• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49#ifdef CONFIG_PARAVIRT_XXL
50SYM_CODE_START(native_usergs_sysret64)
51	UNWIND_HINT_EMPTY
52	swapgs
53	sysretq
54SYM_CODE_END(native_usergs_sysret64)
55#endif /* CONFIG_PARAVIRT_XXL */
56
57/*
58 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
59 *
60 * This is the only entry point used for 64-bit system calls.  The
61 * hardware interface is reasonably well designed and the register to
62 * argument mapping Linux uses fits well with the registers that are
63 * available when SYSCALL is used.
64 *
65 * SYSCALL instructions can be found inlined in libc implementations as
66 * well as some other programs and libraries.  There are also a handful
67 * of SYSCALL instructions in the vDSO used, for example, as a
68 * clock_gettimeofday fallback.
69 *
70 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
71 * then loads new ss, cs, and rip from previously programmed MSRs.
72 * rflags gets masked by a value from another MSR (so CLD and CLAC
73 * are not needed). SYSCALL does not save anything on the stack
74 * and does not change rsp.
75 *
76 * Registers on entry:
77 * rax  system call number
78 * rcx  return address
79 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
80 * rdi  arg0
81 * rsi  arg1
82 * rdx  arg2
83 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
84 * r8   arg4
85 * r9   arg5
86 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
87 *
88 * Only called from user space.
89 *
90 * When user can change pt_regs->foo always force IRET. That is because
91 * it deals with uncanonical addresses better. SYSRET has trouble
92 * with them due to bugs in both AMD and Intel CPUs.
93 */
94
95SYM_CODE_START(entry_SYSCALL_64)
96	UNWIND_HINT_ENTRY
97
98	swapgs
99	/* tss.sp2 is scratch space. */
100	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
101	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
102	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
103
104SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
105
106	/* Construct struct pt_regs on stack */
107	pushq	$__USER_DS				/* pt_regs->ss */
108	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
109	pushq	%r11					/* pt_regs->flags */
110	pushq	$__USER_CS				/* pt_regs->cs */
111	pushq	%rcx					/* pt_regs->ip */
112SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
113	pushq	%rax					/* pt_regs->orig_ax */
114
115	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
116
117	/* IRQs are off. */
118	movq	%rax, %rdi
119	movq	%rsp, %rsi
120
121	/* clobbers %rax, make sure it is after saving the syscall nr */
122	IBRS_ENTER
123	UNTRAIN_RET
124
125	call	do_syscall_64		/* returns with IRQs disabled */
126
127	/*
128	 * Try to use SYSRET instead of IRET if we're returning to
129	 * a completely clean 64-bit userspace context.  If we're not,
130	 * go to the slow exit path.
131	 */
132	movq	RCX(%rsp), %rcx
133	movq	RIP(%rsp), %r11
134
135	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
136	jne	swapgs_restore_regs_and_return_to_usermode
137
138	/*
139	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
140	 * in kernel space.  This essentially lets the user take over
141	 * the kernel, since userspace controls RSP.
142	 *
143	 * If width of "canonical tail" ever becomes variable, this will need
144	 * to be updated to remain correct on both old and new CPUs.
145	 *
146	 * Change top bits to match most significant bit (47th or 56th bit
147	 * depending on paging mode) in the address.
148	 */
149#ifdef CONFIG_X86_5LEVEL
150	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
151		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
152#else
153	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
154	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
155#endif
156
157	/* If this changed %rcx, it was not canonical */
158	cmpq	%rcx, %r11
159	jne	swapgs_restore_regs_and_return_to_usermode
160
161	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
162	jne	swapgs_restore_regs_and_return_to_usermode
163
164	movq	R11(%rsp), %r11
165	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
166	jne	swapgs_restore_regs_and_return_to_usermode
167
168	/*
169	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
170	 * restore RF properly. If the slowpath sets it for whatever reason, we
171	 * need to restore it correctly.
172	 *
173	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
174	 * trap from userspace immediately after SYSRET.  This would cause an
175	 * infinite loop whenever #DB happens with register state that satisfies
176	 * the opportunistic SYSRET conditions.  For example, single-stepping
177	 * this user code:
178	 *
179	 *           movq	$stuck_here, %rcx
180	 *           pushfq
181	 *           popq %r11
182	 *   stuck_here:
183	 *
184	 * would never get past 'stuck_here'.
185	 */
186	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
187	jnz	swapgs_restore_regs_and_return_to_usermode
188
189	/* nothing to check for RSP */
190
191	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
192	jne	swapgs_restore_regs_and_return_to_usermode
193
194	/*
195	 * We win! This label is here just for ease of understanding
196	 * perf profiles. Nothing jumps here.
197	 */
198syscall_return_via_sysret:
199	IBRS_EXIT
200	POP_REGS pop_rdi=0
201
202	/*
203	 * Now all regs are restored except RSP and RDI.
204	 * Save old stack pointer and switch to trampoline stack.
205	 */
206	movq	%rsp, %rdi
207	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
208	UNWIND_HINT_EMPTY
209
210	pushq	RSP-RDI(%rdi)	/* RSP */
211	pushq	(%rdi)		/* RDI */
212
213	/*
214	 * We are on the trampoline stack.  All regs except RDI are live.
215	 * We can do future final exit work right here.
216	 */
217	STACKLEAK_ERASE_NOCLOBBER
218
219	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
220
221	popq	%rdi
222	popq	%rsp
223	USERGS_SYSRET64
224SYM_CODE_END(entry_SYSCALL_64)
225
226/*
227 * %rdi: prev task
228 * %rsi: next task
229 */
230.pushsection .text, "ax"
231SYM_FUNC_START(__switch_to_asm)
232	/*
233	 * Save callee-saved registers
234	 * This must match the order in inactive_task_frame
235	 */
236	pushq	%rbp
237	pushq	%rbx
238	pushq	%r12
239	pushq	%r13
240	pushq	%r14
241	pushq	%r15
242
243	/* switch stack */
244	movq	%rsp, TASK_threadsp(%rdi)
245	movq	TASK_threadsp(%rsi), %rsp
246
247#ifdef CONFIG_STACKPROTECTOR
248	movq	TASK_stack_canary(%rsi), %rbx
249	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
250#endif
251
252	/*
253	 * When switching from a shallower to a deeper call stack
254	 * the RSB may either underflow or use entries populated
255	 * with userspace addresses. On CPUs where those concerns
256	 * exist, overwrite the RSB with entries which capture
257	 * speculative execution to prevent attack.
