			/* brc mask,off */
1581 			EMIT4_PCREL_RIC(0xa7040000,
1582 					mask >> 12, addrs[i + off + 1]);
1583 		} else {
1584 			/* brcl mask,off */
1585 			EMIT6_PCREL_RILC(0xc0040000,
1586 					 mask >> 12, addrs[i + off + 1]);
1587 		}
1588 		break;
1589 	}
1590 	default: /* too complex, give up */
1591 		pr_err("Unknown opcode %02x\n", insn->code);
1592 		return -1;
1593 	}
1594 
1595 	if (probe_prg != -1) {
1596 		/*
1597 		 * Handlers of certain exceptions leave psw.addr pointing to
1598 		 * the instruction directly after the failing one. Therefore,
1599 		 * create two exception table entries and also add a nop in
1600 		 * case two probing instructions come directly after each
1601 		 * other.
1602 		 */
1603 		nop_prg = jit->prg;
1604 		/* bcr 0,%0 */
1605 		_EMIT2(0x0700);
1606 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1607 		if (err < 0)
1608 			return err;
1609 	}
1610 
1611 	return insn_count;
1612 }
1613 
1614 /*
1615  * Return whether new i-th instruction address does not violate any invariant
1616  */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1617 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1618 {
1619 	/* On the first pass anything goes */
1620 	if (is_first_pass(jit))
1621 		return true;
1622 
1623 	/* The codegen pass must not change anything */
1624 	if (is_codegen_pass(jit))
1625 		return jit->addrs[i] == jit->prg;
1626 
1627 	/* Passes in between must not increase code size */
1628 	return jit->addrs[i] >= jit->prg;
1629 }
1630 
1631 /*
1632  * Update the address of i-th instruction
1633  */
bpf_set_addr(struct bpf_jit * jit,int i)1634 static int bpf_set_addr(struct bpf_jit *jit, int i)
1635 {
1636 	int delta;
1637 
1638 	if (is_codegen_pass(jit)) {
1639 		delta = jit->prg - jit->addrs[i];
1640 		if (delta < 0)
1641 			bpf_skip(jit, -delta);
1642 	}
1643 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1644 		return -1;
1645 	jit->addrs[i] = jit->prg;
1646 	return 0;
1647 }
1648 
1649 /*
1650  * Compile eBPF program into s390x code
1651  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1652 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1653 			bool extra_pass, u32 stack_depth)
1654 {
1655 	int i, insn_count, lit32_size, lit64_size;
1656 
1657 	jit->lit32 = jit->lit32_start;
1658 	jit->lit64 = jit->lit64_start;
1659 	jit->prg = 0;
1660 	jit->excnt = 0;
1661 
1662 	bpf_jit_prologue(jit, stack_depth);
1663 	if (bpf_set_addr(jit, 0) < 0)
1664 		return -1;
1665 	for (i = 0; i < fp->len; i += insn_count) {
1666 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1667 		if (insn_count < 0)
1668 			return -1;
1669 		/* Next instruction address */
1670 		if (bpf_set_addr(jit, i + insn_count) < 0)
1671 			return -1;
1672 	}
1673 	bpf_jit_epilogue(jit, stack_depth);
1674 
1675 	lit32_size = jit->lit32 - jit->lit32_start;
1676 	lit64_size = jit->lit64 - jit->lit64_start;
1677 	jit->lit32_start = jit->prg;
1678 	if (lit32_size)
1679 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1680 	jit->lit64_start = jit->lit32_start + lit32_size;
1681 	if (lit64_size)
1682 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1683 	jit->size = jit->lit64_start + lit64_size;
1684 	jit->size_prg = jit->prg;
1685 
1686 	if (WARN_ON_ONCE(fp->aux->extable &&
1687 			 jit->excnt != fp->aux->num_exentries))
1688 		/* Verifier bug - too many entries. */
1689 		return -1;
1690 
1691 	return 0;
1692 }
1693 
bpf_jit_needs_zext(void)1694 bool bpf_jit_needs_zext(void)
1695 {
1696 	return true;
1697 }
1698 
1699 struct s390_jit_data {
1700 	struct bpf_binary_header *header;
1701 	struct bpf_jit ctx;
1702 	int pass;
1703 };
1704 
