1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49#ifdef CONFIG_PARAVIRT_XXL 50SYM_CODE_START(native_usergs_sysret64) 51 UNWIND_HINT_EMPTY 52 swapgs 53 sysretq 54SYM_CODE_END(native_usergs_sysret64) 55#endif /* CONFIG_PARAVIRT_XXL */ 56 57/* 58 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 59 * 60 * This is the only entry point used for 64-bit system calls. The 61 * hardware interface is reasonably well designed and the register to 62 * argument mapping Linux uses fits well with the registers that are 63 * available when SYSCALL is used. 64 * 65 * SYSCALL instructions can be found inlined in libc implementations as 66 * well as some other programs and libraries. There are also a handful 67 * of SYSCALL instructions in the vDSO used, for example, as a 68 * clock_gettimeofday fallback. 69 * 70 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 71 * then loads new ss, cs, and rip from previously programmed MSRs. 72 * rflags gets masked by a value from another MSR (so CLD and CLAC 73 * are not needed). SYSCALL does not save anything on the stack 74 * and does not change rsp. 75 * 76 * Registers on entry: 77 * rax system call number 78 * rcx return address 79 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 80 * rdi arg0 81 * rsi arg1 82 * rdx arg2 83 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 84 * r8 arg4 85 * r9 arg5 86 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 87 * 88 * Only called from user space. 89 * 90 * When user can change pt_regs->foo always force IRET. That is because 91 * it deals with uncanonical addresses better. SYSRET has trouble 92 * with them due to bugs in both AMD and Intel CPUs. 93 */ 94 95SYM_CODE_START(entry_SYSCALL_64) 96 UNWIND_HINT_ENTRY 97 98 swapgs 99 /* tss.sp2 is scratch space. */ 100 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 101 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 102 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 103 104SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 105 106 /* Construct struct pt_regs on stack */ 107 pushq $__USER_DS /* pt_regs->ss */ 108 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 109 pushq %r11 /* pt_regs->flags */ 110 pushq $__USER_CS /* pt_regs->cs */ 111 pushq %rcx /* pt_regs->ip */ 112SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 113 pushq %rax /* pt_regs->orig_ax */ 114 115 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 116 117 /* IRQs are off. */ 118 movq %rax, %rdi 119 movq %rsp, %rsi 120 121 /* clobbers %rax, make sure it is after saving the syscall nr */ 122 IBRS_ENTER 123 UNTRAIN_RET 124 125 call do_syscall_64 /* returns with IRQs disabled */ 126 127 /* 128 * Try to use SYSRET instead of IRET if we're returning to 129 * a completely clean 64-bit userspace context. If we're not, 130 * go to the slow exit path. 131 */ 132 movq RCX(%rsp), %rcx 133 movq RIP(%rsp), %r11 134 135 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 136 jne swapgs_restore_regs_and_return_to_usermode 137 138 /* 139 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 140 * in kernel space. This essentially lets the user take over 141 * the kernel, since userspace controls RSP. 142 * 143 * If width of "canonical tail" ever becomes variable, this will need 144 * to be updated to remain correct on both old and new CPUs. 145 * 146 * Change top bits to match most significant bit (47th or 56th bit 147 * depending on paging mode) in the address. 148 */ 149#ifdef CONFIG_X86_5LEVEL 150 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 151 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 152#else 153 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 154 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 155#endif 156 157 /* If this changed %rcx, it was not canonical */ 158 cmpq %rcx, %r11 159 jne swapgs_restore_regs_and_return_to_usermode 160 161 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 162 jne swapgs_restore_regs_and_return_to_usermode 163 164 movq R11(%rsp), %r11 165 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 166 jne swapgs_restore_regs_and_return_to_usermode 167 168 /* 169 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 170 * restore RF properly. If the slowpath sets it for whatever reason, we 171 * need to restore it correctly. 172 * 173 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 174 * trap from userspace immediately after SYSRET. This would cause an 175 * infinite loop whenever #DB happens with register state that satisfies 176 * the opportunistic SYSRET conditions. For example, single-stepping 177 * this user code: 178 * 179 * movq $stuck_here, %rcx 180 * pushfq 181 * popq %r11 182 * stuck_here: 183 * 184 * would never get past 'stuck_here'. 185 */ 186 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 187 jnz swapgs_restore_regs_and_return_to_usermode 188 189 /* nothing to check for RSP */ 190 191 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 192 jne swapgs_restore_regs_and_return_to_usermode 193 194 /* 195 * We win! This label is here just for ease of understanding 196 * perf profiles. Nothing jumps here. 197 */ 198syscall_return_via_sysret: 199 IBRS_EXIT 200 POP_REGS pop_rdi=0 201 202 /* 203 * Now all regs are restored except RSP and RDI. 204 * Save old stack pointer and switch to trampoline stack. 