258	 */
259	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
260
261	/* restore callee-saved registers */
262	popq	%r15
263	popq	%r14
264	popq	%r13
265	popq	%r12
266	popq	%rbx
267	popq	%rbp
268
269	jmp	__switch_to
270SYM_FUNC_END(__switch_to_asm)
271.popsection
272
273/*
274 * A newly forked process directly context switches into this address.
275 *
276 * rax: prev task we switched from
277 * rbx: kernel thread func (NULL for user thread)
278 * r12: kernel thread arg
279 */
280.pushsection .text, "ax"
281SYM_CODE_START(ret_from_fork)
282	UNWIND_HINT_EMPTY
283	movq	%rax, %rdi
284	call	schedule_tail			/* rdi: 'prev' task parameter */
285
286	testq	%rbx, %rbx			/* from kernel_thread? */
287	jnz	1f				/* kernel threads are uncommon */
288
2892:
290	UNWIND_HINT_REGS
291	movq	%rsp, %rdi
292	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
293	jmp	swapgs_restore_regs_and_return_to_usermode
294
2951:
296	/* kernel thread */
297	UNWIND_HINT_EMPTY
298	movq	%r12, %rdi
299	CALL_NOSPEC rbx
300	/*
301	 * A kernel thread is allowed to return here after successfully
302	 * calling kernel_execve().  Exit to userspace to complete the execve()
303	 * syscall.
304	 */
305	movq	$0, RAX(%rsp)
306	jmp	2b
307SYM_CODE_END(ret_from_fork)
308.popsection
309
310.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
311#ifdef CONFIG_DEBUG_ENTRY
312	pushq %rax
313	SAVE_FLAGS(CLBR_RAX)
314	testl $X86_EFLAGS_IF, %eax
315	jz .Lokay_\@
316	ud2
317.Lokay_\@:
318	popq %rax
319#endif
320.endm
321
322/**
323 * idtentry_body - Macro to emit code calling the C function
324 * @cfunc:		C function to be called
325 * @has_error_code:	Hardware pushed error code on stack
326 */
327.macro idtentry_body cfunc has_error_code:req
328
329	call	error_entry
330	UNWIND_HINT_REGS
331
332	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
333
334	.if \has_error_code == 1
335		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
336		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
337	.endif
338
339	call	\cfunc
340
341	jmp	error_return
342.endm
343
344/**
345 * idtentry - Macro to generate entry stubs for simple IDT entries
346 * @vector:		Vector number
347 * @asmsym:		ASM symbol for the entry point
348 * @cfunc:		C function to be called
349 * @has_error_code:	Hardware pushed error code on stack
350 *
351 * The macro emits code to set up the kernel context for straight forward
352 * and simple IDT entries. No IST stack, no paranoid entry checks.
353 */
354.macro idtentry vector asmsym cfunc has_error_code:req
355SYM_CODE_START(\asmsym)
356	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
357	ASM_CLAC
358
359	.if \has_error_code == 0
360		pushq	$-1			/* ORIG_RAX: no syscall to restart */
361	.endif
362
363	.if \vector == X86_TRAP_BP
364		/*
365		 * If coming from kernel space, create a 6-word gap to allow the
366		 * int3 handler to emulate a call instruction.
367		 */
368		testb	$3, CS-ORIG_RAX(%rsp)
369		jnz	.Lfrom_usermode_no_gap_\@
370		.rept	6
371		pushq	5*8(%rsp)
372		.endr
373		UNWIND_HINT_IRET_REGS offset=8
374.Lfrom_usermode_no_gap_\@:
375	.endif
376
377	idtentry_body \cfunc \has_error_code
378
379_ASM_NOKPROBE(\asmsym)
380SYM_CODE_END(\asmsym)
381.endm
382
383/*
384 * Interrupt entry/exit.
385 *
386 + The interrupt stubs push (vector) onto the stack, which is the error_code
387 * position of idtentry exceptions, and jump to one of the two idtentry points
388 * (common/spurious).
389 *
390 * common_interrupt is a hotpath, align it to a cache line
391 */
392.macro idtentry_irq vector cfunc
393	.p2align CONFIG_X86_L1_CACHE_SHIFT
394	idtentry \vector asm_\cfunc \cfunc has_error_code=1
395.endm
396
397/*
398 * System vectors which invoke their handlers directly and are not
399 * going through the regular common device interrupt handling code.
400 */
401.macro idtentry_sysvec vector cfunc
402	idtentry \vector asm_\cfunc \cfunc has_error_code=0
403.endm
404
405/**
406 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
407 * @vector:		Vector number
408 * @asmsym:		ASM symbol for the entry point
409 * @cfunc:		C function to be called
410 *
411 * The macro emits code to set up the kernel context for #MC and #DB
412 *
413 * If the entry comes from user space it uses the normal entry path
414 * including the return to user space work and preemption checks on
415 * exit.
416 *
417 * If hits in kernel mode then it needs to go through the paranoid
418 * entry as the exception can hit any random state. No preemption
419 * check on exit to keep the paranoid path simple.
420 */
421.macro idtentry_mce_db vector asmsym cfunc
422SYM_CODE_START(\asmsym)
423	UNWIND_HINT_IRET_REGS
424	ASM_CLAC
425
426	pushq	$-1			/* ORIG_RAX: no syscall to restart */
427
428	/*
429	 * If the entry is from userspace, switch stacks and treat it as
430	 * a normal entry.
431	 */
432	testb	$3, CS-ORIG_RAX(%rsp)
433	jnz	.Lfrom_usermode_switch_stack_\@
434
435	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
436	call	paranoid_entry
437
438	UNWIND_HINT_REGS
439
440	movq	%rsp, %rdi		/* pt_regs pointer */
441
442	call	\cfunc
443
444	jmp	paranoid_exit
445
446	/* Switch to the regular task stack and use the noist entry point */
447.Lfrom_usermode_switch_stack_\@:
448	idtentry_body noist_\cfunc, has_error_code=0
449
450_ASM_NOKPROBE(\asmsym)
451SYM_CODE_END(\asmsym)
452.endm
453
454#ifdef CONFIG_AMD_MEM_ENCRYPT
455/**
456 * idtentry_vc - Macro to generate entry stub for #VC
457 * @vector:		Vector number
458 * @asmsym:		ASM symbol for the entry point
459 * @cfunc:		C function to be called
460 *
461 * The macro emits code to set up the kernel context for #VC. The #VC handler
462 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
463 *
464 * To make this work the #VC entry code tries its best to pretend it doesn't use
465 * an IST stack by switching to the task stack if coming from user-space (which
466 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
467 * entered from kernel-mode.