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1705 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1706 					       struct bpf_prog *fp)
1707 {
1708 	struct bpf_binary_header *header;
1709 	u32 extable_size;
1710 	u32 code_size;
1711 
1712 	/* We need two entries per insn. */
1713 	fp->aux->num_exentries *= 2;
1714 
1715 	code_size = roundup(jit->size,
1716 			    __alignof__(struct exception_table_entry));
1717 	extable_size = fp->aux->num_exentries *
1718 		sizeof(struct exception_table_entry);
1719 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1720 				      8, jit_fill_hole);
1721 	if (!header)
1722 		return NULL;
1723 	fp->aux->extable = (struct exception_table_entry *)
1724 		(jit->prg_buf + code_size);
1725 	return header;
1726 }
1727 
1728 /*
1729  * Compile eBPF program "fp"
1730  */
bpf_int_jit_compile(struct bpf_prog * fp)1731 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1732 {
1733 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1734 	struct bpf_prog *tmp, *orig_fp = fp;
1735 	struct bpf_binary_header *header;
1736 	struct s390_jit_data *jit_data;
1737 	bool tmp_blinded = false;
1738 	bool extra_pass = false;
1739 	struct bpf_jit jit;
1740 	int pass;
1741 
1742 	if (!fp->jit_requested)
1743 		return orig_fp;
1744 
1745 	tmp = bpf_jit_blind_constants(fp);
1746 	/*
1747 	 * If blinding was requested and we failed during blinding,
1748 	 * we must fall back to the interpreter.
1749 	 */
1750 	if (IS_ERR(tmp))
1751 		return orig_fp;
1752 	if (tmp != fp) {
1753 		tmp_blinded = true;
1754 		fp = tmp;
1755 	}
1756 
1757 	jit_data = fp->aux->jit_data;
1758 	if (!jit_data) {
1759 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1760 		if (!jit_data) {
1761 			fp = orig_fp;
1762 			goto out;
1763 		}
1764 		fp->aux->jit_data = jit_data;
1765 	}
1766 	if (jit_data->ctx.addrs) {
1767 		jit = jit_data->ctx;
1768 		header = jit_data->header;
1769 		extra_pass = true;
1770 		pass = jit_data->pass + 1;
1771 		goto skip_init_ctx;
1772 	}
1773 
1774 	memset(&jit, 0, sizeof(jit));
1775 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1776 	if (jit.addrs == NULL) {
1777 		fp = orig_fp;
1778 		goto free_addrs;
1779 	}
1780 	/*
1781 	 * Three initial passes:
1782 	 *   - 1/2: Determine clobbered registers
1783 	 *   - 3:   Calculate program size and addrs arrray
1784 	 */
1785 	for (pass = 1; pass <= 3; pass++) {
1786 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1787 			fp = orig_fp;
1788 			goto free_addrs;
1789 		}
1790 	}
1791 	/*
1792 	 * Final pass: Allocate and generate program
1793 	 */
1794 	header = bpf_jit_alloc(&jit, fp);
1795 	if (!header) {
1796 		fp = orig_fp;
1797 		goto free_addrs;
1798 	}
1799 skip_init_ctx:
1800 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1801 		bpf_jit_binary_free(header);
1802 		fp = orig_fp;
1803 		goto free_addrs;
1804 	}
1805 	if (bpf_jit_enable > 1) {
1806 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1807 		print_fn_code(jit.prg_buf, jit.size_prg);
1808 	}
1809 	if (!fp->is_func || extra_pass) {
1810 		bpf_jit_binary_lock_ro(header);
1811 	} else {
1812 		jit_data->header = header;
1813 		jit_data->ctx = jit;
1814 		jit_data->pass = pass;
1815 	}
1816 	fp->bpf_func = (void *) jit.prg_buf;
1817 	fp->jited = 1;
1818 	fp->jited_len = jit.size;
1819 
1820 	if (!fp->is_func || extra_pass) {
1821 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1822 free_addrs:
1823 		kvfree(jit.addrs);
1824 		kfree(jit_data);
1825 		fp->aux->jit_data = NULL;
1826 	}
1827 out:
1828 	if (tmp_blinded)
1829 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1830 					   tmp : orig_fp);
1831 	return fp;
1832 }
1833