205 */ 206 movq %rsp, %rdi 207 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 208 UNWIND_HINT_EMPTY 209 210 pushq RSP-RDI(%rdi) /* RSP */ 211 pushq (%rdi) /* RDI */ 212 213 /* 214 * We are on the trampoline stack. All regs except RDI are live. 215 * We can do future final exit work right here. 216 */ 217 STACKLEAK_ERASE_NOCLOBBER 218 219 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 220 221 popq %rdi 222 popq %rsp 223 USERGS_SYSRET64 224SYM_CODE_END(entry_SYSCALL_64) 225 226/* 227 * %rdi: prev task 228 * %rsi: next task 229 */ 230.pushsection .text, "ax" 231SYM_FUNC_START(__switch_to_asm) 232 /* 233 * Save callee-saved registers 234 * This must match the order in inactive_task_frame 235 */ 236 pushq %rbp 237 pushq %rbx 238 pushq %r12 239 pushq %r13 240 pushq %r14 241 pushq %r15 242 243 /* switch stack */ 244 movq %rsp, TASK_threadsp(%rdi) 245 movq TASK_threadsp(%rsi), %rsp 246 247#ifdef CONFIG_STACKPROTECTOR 248 movq TASK_stack_canary(%rsi), %rbx 249 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 250#endif 251 252 /* 253 * When switching from a shallower to a deeper call stack 254 * the RSB may either underflow or use entries populated 255 * with userspace addresses. On CPUs where those concerns 256 * exist, overwrite the RSB with entries which capture 257 * speculative execution to prevent attack. 258 */ 259 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 260 261 /* restore callee-saved registers */ 262 popq %r15 263 popq %r14 264 popq %r13 265 popq %r12 266 popq %rbx 267 popq %rbp 268 269 jmp __switch_to 270SYM_FUNC_END(__switch_to_asm) 271.popsection 272 273/* 274 * A newly forked process directly context switches into this address. 275 * 276 * rax: prev task we switched from 277 * rbx: kernel thread func (NULL for user thread) 278 * r12: kernel thread arg 279 */ 280.pushsection .text, "ax" 281SYM_CODE_START(ret_from_fork) 282 UNWIND_HINT_EMPTY 283 movq %rax, %rdi 284 call schedule_tail /* rdi: 'prev' task parameter */ 285 286 testq %rbx, %rbx /* from kernel_thread? */ 287 jnz 1f /* kernel threads are uncommon */ 288 2892: 290 UNWIND_HINT_REGS 291 movq %rsp, %rdi 292 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 293 jmp swapgs_restore_regs_and_return_to_usermode 294 2951: 296 /* kernel thread */ 297 UNWIND_HINT_EMPTY 298 movq %r12, %rdi 299 CALL_NOSPEC rbx 300 /* 301 * A kernel thread is allowed to return here after successfully 302 * calling kernel_execve(). Exit to userspace to complete the execve() 303 * syscall. 304 */ 305 movq $0, RAX(%rsp) 306 jmp 2b 307SYM_CODE_END(ret_from_fork) 308.popsection 309 310.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 311#ifdef CONFIG_DEBUG_ENTRY 312 pushq %rax 313 SAVE_FLAGS(CLBR_RAX) 314 testl $X86_EFLAGS_IF, %eax 315 jz .Lokay_\@ 316 ud2 317.Lokay_\@: 318 popq %rax 319#endif 320.endm 321 322/** 323 * idtentry_body - Macro to emit code calling the C function 324 * @cfunc: C function to be called 325 * @has_error_code: Hardware pushed error code on stack 326 */ 327.macro idtentry_body cfunc has_error_code:req 328 329 call error_entry 330 UNWIND_HINT_REGS 331 332 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 333 334 .if \has_error_code == 1 335 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 336 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 337 .endif 338 339 call \cfunc 340 341 jmp error_return 342.endm 343 344/** 345 * idtentry - Macro to generate entry stubs for simple IDT entries 346 * @vector: Vector number 347 * @asmsym: ASM symbol for the entry point 348 * @cfunc: C function to be called 349 * @has_error_code: Hardware pushed error code on stack 350 * 351 * The macro emits code to set up the kernel context for straight forward 352 * and simple IDT entries. No IST stack, no paranoid entry checks. 353 */ 354.macro idtentry vector asmsym cfunc has_error_code:req 355SYM_CODE_START(\asmsym) 356 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 357 ASM_CLAC 358 359 .if \has_error_code == 0 360 pushq $-1 /* ORIG_RAX: no syscall to restart */ 361 .endif 362 363 .if \vector == X86_TRAP_BP 364 /* 365 * If coming from kernel space, create a 6-word gap to allow the 366 * int3 handler to emulate a call instruction. 367 */ 368 testb $3, CS-ORIG_RAX(%rsp) 369 jnz .Lfrom_usermode_no_gap_\@ 370 .rept 6 371 pushq 5*8(%rsp) 372 .endr 373 UNWIND_HINT_IRET_REGS offset=8 374.Lfrom_usermode_no_gap_\@: 375 .endif 376 377 idtentry_body \cfunc \has_error_code 378 379_ASM_NOKPROBE(\asmsym) 380SYM_CODE_END(\asmsym) 381.endm 382 383/* 384 * Interrupt entry/exit. 385 * 386 + The interrupt stubs push (vector) onto the stack, which is the error_code 387 * position of idtentry exceptions, and jump to one of the two idtentry points 388 * (common/spurious). 