468 *
469 * If entered from kernel-mode the return stack is validated first, and if it is
470 * not safe to use (e.g. because it points to the entry stack) the #VC handler
471 * will switch to a fall-back stack (VC2) and call a special handler function.
472 *
473 * The macro is only used for one vector, but it is planned to be extended in
474 * the future for the #HV exception.
475 */
476.macro idtentry_vc vector asmsym cfunc
477SYM_CODE_START(\asmsym)
478	UNWIND_HINT_IRET_REGS
479	ASM_CLAC
480
481	/*
482	 * If the entry is from userspace, switch stacks and treat it as
483	 * a normal entry.
484	 */
485	testb	$3, CS-ORIG_RAX(%rsp)
486	jnz	.Lfrom_usermode_switch_stack_\@
487
488	/*
489	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
490	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
491	 */
492	call	paranoid_entry
493
494	UNWIND_HINT_REGS
495
496	/*
497	 * Switch off the IST stack to make it free for nested exceptions. The
498	 * vc_switch_off_ist() function will switch back to the interrupted
499	 * stack if it is safe to do so. If not it switches to the VC fall-back
500	 * stack.
501	 */
502	movq	%rsp, %rdi		/* pt_regs pointer */
503	call	vc_switch_off_ist
504	movq	%rax, %rsp		/* Switch to new stack */
505
506	UNWIND_HINT_REGS
507
508	/* Update pt_regs */
509	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
510	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
511
512	movq	%rsp, %rdi		/* pt_regs pointer */
513
514	call	kernel_\cfunc
515
516	/*
517	 * No need to switch back to the IST stack. The current stack is either
518	 * identical to the stack in the IRET frame or the VC fall-back stack,
519	 * so it is definitly mapped even with PTI enabled.
520	 */
521	jmp	paranoid_exit
522
523	/* Switch to the regular task stack */
524.Lfrom_usermode_switch_stack_\@:
525	idtentry_body user_\cfunc, has_error_code=1
526
527_ASM_NOKPROBE(\asmsym)
528SYM_CODE_END(\asmsym)
529.endm
530#endif
531
532/*
533 * Double fault entry. Straight paranoid. No checks from which context
534 * this comes because for the espfix induced #DF this would do the wrong
535 * thing.
536 */
537.macro idtentry_df vector asmsym cfunc
538SYM_CODE_START(\asmsym)
539	UNWIND_HINT_IRET_REGS offset=8
540	ASM_CLAC
541
542	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
543	call	paranoid_entry
544	UNWIND_HINT_REGS
545
546	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
547	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
548	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
549	call	\cfunc
550
551	jmp	paranoid_exit
552
553_ASM_NOKPROBE(\asmsym)
554SYM_CODE_END(\asmsym)
555.endm
556
557/*
558 * Include the defines which emit the idt entries which are shared
559 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
560 * so the stacktrace boundary checks work.
561 */
562	.align 16
563	.globl __irqentry_text_start
564__irqentry_text_start:
565
566#include <asm/idtentry.h>
567
568	.align 16
569	.globl __irqentry_text_end
570__irqentry_text_end:
571
572SYM_CODE_START_LOCAL(common_interrupt_return)
573SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
574	IBRS_EXIT
575#ifdef CONFIG_DEBUG_ENTRY
576	/* Assert that pt_regs indicates user mode. */
577	testb	$3, CS(%rsp)
578	jnz	1f
579	ud2
5801:
581#endif
582#ifdef CONFIG_XEN_PV
583	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
584#endif
585
586	POP_REGS pop_rdi=0
587
588	/*
589	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
590	 * Save old stack pointer and switch to trampoline stack.
591	 */
592	movq	%rsp, %rdi
593	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
594	UNWIND_HINT_EMPTY
595
596	/* Copy the IRET frame to the trampoline stack. */
597	pushq	6*8(%rdi)	/* SS */
598	pushq	5*8(%rdi)	/* RSP */
599	pushq	4*8(%rdi)	/* EFLAGS */
600	pushq	3*8(%rdi)	/* CS */
601	pushq	2*8(%rdi)	/* RIP */
602
603	/* Push user RDI on the trampoline stack. */
604	pushq	(%rdi)
605
606	/*
607	 * We are on the trampoline stack.  All regs except RDI are live.
608	 * We can do future final exit work right here.
609	 */
610	STACKLEAK_ERASE_NOCLOBBER
611
612	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
613
614	/* Restore RDI. */
615	popq	%rdi
616	SWAPGS
617	INTERRUPT_RETURN
618
619
620SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
621#ifdef CONFIG_DEBUG_ENTRY
622	/* Assert that pt_regs indicates kernel mode. */
623	testb	$3, CS(%rsp)
624	jz	1f
625	ud2
6261:
627#endif
628	POP_REGS
629	addq	$8, %rsp	/* skip regs->orig_ax */
630	/*
631	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
632	 * when returning from IPI handler.
633	 */
634	INTERRUPT_RETURN
635
636SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
637	UNWIND_HINT_IRET_REGS
638	/*
639	 * Are we returning to a stack segment from the LDT?  Note: in
640	 * 64-bit mode SS:RSP on the exception stack is always valid.
641	 */
642#ifdef CONFIG_X86_ESPFIX64
643	testb	$4, (SS-RIP)(%rsp)
644	jnz	native_irq_return_ldt
645#endif
646
647SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
648	/*
649	 * This may fault.  Non-paranoid faults on return to userspace are
650	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
651	 * Double-faults due to espfix64 are handled in exc_double_fault.
652	 * Other faults here are fatal.
653	 */
654	iretq
655
656#ifdef CONFIG_X86_ESPFIX64
657native_irq_return_ldt:
658	/*
659	 * We are running with user GSBASE.  All GPRs contain their user
660	 * values.  We have a percpu ESPFIX stack that is eight slots
661	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
662	 * of the ESPFIX stack.
663	 *
664	 * We clobber RAX and RDI in this code.  We stash RDI on the
665	 * normal stack and RAX on the ESPFIX stack.
666	 *
667	 * The ESPFIX stack layout we set up looks like this:
668	 *
669	 * --- top of ESPFIX stack ---
670	 * SS
671	 * RSP
672	 * RFLAGS
673	 * CS
674	 * RIP  <-- RSP points here when we're done
675	 * RAX  <-- espfix_waddr points here
676	 * --- bottom of ESPFIX stack ---
677	 */
678
679	pushq	%rdi				/* Stash user RDI */
680	swapgs					/* to kernel GS */
681	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
682	UNTRAIN_RET
683
684	movq	PER_CPU_VAR(espfix_waddr), %rdi
685	movq	%rax, (0*8)(%rdi)		/* user RAX */
686	movq	(1*8)(%rsp), %rax		/* user RIP */
687	movq	%rax, (1*8)(%rdi)
688	movq	(2*8)(%rsp), %rax		/* user CS */
689	movq	%rax, (2*8)(%rdi)
690	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
691	movq	%rax, (3*8)(%rdi)
692	movq	(5*8)(%rsp), %rax		/* user SS */
693	movq	%rax, (5*8)(%rdi)
694	movq	(4*8)(%rsp), %rax		/* user RSP */
695	movq	%rax, (4*8)(%rdi)
696	/* Now RAX == RSP. */
697
698	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
699
700	/*
701	 * espfix_stack[31:16] == 0.  The page tables are set up such that
702	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
703	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
704	 * the same page.  Set up RSP so that RSP[31:16] contains the
705	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
706	 * still points to an RO alias of the ESPFIX stack.
707	 */
708	orq	PER_CPU_VAR(espfix_stack), %rax
709
710	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
711	swapgs					/* to user GS */
712	popq	%rdi				/* Restore user RDI */
713
714	movq	%rax, %rsp
715	UNWIND_HINT_IRET_REGS offset=8
716
717	/*
718	 * At this point, we cannot write to the stack any more, but we can
719	 * still read.
720	 */
721	popq	%rax				/* Restore user RAX */
722
723	/*
724	 * RSP now points to an ordinary IRET frame, except that the page
725	 * is read-only and RSP[31:16] are preloaded with the userspace
726	 * values.  We can now IRET back to userspace.
727	 */
728	jmp	native_irq_return_iret
729#endif
730SYM_CODE_END(common_interrupt_return)
731_ASM_NOKPROBE(common_interrupt_return)
732
733/*
734 * Reload gs selector with exception handling
735 * edi:  new selector
736 *
737 * Is in entry.text as it shouldn't be instrumented.
738 */
739SYM_FUNC_START(asm_load_gs_index)
740	FRAME_BEGIN
741	swapgs
742.Lgs_change:
743	movl	%edi, %gs
7442:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
745	swapgs
746	FRAME_END
747	RET
748SYM_FUNC_END(asm_load_gs_index)
749EXPORT_SYMBOL(asm_load_gs_index)
750
751	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
752	.section .fixup, "ax"
753	/* running with kernelgs */
754SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
755	swapgs					/* switch back to user gs */
756.macro ZAP_GS
757	/* This can't be a string because the preprocessor needs to see it. */
758	movl $__USER_DS, %eax
759	movl %eax, %gs
760.endm
761	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
762	xorl	%eax, %eax
763	movl	%eax, %gs
764	jmp	2b
765SYM_CODE_END(.Lbad_gs)
766	.previous
767
768/*
769 * rdi: New stack pointer points to the top word of the stack
770 * rsi: Function pointer
771 * rdx: Function argument (can be NULL if none)
772 */
773SYM_FUNC_START(asm_call_on_stack)
774SYM_INNER_LABEL(asm_call_sysvec_on_stack, SYM_L_GLOBAL)
775SYM_INNER_LABEL(asm_call_irq_on_stack, SYM_L_GLOBAL)
776	/*
777	 * Save the frame pointer unconditionally. This allows the ORC
778	 * unwinder to handle the stack switch.
779	 */
780	pushq		%rbp
781	mov		%rsp, %rbp
782
783	/*
784	 * The unwinder relies on the word at the top of the new stack
785	 * page linking back to the previous RSP.
786	 */
787	mov		%rsp, (%rdi)
788	mov		%rdi, %rsp
789	/* Move the argument to the right place */
790	mov		%rdx, %rdi
791
7921:
793	.pushsection .discard.instr_begin
794	.long 1b - .
795	.popsection
796
797	CALL_NOSPEC	rsi
798
7992:
800	.pushsection .discard.instr_end
801	.long 2b - .
802	.popsection
803
804	/* Restore the previous stack pointer from RBP. */
805	leaveq
806	RET
807SYM_FUNC_END(asm_call_on_stack)
808
809#ifdef CONFIG_XEN_PV
810/*
811 * A note on the "critical region" in our callback handler.
812 * We want to avoid stacking callback handlers due to events occurring
813 * during handling of the last event. To do this, we keep events disabled
814 * until we've done all processing. HOWEVER, we must enable events before
815 * popping the stack frame (can't be done atomically) and so it would still
816 * be possible to get enough handler activations to overflow the stack.
817 * Although unlikely, bugs of that kind are hard to track down, so we'd
818 * like to avoid the possibility.
819 * So, on entry to the handler we detect whether we interrupted an
820 * existing activation in its critical region -- if so, we pop the current
821 * activation and restart the handler using the previous one.
822 *
823 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
824 */
825SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
826
827/*
828 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
829 * see the correct pointer to the pt_regs
830 */
831	UNWIND_HINT_FUNC
832	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
833	UNWIND_HINT_REGS
834
835	call	xen_pv_evtchn_do_upcall
836
837	jmp	error_return
838SYM_CODE_END(exc_xen_hypervisor_callback)
839
840/*
841 * Hypervisor uses this for application faults while it executes.
842 * We get here for two reasons:
843 *  1. Fault while reloading DS, ES, FS or GS
844 *  2. Fault while executing IRET
845 * Category 1 we do not need to fix up as Xen has already reloaded all segment
846 * registers that could be reloaded and zeroed the others.