389 * 390 * common_interrupt is a hotpath, align it to a cache line 391 */ 392.macro idtentry_irq vector cfunc 393 .p2align CONFIG_X86_L1_CACHE_SHIFT 394 idtentry \vector asm_\cfunc \cfunc has_error_code=1 395.endm 396 397/* 398 * System vectors which invoke their handlers directly and are not 399 * going through the regular common device interrupt handling code. 400 */ 401.macro idtentry_sysvec vector cfunc 402 idtentry \vector asm_\cfunc \cfunc has_error_code=0 403.endm 404 405/** 406 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 407 * @vector: Vector number 408 * @asmsym: ASM symbol for the entry point 409 * @cfunc: C function to be called 410 * 411 * The macro emits code to set up the kernel context for #MC and #DB 412 * 413 * If the entry comes from user space it uses the normal entry path 414 * including the return to user space work and preemption checks on 415 * exit. 416 * 417 * If hits in kernel mode then it needs to go through the paranoid 418 * entry as the exception can hit any random state. No preemption 419 * check on exit to keep the paranoid path simple. 420 */ 421.macro idtentry_mce_db vector asmsym cfunc 422SYM_CODE_START(\asmsym) 423 UNWIND_HINT_IRET_REGS 424 ASM_CLAC 425 426 pushq $-1 /* ORIG_RAX: no syscall to restart */ 427 428 /* 429 * If the entry is from userspace, switch stacks and treat it as 430 * a normal entry. 431 */ 432 testb $3, CS-ORIG_RAX(%rsp) 433 jnz .Lfrom_usermode_switch_stack_\@ 434 435 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 436 call paranoid_entry 437 438 UNWIND_HINT_REGS 439 440 movq %rsp, %rdi /* pt_regs pointer */ 441 442 call \cfunc 443 444 jmp paranoid_exit 445 446 /* Switch to the regular task stack and use the noist entry point */ 447.Lfrom_usermode_switch_stack_\@: 448 idtentry_body noist_\cfunc, has_error_code=0 449 450_ASM_NOKPROBE(\asmsym) 451SYM_CODE_END(\asmsym) 452.endm 453 454#ifdef CONFIG_AMD_MEM_ENCRYPT 455/** 456 * idtentry_vc - Macro to generate entry stub for #VC 457 * @vector: Vector number 458 * @asmsym: ASM symbol for the entry point 459 * @cfunc: C function to be called 460 * 461 * The macro emits code to set up the kernel context for #VC. The #VC handler 462 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 463 * 464 * To make this work the #VC entry code tries its best to pretend it doesn't use 465 * an IST stack by switching to the task stack if coming from user-space (which 466 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 467 * entered from kernel-mode. 468 * 469 * If entered from kernel-mode the return stack is validated first, and if it is 470 * not safe to use (e.g. because it points to the entry stack) the #VC handler 471 * will switch to a fall-back stack (VC2) and call a special handler function. 472 * 473 * The macro is only used for one vector, but it is planned to be extended in 474 * the future for the #HV exception. 475 */ 476.macro idtentry_vc vector asmsym cfunc 477SYM_CODE_START(\asmsym) 478 UNWIND_HINT_IRET_REGS 479 ASM_CLAC 480 481 /* 482 * If the entry is from userspace, switch stacks and treat it as 483 * a normal entry. 484 */ 485 testb $3, CS-ORIG_RAX(%rsp) 486 jnz .Lfrom_usermode_switch_stack_\@ 487 488 /* 489 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 490 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 491 */ 492 call paranoid_entry 493 494 UNWIND_HINT_REGS 495 496 /* 497 * Switch off the IST stack to make it free for nested exceptions. The 498 * vc_switch_off_ist() function will switch back to the interrupted 499 * stack if it is safe to do so. If not it switches to the VC fall-back 500 * stack. 501 */ 502 movq %rsp, %rdi /* pt_regs pointer */ 503 call vc_switch_off_ist 504 movq %rax, %rsp /* Switch to new stack */ 505 506 UNWIND_HINT_REGS 507 508 /* Update pt_regs */ 509 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 510 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 511 512 movq %rsp, %rdi /* pt_regs pointer */ 513 514 call kernel_\cfunc 515 516 /* 517 * No need to switch back to the IST stack. The current stack is either 518 * identical to the stack in the IRET frame or the VC fall-back stack, 519 * so it is definitly mapped even with PTI enabled. 520 */ 521 jmp paranoid_exit 522 523 /* Switch to the regular task stack */ 524.Lfrom_usermode_switch_stack_\@: 525 idtentry_body user_\cfunc, has_error_code=1 526 527_ASM_NOKPROBE(\asmsym) 528SYM_CODE_END(\asmsym) 529.endm 530#endif 531 532/* 533 * Double fault entry. Straight paranoid. No checks from which context 534 * this comes because for the espfix induced #DF this would do the wrong 535 * thing. 536 */ 537.macro idtentry_df vector asmsym cfunc 538SYM_CODE_START(\asmsym) 539 UNWIND_HINT_IRET_REGS offset=8 540 ASM_CLAC 541 542 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 543 call paranoid_entry 544 UNWIND_HINT_REGS 545 546 movq %rsp, %rdi /* pt_regs pointer into first argument */ 547 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 548 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 549 call \cfunc 550 551 jmp paranoid_exit 552 553_ASM_NOKPROBE(\asmsym) 554SYM_CODE_END(\asmsym) 555.endm 556 557/* 558 * Include the defines which emit the idt entries which are shared 559 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 560 * so the stacktrace boundary checks work. 561 */ 562 .align 16 563 .globl __irqentry_text_start 564__irqentry_text_start: 565 566#include <asm/idtentry.h> 567 568 .align 16 569 .globl __irqentry_text_end 570__irqentry_text_end: 571 572SYM_CODE_START_LOCAL(common_interrupt_return) 573SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 574 IBRS_EXIT 575#ifdef CONFIG_DEBUG_ENTRY 576 /* Assert that pt_regs indicates user mode. */ 577 testb $3, CS(%rsp) 578 jnz 1f 579 ud2 5801: 581#endif 582#ifdef CONFIG_XEN_PV 583 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 584#endif 585 586 POP_REGS pop_rdi=0 587 588 /* 589 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 590 * Save old stack pointer and switch to trampoline stack. 