847 * Category 2 we fix up by killing the current process. We cannot use the
848 * normal Linux return path in this case because if we use the IRET hypercall
849 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
850 * We distinguish between categories by comparing each saved segment register
851 * with its current contents: any discrepancy means we in category 1.
852 */
853SYM_CODE_START(xen_failsafe_callback)
854	UNWIND_HINT_EMPTY
855	movl	%ds, %ecx
856	cmpw	%cx, 0x10(%rsp)
857	jne	1f
858	movl	%es, %ecx
859	cmpw	%cx, 0x18(%rsp)
860	jne	1f
861	movl	%fs, %ecx
862	cmpw	%cx, 0x20(%rsp)
863	jne	1f
864	movl	%gs, %ecx
865	cmpw	%cx, 0x28(%rsp)
866	jne	1f
867	/* All segments match their saved values => Category 2 (Bad IRET). */
868	movq	(%rsp), %rcx
869	movq	8(%rsp), %r11
870	addq	$0x30, %rsp
871	pushq	$0				/* RIP */
872	UNWIND_HINT_IRET_REGS offset=8
873	jmp	asm_exc_general_protection
8741:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
875	movq	(%rsp), %rcx
876	movq	8(%rsp), %r11
877	addq	$0x30, %rsp
878	UNWIND_HINT_IRET_REGS
879	pushq	$-1 /* orig_ax = -1 => not a system call */
880	PUSH_AND_CLEAR_REGS
881	ENCODE_FRAME_POINTER
882	jmp	error_return
883SYM_CODE_END(xen_failsafe_callback)
884#endif /* CONFIG_XEN_PV */
885
886/*
887 * Save all registers in pt_regs. Return GSBASE related information
888 * in EBX depending on the availability of the FSGSBASE instructions:
889 *
890 * FSGSBASE	R/EBX
891 *     N        0 -> SWAPGS on exit
892 *              1 -> no SWAPGS on exit
893 *
894 *     Y        GSBASE value at entry, must be restored in paranoid_exit
895 *
896 * R14 - old CR3
897 * R15 - old SPEC_CTRL
898 */
899SYM_CODE_START_LOCAL(paranoid_entry)
900	UNWIND_HINT_FUNC
901	cld
902	PUSH_AND_CLEAR_REGS save_ret=1
903	ENCODE_FRAME_POINTER 8
904
905	/*
906	 * Always stash CR3 in %r14.  This value will be restored,
907	 * verbatim, at exit.  Needed if paranoid_entry interrupted
908	 * another entry that already switched to the user CR3 value
909	 * but has not yet returned to userspace.
910	 *
911	 * This is also why CS (stashed in the "iret frame" by the
912	 * hardware at entry) can not be used: this may be a return
913	 * to kernel code, but with a user CR3 value.
914	 *
915	 * Switching CR3 does not depend on kernel GSBASE so it can
916	 * be done before switching to the kernel GSBASE. This is
917	 * required for FSGSBASE because the kernel GSBASE has to
918	 * be retrieved from a kernel internal table.
919	 */
920	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
921
922	/*
923	 * Handling GSBASE depends on the availability of FSGSBASE.
924	 *
925	 * Without FSGSBASE the kernel enforces that negative GSBASE
926	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
927	 * can be made about the GSBASE value when entering from user
928	 * space.
929	 */
930	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
931
932	/*
933	 * Read the current GSBASE and store it in %rbx unconditionally,
934	 * retrieve and set the current CPUs kernel GSBASE. The stored value
935	 * has to be restored in paranoid_exit unconditionally.
936	 *
937	 * The unconditional write to GS base below ensures that no subsequent
938	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
939	 * is needed here.
940	 */
941	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
942	jmp .Lparanoid_gsbase_done
943
944.Lparanoid_entry_checkgs:
945	/* EBX = 1 -> kernel GSBASE active, no restore required */
946	movl	$1, %ebx
947
948	/*
949	 * The kernel-enforced convention is a negative GSBASE indicates
950	 * a kernel value. No SWAPGS needed on entry and exit.
951	 */
952	movl	$MSR_GS_BASE, %ecx
953	rdmsr
954	testl	%edx, %edx
955	js	.Lparanoid_kernel_gsbase
956
957	/* EBX = 0 -> SWAPGS required on exit */
958	xorl	%ebx, %ebx
959	swapgs
960.Lparanoid_kernel_gsbase:
961	FENCE_SWAPGS_KERNEL_ENTRY
962.Lparanoid_gsbase_done:
963
964	/*
965	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
966	 * CR3 above, keep the old value in a callee saved register.
967	 */
968	IBRS_ENTER save_reg=%r15
969	UNTRAIN_RET
970
971	RET
972SYM_CODE_END(paranoid_entry)
973
974/*
975 * "Paranoid" exit path from exception stack.  This is invoked
976 * only on return from non-NMI IST interrupts that came
977 * from kernel space.
978 *
979 * We may be returning to very strange contexts (e.g. very early
980 * in syscall entry), so checking for preemption here would
981 * be complicated.  Fortunately, there's no good reason to try
982 * to handle preemption here.
983 *
984 * R/EBX contains the GSBASE related information depending on the
985 * availability of the FSGSBASE instructions:
986 *
987 * FSGSBASE	R/EBX
988 *     N        0 -> SWAPGS on exit
989 *              1 -> no SWAPGS on exit
990 *
991 *     Y        User space GSBASE, must be restored unconditionally
992 *
993 * R14 - old CR3
994 * R15 - old SPEC_CTRL
995 */
996SYM_CODE_START_LOCAL(paranoid_exit)
997	UNWIND_HINT_REGS
998
999	/*
1000	 * Must restore IBRS state before both CR3 and %GS since we need access
1001	 * to the per-CPU x86_spec_ctrl_shadow variable.
1002	 */
1003	IBRS_EXIT save_reg=%r15
1004
1005	/*
1006	 * The order of operations is important. RESTORE_CR3 requires
1007	 * kernel GSBASE.
1008	 *
1009	 * NB to anyone to try to optimize this code: this code does
1010	 * not execute at all for exceptions from user mode. Those
1011	 * exceptions go through error_exit instead.
1012	 */
1013	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
1014
1015	/* Handle the three GSBASE cases */
1016	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
1017
1018	/* With FSGSBASE enabled, unconditionally restore GSBASE */
1019	wrgsbase	%rbx
1020	jmp		restore_regs_and_return_to_kernel
1021
1022.Lparanoid_exit_checkgs:
1023	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1024	testl		%ebx, %ebx
1025	jnz		restore_regs_and_return_to_kernel
1026
1027	/* We are returning to a context with user GSBASE */
1028	swapgs
1029	jmp		restore_regs_and_return_to_kernel
1030SYM_CODE_END(paranoid_exit)
1031
1032/*
1033 * Save all registers in pt_regs, and switch GS if needed.
1034 */
1035SYM_CODE_START_LOCAL(error_entry)
1036	UNWIND_HINT_FUNC
1037	cld
1038	PUSH_AND_CLEAR_REGS save_ret=1
1039	ENCODE_FRAME_POINTER 8
1040	testb	$3, CS+8(%rsp)
1041	jz	.Lerror_kernelspace
1042
1043	/*
1044	 * We entered from user mode or we're pretending to have entered
1045	 * from user mode due to an IRET fault.
1046	 */
1047	SWAPGS
1048	FENCE_SWAPGS_USER_ENTRY
1049	/* We have user CR3.  Change to kernel CR3. */
1050	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1051	IBRS_ENTER
1052	UNTRAIN_RET
1053
1054.Lerror_entry_from_usermode_after_swapgs:
1055
1056	/* Put us onto the real thread stack. */
1057	popq	%r12				/* save return addr in %12 */
1058	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1059	call	sync_regs
1060	movq	%rax, %rsp			/* switch stack */
1061	ENCODE_FRAME_POINTER
1062	pushq	%r12
1063	RET
1064
1065	/*
1066	 * There are two places in the kernel that can potentially fault with
1067	 * usergs. Handle them here.  B stepping K8s sometimes report a
1068	 * truncated RIP for IRET exceptions returning to compat mode. Check
1069	 * for these here too.
1070	 */
1071.Lerror_kernelspace:
1072	leaq	native_irq_return_iret(%rip), %rcx
1073	cmpq	%rcx, RIP+8(%rsp)
1074	je	.Lerror_bad_iret
1075	movl	%ecx, %eax			/* zero extend */
1076	cmpq	%rax, RIP+8(%rsp)
1077	je	.Lbstep_iret
1078	cmpq	$.Lgs_change, RIP+8(%rsp)
1079	jne	.Lerror_entry_done_lfence
1080
1081	/*
1082	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1083	 * gsbase and proceed.  We'll fix up the exception and land in
1084	 * .Lgs_change's error handler with kernel gsbase.
1085	 */
1086	SWAPGS
1087
1088	/*
1089	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1090	 * kernel or user gsbase.
1091	 */
1092.Lerror_entry_done_lfence:
1093	FENCE_SWAPGS_KERNEL_ENTRY
1094	ANNOTATE_UNRET_END
1095	RET
1096
1097.Lbstep_iret:
1098	/* Fix truncated RIP */
1099	movq	%rcx, RIP+8(%rsp)
1100	/* fall through */
1101
1102.Lerror_bad_iret:
1103	/*
1104	 * We came from an IRET to user mode, so we have user
1105	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1106	 */
1107	SWAPGS
1108	FENCE_SWAPGS_USER_ENTRY
1109	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1110	IBRS_ENTER
1111	UNTRAIN_RET
1112
1113	/*
1114	 * Pretend that the exception came from user mode: set up pt_regs
1115	 * as if we faulted immediately after IRET.
1116	 */
1117	mov	%rsp, %rdi
1118	call	fixup_bad_iret
1119	mov	%rax, %rsp
1120	jmp	.Lerror_entry_from_usermode_after_swapgs
1121SYM_CODE_END(error_entry)
1122
1123SYM_CODE_START_LOCAL(error_return)
1124	UNWIND_HINT_REGS
1125	DEBUG_ENTRY_ASSERT_IRQS_OFF
1126	testb	$3, CS(%rsp)
1127	jz	restore_regs_and_return_to_kernel
1128	jmp	swapgs_restore_regs_and_return_to_usermode
1129SYM_CODE_END(error_return)
1130
1131/*
1132 * Runs on exception stack.  Xen PV does not go through this path at all,
1133 * so we can use real assembly here.
1134 *
1135 * Registers:
1136 *	%r14: Used to save/restore the CR3 of the interrupted context
1137 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1138 */
1139SYM_CODE_START(asm_exc_nmi)
1140	UNWIND_HINT_IRET_REGS
1141
1142	/*
1143	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1144	 * the iretq it performs will take us out of NMI context.
1145	 * This means that we can have nested NMIs where the next
1146	 * NMI is using the top of the stack of the previous NMI. We
1147	 * can't let it execute because the nested NMI will corrupt the
1148	 * stack of the previous NMI. NMI handlers are not re-entrant
1149	 * anyway.
1150	 *
1151	 * To handle this case we do the following:
1152	 *  Check the a special location on the stack that contains
1153	 *  a variable that is set when NMIs are executing.
1154	 *  The interrupted task's stack is also checked to see if it
1155	 *  is an NMI stack.
1156	 *  If the variable is not set and the stack is not the NMI
1157	 *  stack then:
1158	 *    o Set the special variable on the stack
1159	 *    o Copy the interrupt frame into an "outermost" location on the
1160	 *      stack
1161	 *    o Copy the interrupt frame into an "iret" location on the stack
1162	 *    o Continue processing the NMI
1163	 *  If the variable is set or the previous stack is the NMI stack:
1164	 *    o Modify the "iret" location to jump to the repeat_nmi
1165	 *    o return back to the first NMI
1166	 *
1167	 * Now on exit of the first NMI, we first clear the stack variable
1168	 * The NMI stack will tell any nested NMIs at that point that it is
1169	 * nested. Then we pop the stack normally with iret, and if there was
1170	 * a nested NMI that updated the copy interrupt stack frame, a
1171	 * jump will be made to the repeat_nmi code that will handle the second
1172	 * NMI.