591 */ 592 movq %rsp, %rdi 593 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 594 UNWIND_HINT_EMPTY 595 596 /* Copy the IRET frame to the trampoline stack. */ 597 pushq 6*8(%rdi) /* SS */ 598 pushq 5*8(%rdi) /* RSP */ 599 pushq 4*8(%rdi) /* EFLAGS */ 600 pushq 3*8(%rdi) /* CS */ 601 pushq 2*8(%rdi) /* RIP */ 602 603 /* Push user RDI on the trampoline stack. */ 604 pushq (%rdi) 605 606 /* 607 * We are on the trampoline stack. All regs except RDI are live. 608 * We can do future final exit work right here. 609 */ 610 STACKLEAK_ERASE_NOCLOBBER 611 612 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 613 614 /* Restore RDI. */ 615 popq %rdi 616 SWAPGS 617 INTERRUPT_RETURN 618 619 620SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 621#ifdef CONFIG_DEBUG_ENTRY 622 /* Assert that pt_regs indicates kernel mode. */ 623 testb $3, CS(%rsp) 624 jz 1f 625 ud2 6261: 627#endif 628 POP_REGS 629 addq $8, %rsp /* skip regs->orig_ax */ 630 /* 631 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 632 * when returning from IPI handler. 633 */ 634 INTERRUPT_RETURN 635 636SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) 637 UNWIND_HINT_IRET_REGS 638 /* 639 * Are we returning to a stack segment from the LDT? Note: in 640 * 64-bit mode SS:RSP on the exception stack is always valid. 641 */ 642#ifdef CONFIG_X86_ESPFIX64 643 testb $4, (SS-RIP)(%rsp) 644 jnz native_irq_return_ldt 645#endif 646 647SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 648 /* 649 * This may fault. Non-paranoid faults on return to userspace are 650 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 651 * Double-faults due to espfix64 are handled in exc_double_fault. 652 * Other faults here are fatal. 653 */ 654 iretq 655 656#ifdef CONFIG_X86_ESPFIX64 657native_irq_return_ldt: 658 /* 659 * We are running with user GSBASE. All GPRs contain their user 660 * values. We have a percpu ESPFIX stack that is eight slots 661 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 662 * of the ESPFIX stack. 663 * 664 * We clobber RAX and RDI in this code. We stash RDI on the 665 * normal stack and RAX on the ESPFIX stack. 666 * 667 * The ESPFIX stack layout we set up looks like this: 668 * 669 * --- top of ESPFIX stack --- 670 * SS 671 * RSP 672 * RFLAGS 673 * CS 674 * RIP <-- RSP points here when we're done 675 * RAX <-- espfix_waddr points here 676 * --- bottom of ESPFIX stack --- 677 */ 678 679 pushq %rdi /* Stash user RDI */ 680 swapgs /* to kernel GS */ 681 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 682 UNTRAIN_RET 683 684 movq PER_CPU_VAR(espfix_waddr), %rdi 685 movq %rax, (0*8)(%rdi) /* user RAX */ 686 movq (1*8)(%rsp), %rax /* user RIP */ 687 movq %rax, (1*8)(%rdi) 688 movq (2*8)(%rsp), %rax /* user CS */ 689 movq %rax, (2*8)(%rdi) 690 movq (3*8)(%rsp), %rax /* user RFLAGS */ 691 movq %rax, (3*8)(%rdi) 692 movq (5*8)(%rsp), %rax /* user SS */ 693 movq %rax, (5*8)(%rdi) 694 movq (4*8)(%rsp), %rax /* user RSP */ 695 movq %rax, (4*8)(%rdi) 696 /* Now RAX == RSP. */ 697 698 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 699 700 /* 701 * espfix_stack[31:16] == 0. The page tables are set up such that 702 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 703 * espfix_waddr for any X. That is, there are 65536 RO aliases of 704 * the same page. Set up RSP so that RSP[31:16] contains the 705 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 706 * still points to an RO alias of the ESPFIX stack. 707 */ 708 orq PER_CPU_VAR(espfix_stack), %rax 709 710 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 711 swapgs /* to user GS */ 712 popq %rdi /* Restore user RDI */ 713 714 movq %rax, %rsp 715 UNWIND_HINT_IRET_REGS offset=8 716 717 /* 718 * At this point, we cannot write to the stack any more, but we can 719 * still read. 720 */ 721 popq %rax /* Restore user RAX */ 722 723 /* 724 * RSP now points to an ordinary IRET frame, except that the page 725 * is read-only and RSP[31:16] are preloaded with the userspace 726 * values. We can now IRET back to userspace. 727 */ 728 jmp native_irq_return_iret 729#endif 730SYM_CODE_END(common_interrupt_return) 731_ASM_NOKPROBE(common_interrupt_return) 732 733/* 734 * Reload gs selector with exception handling 735 * edi: new selector 736 * 737 * Is in entry.text as it shouldn't be instrumented. 738 */ 739SYM_FUNC_START(asm_load_gs_index) 740 FRAME_BEGIN 741 swapgs 742.Lgs_change: 743 movl %edi, %gs 7442: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 745 swapgs 746 FRAME_END 747 RET 748SYM_FUNC_END(asm_load_gs_index) 749EXPORT_SYMBOL(asm_load_gs_index) 750 751 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 752 .section .fixup, "ax" 753 /* running with kernelgs */ 754SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) 755 swapgs /* switch back to user gs */ 756.macro ZAP_GS 757 /* This can't be a string because the preprocessor needs to see it. */ 758 movl $__USER_DS, %eax 759 movl %eax, %gs 760.endm 761 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 762 xorl %eax, %eax 763 movl %eax, %gs 764 jmp 2b 765SYM_CODE_END(.Lbad_gs) 766 .previous 767 768/* 769 * rdi: New stack pointer points to the top word of the stack 770 * rsi: Function pointer 771 * rdx: Function argument (can be NULL if none) 772 */ 773SYM_FUNC_START(asm_call_on_stack) 774SYM_INNER_LABEL(asm_call_sysvec_on_stack, SYM_L_GLOBAL) 775SYM_INNER_LABEL(asm_call_irq_on_stack, SYM_L_GLOBAL) 776 /* 777 * Save the frame pointer unconditionally. This allows the ORC 778 * unwinder to handle the stack switch. 779 */ 780 pushq %rbp 781 mov %rsp, %rbp 782 783 /* 784 * The unwinder relies on the word at the top of the new stack 785 * page linking back to the previous RSP. 786 */ 787 mov %rsp, (%rdi) 788 mov %rdi, %rsp 789 /* Move the argument to the right place */ 790 mov %rdx, %rdi 791 7921: 793 .pushsection .discard.instr_begin 794 .long 1b - . 795 .popsection 796 797 CALL_NOSPEC rsi 798 7992: 800 .pushsection .discard.instr_end 801 .long 2b - . 802 .popsection 803 804 /* Restore the previous stack pointer from RBP. */ 805 leaveq 806 RET 807SYM_FUNC_END(asm_call_on_stack) 808 809#ifdef CONFIG_XEN_PV 810/* 811 * A note on the "critical region" in our callback handler. 812 * We want to avoid stacking callback handlers due to events occurring 813 * during handling of the last event. To do this, we keep events disabled 814 * until we've done all processing. HOWEVER, we must enable events before 815 * popping the stack frame (can't be done atomically) and so it would still 816 * be possible to get enough handler activations to overflow the stack. 817 * Although unlikely, bugs of that kind are hard to track down, so we'd 818 * like to avoid the possibility. 819 * So, on entry to the handler we detect whether we interrupted an 820 * existing activation in its critical region -- if so, we pop the current 821 * activation and restart the handler using the previous one. 822 * 823 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 824 */ 825SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 826 827/* 828 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 829 * see the correct pointer to the pt_regs 830 */ 831 UNWIND_HINT_FUNC 832 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 833 UNWIND_HINT_REGS 834 835 call xen_pv_evtchn_do_upcall 836 837 jmp error_return 838SYM_CODE_END(exc_xen_hypervisor_callback) 839 840/* 841 * Hypervisor uses this for application faults while it executes. 842 * We get here for two reasons: 843 * 1. Fault while reloading DS, ES, FS or GS 844 * 2. Fault while executing IRET 845 * Category 1 we do not need to fix up as Xen has already reloaded all segment 846 * registers that could be reloaded and zeroed the others. 847 * Category 2 we fix up by killing the current process. We cannot use the 848 * normal Linux return path in this case because if we use the IRET hypercall 849 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 850 * We distinguish between categories by comparing each saved segment register 851 * with its current contents: any discrepancy means we in category 1. 852 */ 853SYM_CODE_START(xen_failsafe_callback) 854 UNWIND_HINT_EMPTY 855 movl %ds, %ecx 856 cmpw %cx, 0x10(%rsp) 857 jne 1f 858 movl %es, %ecx 859 cmpw %cx, 0x18(%rsp) 860 jne 1f 861 movl %fs, %ecx 862 cmpw %cx, 0x20(%rsp) 863 jne 1f 864 movl %gs, %ecx 865 cmpw %cx, 0x28(%rsp) 866 jne 1f 867 /* All segments match their saved values => Category 2 (Bad IRET). */ 868 movq (%rsp), %rcx 869 movq 8(%rsp), %r11 870 addq $0x30, %rsp 871 pushq $0 /* RIP */ 872 UNWIND_HINT_IRET_REGS offset=8 873 jmp asm_exc_general_protection 8741: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 875 movq (%rsp), %rcx 876 movq 8(%rsp), %r11 877 addq $0x30, %rsp 878 UNWIND_HINT_IRET_REGS 879 pushq $-1 /* orig_ax = -1 => not a system call */ 880 PUSH_AND_CLEAR_REGS 881 ENCODE_FRAME_POINTER 882 jmp error_return 883SYM_CODE_END(xen_failsafe_callback) 884#endif /* CONFIG_XEN_PV */ 885 886/* 887 * Save all registers in pt_regs. Return GSBASE related information 888 * in EBX depending on the availability of the FSGSBASE instructions: 889 * 890 * FSGSBASE R/EBX 891 * N 0 -> SWAPGS on exit 892 * 1 -> no SWAPGS on exit 893 * 894 * Y GSBASE value at entry, must be restored in paranoid_exit 895 * 896 * R14 - old CR3 897 * R15 - old SPEC_CTRL 898 */ 899SYM_CODE_START_LOCAL(paranoid_entry) 900 UNWIND_HINT_FUNC 901 cld 902 PUSH_AND_CLEAR_REGS save_ret=1 903 ENCODE_FRAME_POINTER 8 904 905 /* 906 * Always stash CR3 in %r14. This value will be restored, 907 * verbatim, at exit. Needed if paranoid_entry interrupted 908 * another entry that already switched to the user CR3 value 909 * but has not yet returned to userspace. 910 * 911 * This is also why CS (stashed in the "iret frame" by the 912 * hardware at entry) can not be used: this may be a return 913 * to kernel code, but with a user CR3 value. 914 * 915 * Switching CR3 does not depend on kernel GSBASE so it can 916 * be done before switching to the kernel GSBASE. This is 917 * required for FSGSBASE because the kernel GSBASE has to 918 * be retrieved from a kernel internal table. 919 */ 920 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 921 922 /* 923 * Handling GSBASE depends on the availability of FSGSBASE. 