1173	 *
1174	 * However, espfix prevents us from directly returning to userspace
1175	 * with a single IRET instruction.  Similarly, IRET to user mode
1176	 * can fault.  We therefore handle NMIs from user space like
1177	 * other IST entries.
1178	 */
1179
1180	ASM_CLAC
1181
1182	/* Use %rdx as our temp variable throughout */
1183	pushq	%rdx
1184
1185	testb	$3, CS-RIP+8(%rsp)
1186	jz	.Lnmi_from_kernel
1187
1188	/*
1189	 * NMI from user mode.  We need to run on the thread stack, but we
1190	 * can't go through the normal entry paths: NMIs are masked, and
1191	 * we don't want to enable interrupts, because then we'll end
1192	 * up in an awkward situation in which IRQs are on but NMIs
1193	 * are off.
1194	 *
1195	 * We also must not push anything to the stack before switching
1196	 * stacks lest we corrupt the "NMI executing" variable.
1197	 */
1198
1199	swapgs
1200	cld
1201	FENCE_SWAPGS_USER_ENTRY
1202	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1203	movq	%rsp, %rdx
1204	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1205	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1206	pushq	5*8(%rdx)	/* pt_regs->ss */
1207	pushq	4*8(%rdx)	/* pt_regs->rsp */
1208	pushq	3*8(%rdx)	/* pt_regs->flags */
1209	pushq	2*8(%rdx)	/* pt_regs->cs */
1210	pushq	1*8(%rdx)	/* pt_regs->rip */
1211	UNWIND_HINT_IRET_REGS
1212	pushq   $-1		/* pt_regs->orig_ax */
1213	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1214	ENCODE_FRAME_POINTER
1215
1216	IBRS_ENTER
1217	UNTRAIN_RET
1218
1219	/*
1220	 * At this point we no longer need to worry about stack damage
1221	 * due to nesting -- we're on the normal thread stack and we're
1222	 * done with the NMI stack.
1223	 */
1224
1225	movq	%rsp, %rdi
1226	movq	$-1, %rsi
1227	call	exc_nmi
1228
1229	/*
1230	 * Return back to user mode.  We must *not* do the normal exit
1231	 * work, because we don't want to enable interrupts.
1232	 */
1233	jmp	swapgs_restore_regs_and_return_to_usermode
1234
1235.Lnmi_from_kernel:
1236	/*
1237	 * Here's what our stack frame will look like:
1238	 * +---------------------------------------------------------+
1239	 * | original SS                                             |
1240	 * | original Return RSP                                     |
1241	 * | original RFLAGS                                         |
1242	 * | original CS                                             |
1243	 * | original RIP                                            |
1244	 * +---------------------------------------------------------+
1245	 * | temp storage for rdx                                    |
1246	 * +---------------------------------------------------------+
1247	 * | "NMI executing" variable                                |
1248	 * +---------------------------------------------------------+
1249	 * | iret SS          } Copied from "outermost" frame        |
1250	 * | iret Return RSP  } on each loop iteration; overwritten  |
1251	 * | iret RFLAGS      } by a nested NMI to force another     |
1252	 * | iret CS          } iteration if needed.                 |
1253	 * | iret RIP         }                                      |
1254	 * +---------------------------------------------------------+
1255	 * | outermost SS          } initialized in first_nmi;       |
1256	 * | outermost Return RSP  } will not be changed before      |
1257	 * | outermost RFLAGS      } NMI processing is done.         |
1258	 * | outermost CS          } Copied to "iret" frame on each  |
1259	 * | outermost RIP         } iteration.                      |
1260	 * +---------------------------------------------------------+
1261	 * | pt_regs                                                 |
1262	 * +---------------------------------------------------------+
1263	 *
1264	 * The "original" frame is used by hardware.  Before re-enabling
1265	 * NMIs, we need to be done with it, and we need to leave enough
1266	 * space for the asm code here.
1267	 *
1268	 * We return by executing IRET while RSP points to the "iret" frame.
1269	 * That will either return for real or it will loop back into NMI
1270	 * processing.
1271	 *
1272	 * The "outermost" frame is copied to the "iret" frame on each
1273	 * iteration of the loop, so each iteration starts with the "iret"
1274	 * frame pointing to the final return target.
1275	 */
1276
1277	/*
1278	 * Determine whether we're a nested NMI.
1279	 *
1280	 * If we interrupted kernel code between repeat_nmi and
1281	 * end_repeat_nmi, then we are a nested NMI.  We must not
1282	 * modify the "iret" frame because it's being written by
1283	 * the outer NMI.  That's okay; the outer NMI handler is
1284	 * about to about to call exc_nmi() anyway, so we can just
1285	 * resume the outer NMI.
1286	 */
1287
1288	movq	$repeat_nmi, %rdx
1289	cmpq	8(%rsp), %rdx
1290	ja	1f
1291	movq	$end_repeat_nmi, %rdx
1292	cmpq	8(%rsp), %rdx
1293	ja	nested_nmi_out
12941:
1295
1296	/*
1297	 * Now check "NMI executing".  If it's set, then we're nested.
1298	 * This will not detect if we interrupted an outer NMI just
1299	 * before IRET.
1300	 */
1301	cmpl	$1, -8(%rsp)
1302	je	nested_nmi
1303
1304	/*
1305	 * Now test if the previous stack was an NMI stack.  This covers
1306	 * the case where we interrupt an outer NMI after it clears
1307	 * "NMI executing" but before IRET.  We need to be careful, though:
1308	 * there is one case in which RSP could point to the NMI stack
1309	 * despite there being no NMI active: naughty userspace controls
1310	 * RSP at the very beginning of the SYSCALL targets.  We can
1311	 * pull a fast one on naughty userspace, though: we program
1312	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1313	 * if it controls the kernel's RSP.  We set DF before we clear
1314	 * "NMI executing".
1315	 */
1316	lea	6*8(%rsp), %rdx
1317	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1318	cmpq	%rdx, 4*8(%rsp)
1319	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1320	ja	first_nmi
1321
1322	subq	$EXCEPTION_STKSZ, %rdx
1323	cmpq	%rdx, 4*8(%rsp)
1324	/* If it is below the NMI stack, it is a normal NMI */
1325	jb	first_nmi
1326
1327	/* Ah, it is within the NMI stack. */
1328
1329	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1330	jz	first_nmi	/* RSP was user controlled. */
1331
1332	/* This is a nested NMI. */
1333
1334nested_nmi:
1335	/*
1336	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1337	 * iteration of NMI handling.