924 * 925 * Without FSGSBASE the kernel enforces that negative GSBASE 926 * values indicate kernel GSBASE. With FSGSBASE no assumptions 927 * can be made about the GSBASE value when entering from user 928 * space. 929 */ 930 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 931 932 /* 933 * Read the current GSBASE and store it in %rbx unconditionally, 934 * retrieve and set the current CPUs kernel GSBASE. The stored value 935 * has to be restored in paranoid_exit unconditionally. 936 * 937 * The unconditional write to GS base below ensures that no subsequent 938 * loads based on a mispredicted GS base can happen, therefore no LFENCE 939 * is needed here. 940 */ 941 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 942 jmp .Lparanoid_gsbase_done 943 944.Lparanoid_entry_checkgs: 945 /* EBX = 1 -> kernel GSBASE active, no restore required */ 946 movl $1, %ebx 947 948 /* 949 * The kernel-enforced convention is a negative GSBASE indicates 950 * a kernel value. No SWAPGS needed on entry and exit. 951 */ 952 movl $MSR_GS_BASE, %ecx 953 rdmsr 954 testl %edx, %edx 955 js .Lparanoid_kernel_gsbase 956 957 /* EBX = 0 -> SWAPGS required on exit */ 958 xorl %ebx, %ebx 959 swapgs 960.Lparanoid_kernel_gsbase: 961 FENCE_SWAPGS_KERNEL_ENTRY 962.Lparanoid_gsbase_done: 963 964 /* 965 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 966 * CR3 above, keep the old value in a callee saved register. 967 */ 968 IBRS_ENTER save_reg=%r15 969 UNTRAIN_RET 970 971 RET 972SYM_CODE_END(paranoid_entry) 973 974/* 975 * "Paranoid" exit path from exception stack. This is invoked 976 * only on return from non-NMI IST interrupts that came 977 * from kernel space. 978 * 979 * We may be returning to very strange contexts (e.g. very early 980 * in syscall entry), so checking for preemption here would 981 * be complicated. Fortunately, there's no good reason to try 982 * to handle preemption here. 983 * 984 * R/EBX contains the GSBASE related information depending on the 985 * availability of the FSGSBASE instructions: 986 * 987 * FSGSBASE R/EBX 988 * N 0 -> SWAPGS on exit 989 * 1 -> no SWAPGS on exit 990 * 991 * Y User space GSBASE, must be restored unconditionally 992 * 993 * R14 - old CR3 994 * R15 - old SPEC_CTRL 995 */ 996SYM_CODE_START_LOCAL(paranoid_exit) 997 UNWIND_HINT_REGS 998 999 /* 1000 * Must restore IBRS state before both CR3 and %GS since we need access 1001 * to the per-CPU x86_spec_ctrl_shadow variable. 1002 */ 1003 IBRS_EXIT save_reg=%r15 1004 1005 /* 1006 * The order of operations is important. RESTORE_CR3 requires 1007 * kernel GSBASE. 1008 * 1009 * NB to anyone to try to optimize this code: this code does 1010 * not execute at all for exceptions from user mode. Those 1011 * exceptions go through error_exit instead. 1012 */ 1013 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 1014 1015 /* Handle the three GSBASE cases */ 1016 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 1017 1018 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 1019 wrgsbase %rbx 1020 jmp restore_regs_and_return_to_kernel 1021 1022.Lparanoid_exit_checkgs: 1023 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1024 testl %ebx, %ebx 1025 jnz restore_regs_and_return_to_kernel 1026 1027 /* We are returning to a context with user GSBASE */ 1028 swapgs 1029 jmp restore_regs_and_return_to_kernel 1030SYM_CODE_END(paranoid_exit) 1031 1032/* 1033 * Save all registers in pt_regs, and switch GS if needed. 1034 */ 1035SYM_CODE_START_LOCAL(error_entry) 1036 UNWIND_HINT_FUNC 1037 cld 1038 PUSH_AND_CLEAR_REGS save_ret=1 1039 ENCODE_FRAME_POINTER 8 1040 testb $3, CS+8(%rsp) 1041 jz .Lerror_kernelspace 1042 1043 /* 1044 * We entered from user mode or we're pretending to have entered 1045 * from user mode due to an IRET fault. 1046 */ 1047 SWAPGS 1048 FENCE_SWAPGS_USER_ENTRY 1049 /* We have user CR3. Change to kernel CR3. */ 1050 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1051 IBRS_ENTER 1052 UNTRAIN_RET 1053 1054.Lerror_entry_from_usermode_after_swapgs: 1055 1056 /* Put us onto the real thread stack. */ 1057 popq %r12 /* save return addr in %12 */ 1058 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 1059 call sync_regs 1060 movq %rax, %rsp /* switch stack */ 1061 ENCODE_FRAME_POINTER 1062 pushq %r12 1063 RET 1064 1065 /* 1066 * There are two places in the kernel that can potentially fault with 1067 * usergs. Handle them here. B stepping K8s sometimes report a 1068 * truncated RIP for IRET exceptions returning to compat mode. Check 1069 * for these here too. 1070 */ 1071.Lerror_kernelspace: 1072 leaq native_irq_return_iret(%rip), %rcx 1073 cmpq %rcx, RIP+8(%rsp) 1074 je .Lerror_bad_iret 1075 movl %ecx, %eax /* zero extend */ 1076 cmpq %rax, RIP+8(%rsp) 1077 je .Lbstep_iret 1078 cmpq $.Lgs_change, RIP+8(%rsp) 1079 jne .Lerror_entry_done_lfence 1080 1081 /* 1082 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1083 * gsbase and proceed. We'll fix up the exception and land in 1084 * .Lgs_change's error handler with kernel gsbase. 1085 */ 1086 SWAPGS 1087 1088 /* 1089 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1090 * kernel or user gsbase. 1091 */ 1092.Lerror_entry_done_lfence: 1093 FENCE_SWAPGS_KERNEL_ENTRY 1094 ANNOTATE_UNRET_END 1095 RET 1096 1097.Lbstep_iret: 1098 /* Fix truncated RIP */ 1099 movq %rcx, RIP+8(%rsp) 1100 /* fall through */ 1101 1102.Lerror_bad_iret: 1103 /* 1104 * We came from an IRET to user mode, so we have user 1105 * gsbase and CR3. Switch to kernel gsbase and CR3: 1106 */ 1107 SWAPGS 1108 FENCE_SWAPGS_USER_ENTRY 1109 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1110 IBRS_ENTER 1111 UNTRAIN_RET 1112 1113 /* 1114 * Pretend that the exception came from user mode: set up pt_regs 1115 * as if we faulted immediately after IRET. 1116 */ 1117 mov %rsp, %rdi 1118 call fixup_bad_iret 1119 mov %rax, %rsp 1120 jmp .Lerror_entry_from_usermode_after_swapgs 1121SYM_CODE_END(error_entry) 1122 1123SYM_CODE_START_LOCAL(error_return) 1124 UNWIND_HINT_REGS 1125 DEBUG_ENTRY_ASSERT_IRQS_OFF 1126 testb $3, CS(%rsp) 1127 jz restore_regs_and_return_to_kernel 1128 jmp swapgs_restore_regs_and_return_to_usermode 1129SYM_CODE_END(error_return) 1130 1131/* 1132 * Runs on exception stack. Xen PV does not go through this path at all, 1133 * so we can use real assembly here. 1134 * 1135 * Registers: 1136 * %r14: Used to save/restore the CR3 of the interrupted context 1137 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1138 */ 1139SYM_CODE_START(asm_exc_nmi) 1140 UNWIND_HINT_IRET_REGS 1141 1142 /* 1143 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1144 * the iretq it performs will take us out of NMI context. 1145 * This means that we can have nested NMIs where the next 1146 * NMI is using the top of the stack of the previous NMI. We 1147 * can't let it execute because the nested NMI will corrupt the 1148 * stack of the previous NMI. NMI handlers are not re-entrant 1149 * anyway. 1150 * 1151 * To handle this case we do the following: 1152 * Check the a special location on the stack that contains 1153 * a variable that is set when NMIs are executing. 1154 * The interrupted task's stack is also checked to see if it 1155 * is an NMI stack. 1156 * If the variable is not set and the stack is not the NMI 1157 * stack then: 1158 * o Set the special variable on the stack 1159 * o Copy the interrupt frame into an "outermost" location on the 1160 * stack 1161 * o Copy the interrupt frame into an "iret" location on the stack 1162 * o Continue processing the NMI 1163 * If the variable is set or the previous stack is the NMI stack: 1164 * o Modify the "iret" location to jump to the repeat_nmi 1165 * o return back to the first NMI 1166 * 1167 * Now on exit of the first NMI, we first clear the stack variable 1168 * The NMI stack will tell any nested NMIs at that point that it is 1169 * nested. Then we pop the stack normally with iret, and if there was 1170 * a nested NMI that updated the copy interrupt stack frame, a 1171 * jump will be made to the repeat_nmi code that will handle the second 1172 * NMI. 1173 * 1174 * However, espfix prevents us from directly returning to userspace 1175 * with a single IRET instruction. Similarly, IRET to user mode 1176 * can fault. We therefore handle NMIs from user space like 1177 * other IST entries. 1178 */ 1179 1180 ASM_CLAC 1181 1182 /* Use %rdx as our temp variable throughout */ 1183 pushq %rdx 1184 1185 testb $3, CS-RIP+8(%rsp) 1186 jz .Lnmi_from_kernel 1187 1188 /* 1189 * NMI from user mode. We need to run on the thread stack, but we 1190 * can't go through the normal entry paths: NMIs are masked, and 1191 * we don't want to enable interrupts, because then we'll end 1192 * up in an awkward situation in which IRQs are on but NMIs 1193 * are off. 1194 * 1195 * We also must not push anything to the stack before switching 1196 * stacks lest we corrupt the "NMI executing" variable. 1197 */ 1198 1199 swapgs 1200 cld 1201 FENCE_SWAPGS_USER_ENTRY 1202 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1203 movq %rsp, %rdx 1204 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1205 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1206 pushq 5*8(%rdx) /* pt_regs->ss */ 1207 pushq 4*8(%rdx) /* pt_regs->rsp */ 1208 pushq 3*8(%rdx) /* pt_regs->flags */ 1209 pushq 2*8(%rdx) /* pt_regs->cs */ 1210 pushq 1*8(%rdx) /* pt_regs->rip */ 1211 UNWIND_HINT_IRET_REGS 1212 pushq $-1 /* pt_regs->orig_ax */ 1213 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1214 ENCODE_FRAME_POINTER 1215 1216 IBRS_ENTER 1217 UNTRAIN_RET 1218 1219 /* 1220 * At this point we no longer need to worry about stack damage 1221 * due to nesting -- we're on the normal thread stack and we're 1222 * done with the NMI stack. 1223 */ 1224 1225 movq %rsp, %rdi 1226 movq $-1, %rsi 1227 call exc_nmi 1228 1229 /* 1230 * Return back to user mode. We must *not* do the normal exit 1231 * work, because we don't want to enable interrupts. 