1338	 */
1339	subq	$8, %rsp
1340	leaq	-10*8(%rsp), %rdx
1341	pushq	$__KERNEL_DS
1342	pushq	%rdx
1343	pushfq
1344	pushq	$__KERNEL_CS
1345	pushq	$repeat_nmi
1346
1347	/* Put stack back */
1348	addq	$(6*8), %rsp
1349
1350nested_nmi_out:
1351	popq	%rdx
1352
1353	/* We are returning to kernel mode, so this cannot result in a fault. */
1354	iretq
1355
1356first_nmi:
1357	/* Restore rdx. */
1358	movq	(%rsp), %rdx
1359
1360	/* Make room for "NMI executing". */
1361	pushq	$0
1362
1363	/* Leave room for the "iret" frame */
1364	subq	$(5*8), %rsp
1365
1366	/* Copy the "original" frame to the "outermost" frame */
1367	.rept 5
1368	pushq	11*8(%rsp)
1369	.endr
1370	UNWIND_HINT_IRET_REGS
1371
1372	/* Everything up to here is safe from nested NMIs */
1373
1374#ifdef CONFIG_DEBUG_ENTRY
1375	/*
1376	 * For ease of testing, unmask NMIs right away.  Disabled by
1377	 * default because IRET is very expensive.
1378	 */
1379	pushq	$0		/* SS */
1380	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1381	addq	$8, (%rsp)	/* Fix up RSP */
1382	pushfq			/* RFLAGS */
1383	pushq	$__KERNEL_CS	/* CS */
1384	pushq	$1f		/* RIP */
1385	iretq			/* continues at repeat_nmi below */
1386	UNWIND_HINT_IRET_REGS
13871:
1388#endif
1389
1390repeat_nmi:
1391	/*
1392	 * If there was a nested NMI, the first NMI's iret will return
1393	 * here. But NMIs are still enabled and we can take another
1394	 * nested NMI. The nested NMI checks the interrupted RIP to see
1395	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1396	 * it will just return, as we are about to repeat an NMI anyway.
1397	 * This makes it safe to copy to the stack frame that a nested
1398	 * NMI will update.
1399	 *
1400	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1401	 * we're repeating an NMI, gsbase has the same value that it had on
1402	 * the first iteration.  paranoid_entry will load the kernel
1403	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1404	 * is zero.
1405	 */
1406	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1407
1408	/*
1409	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1410	 * here must not modify the "iret" frame while we're writing to
1411	 * it or it will end up containing garbage.
1412	 */
1413	addq	$(10*8), %rsp
1414	.rept 5
1415	pushq	-6*8(%rsp)
1416	.endr
1417	subq	$(5*8), %rsp
1418end_repeat_nmi:
1419
1420	/*
1421	 * Everything below this point can be preempted by a nested NMI.
1422	 * If this happens, then the inner NMI will change the "iret"
1423	 * frame to point back to repeat_nmi.
1424	 */
1425	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1426
1427	/*
1428	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1429	 * as we should not be calling schedule in NMI context.
1430	 * Even with normal interrupts enabled. An NMI should not be
1431	 * setting NEED_RESCHED or anything that normal interrupts and
1432	 * exceptions might do.
1433	 */
1434	call	paranoid_entry
1435	UNWIND_HINT_REGS
1436
1437	movq	%rsp, %rdi
1438	movq	$-1, %rsi
1439	call	exc_nmi
1440
1441	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1442	IBRS_EXIT save_reg=%r15
1443
1444	/* Always restore stashed CR3 value (see paranoid_entry) */
1445	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1446
1447	/*
1448	 * The above invocation of paranoid_entry stored the GSBASE
1449	 * related information in R/EBX depending on the availability
1450	 * of FSGSBASE.
1451	 *
1452	 * If FSGSBASE is enabled, restore the saved GSBASE value
1453	 * unconditionally, otherwise take the conditional SWAPGS path.
1454	 */
1455	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1456
1457	wrgsbase	%rbx
1458	jmp	nmi_restore
1459
1460nmi_no_fsgsbase:
1461	/* EBX == 0 -> invoke SWAPGS */
1462	testl	%ebx, %ebx
1463	jnz	nmi_restore
1464
1465nmi_swapgs:
1466	swapgs
1467
1468nmi_restore:
1469	POP_REGS
1470
1471	/*
1472	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1473	 * at the "iret" frame.
1474	 */
1475	addq	$6*8, %rsp
1476
1477	/*
1478	 * Clear "NMI executing".  Set DF first so that we can easily
1479	 * distinguish the remaining code between here and IRET from
1480	 * the SYSCALL entry and exit paths.
1481	 *
1482	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1483	 * this code when I had the misapprehension that Xen PV supported
1484	 * NMIs, and Xen PV would break that approach.
1485	 */
1486	std
1487	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1488
1489	/*
1490	 * iretq reads the "iret" frame and exits the NMI stack in a
1491	 * single instruction.  We are returning to kernel mode, so this
1492	 * cannot result in a fault.  Similarly, we don't need to worry
1493	 * about espfix64 on the way back to kernel mode.
1494	 */
1495	iretq
1496SYM_CODE_END(asm_exc_nmi)
1497
1498#ifndef CONFIG_IA32_EMULATION
1499/*
1500 * This handles SYSCALL from 32-bit code.  There is no way to program
1501 * MSRs to fully disable 32-bit SYSCALL.
1502 */
1503SYM_CODE_START(ignore_sysret)
1504	UNWIND_HINT_EMPTY
1505	mov	$-ENOSYS, %eax
1506	sysretl
1507SYM_CODE_END(ignore_sysret)
1508#endif
1509
1510.pushsection .text, "ax"
1511SYM_CODE_START(rewind_stack_do_exit)
1512	UNWIND_HINT_FUNC
1513	/* Prevent any naive code from trying to unwind to our caller. */
1514	xorl	%ebp, %ebp
1515
1516	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1517	leaq	-PTREGS_SIZE(%rax), %rsp
1518	UNWIND_HINT_REGS
1519
1520	call	do_exit
1521SYM_CODE_END(rewind_stack_do_exit)
1522.popsection
1523