1232 */ 1233 jmp swapgs_restore_regs_and_return_to_usermode 1234 1235.Lnmi_from_kernel: 1236 /* 1237 * Here's what our stack frame will look like: 1238 * +---------------------------------------------------------+ 1239 * | original SS | 1240 * | original Return RSP | 1241 * | original RFLAGS | 1242 * | original CS | 1243 * | original RIP | 1244 * +---------------------------------------------------------+ 1245 * | temp storage for rdx | 1246 * +---------------------------------------------------------+ 1247 * | "NMI executing" variable | 1248 * +---------------------------------------------------------+ 1249 * | iret SS } Copied from "outermost" frame | 1250 * | iret Return RSP } on each loop iteration; overwritten | 1251 * | iret RFLAGS } by a nested NMI to force another | 1252 * | iret CS } iteration if needed. | 1253 * | iret RIP } | 1254 * +---------------------------------------------------------+ 1255 * | outermost SS } initialized in first_nmi; | 1256 * | outermost Return RSP } will not be changed before | 1257 * | outermost RFLAGS } NMI processing is done. | 1258 * | outermost CS } Copied to "iret" frame on each | 1259 * | outermost RIP } iteration. | 1260 * +---------------------------------------------------------+ 1261 * | pt_regs | 1262 * +---------------------------------------------------------+ 1263 * 1264 * The "original" frame is used by hardware. Before re-enabling 1265 * NMIs, we need to be done with it, and we need to leave enough 1266 * space for the asm code here. 1267 * 1268 * We return by executing IRET while RSP points to the "iret" frame. 1269 * That will either return for real or it will loop back into NMI 1270 * processing. 1271 * 1272 * The "outermost" frame is copied to the "iret" frame on each 1273 * iteration of the loop, so each iteration starts with the "iret" 1274 * frame pointing to the final return target. 1275 */ 1276 1277 /* 1278 * Determine whether we're a nested NMI. 1279 * 1280 * If we interrupted kernel code between repeat_nmi and 1281 * end_repeat_nmi, then we are a nested NMI. We must not 1282 * modify the "iret" frame because it's being written by 1283 * the outer NMI. That's okay; the outer NMI handler is 1284 * about to about to call exc_nmi() anyway, so we can just 1285 * resume the outer NMI. 1286 */ 1287 1288 movq $repeat_nmi, %rdx 1289 cmpq 8(%rsp), %rdx 1290 ja 1f 1291 movq $end_repeat_nmi, %rdx 1292 cmpq 8(%rsp), %rdx 1293 ja nested_nmi_out 12941: 1295 1296 /* 1297 * Now check "NMI executing". If it's set, then we're nested. 1298 * This will not detect if we interrupted an outer NMI just 1299 * before IRET. 1300 */ 1301 cmpl $1, -8(%rsp) 1302 je nested_nmi 1303 1304 /* 1305 * Now test if the previous stack was an NMI stack. This covers 1306 * the case where we interrupt an outer NMI after it clears 1307 * "NMI executing" but before IRET. We need to be careful, though: 1308 * there is one case in which RSP could point to the NMI stack 1309 * despite there being no NMI active: naughty userspace controls 1310 * RSP at the very beginning of the SYSCALL targets. We can 1311 * pull a fast one on naughty userspace, though: we program 1312 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1313 * if it controls the kernel's RSP. We set DF before we clear 1314 * "NMI executing". 1315 */ 1316 lea 6*8(%rsp), %rdx 1317 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1318 cmpq %rdx, 4*8(%rsp) 1319 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1320 ja first_nmi 1321 1322 subq $EXCEPTION_STKSZ, %rdx 1323 cmpq %rdx, 4*8(%rsp) 1324 /* If it is below the NMI stack, it is a normal NMI */ 1325 jb first_nmi 1326 1327 /* Ah, it is within the NMI stack. */ 1328 1329 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1330 jz first_nmi /* RSP was user controlled. */ 1331 1332 /* This is a nested NMI. */ 1333 1334nested_nmi: 1335 /* 1336 * Modify the "iret" frame to point to repeat_nmi, forcing another 1337 * iteration of NMI handling. 1338 */ 1339 subq $8, %rsp 1340 leaq -10*8(%rsp), %rdx 1341 pushq $__KERNEL_DS 1342 pushq %rdx 1343 pushfq 1344 pushq $__KERNEL_CS 1345 pushq $repeat_nmi 1346 1347 /* Put stack back */ 1348 addq $(6*8), %rsp 1349 1350nested_nmi_out: 1351 popq %rdx 1352 1353 /* We are returning to kernel mode, so this cannot result in a fault. */ 1354 iretq 1355 1356first_nmi: 1357 /* Restore rdx. */ 1358 movq (%rsp), %rdx 1359 1360 /* Make room for "NMI executing". */ 1361 pushq $0 1362 1363 /* Leave room for the "iret" frame */ 1364 subq $(5*8), %rsp 1365 1366 /* Copy the "original" frame to the "outermost" frame */ 1367 .rept 5 1368 pushq 11*8(%rsp) 1369 .endr 1370 UNWIND_HINT_IRET_REGS 1371 1372 /* Everything up to here is safe from nested NMIs */ 1373 1374#ifdef CONFIG_DEBUG_ENTRY 1375 /* 1376 * For ease of testing, unmask NMIs right away. Disabled by 1377 * default because IRET is very expensive. 1378 */ 1379 pushq $0 /* SS */ 1380 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1381 addq $8, (%rsp) /* Fix up RSP */ 1382 pushfq /* RFLAGS */ 1383 pushq $__KERNEL_CS /* CS */ 1384 pushq $1f /* RIP */ 1385 iretq /* continues at repeat_nmi below */ 1386 UNWIND_HINT_IRET_REGS 13871: 1388#endif 1389 1390repeat_nmi: 1391 /* 1392 * If there was a nested NMI, the first NMI's iret will return 1393 * here. But NMIs are still enabled and we can take another 1394 * nested NMI. The nested NMI checks the interrupted RIP to see 1395 * if it is between repeat_nmi and end_repeat_nmi, and if so 1396 * it will just return, as we are about to repeat an NMI anyway. 1397 * This makes it safe to copy to the stack frame that a nested 1398 * NMI will update. 1399 * 1400 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1401 * we're repeating an NMI, gsbase has the same value that it had on 1402 * the first iteration. paranoid_entry will load the kernel 1403 * gsbase if needed before we call exc_nmi(). "NMI executing" 1404 * is zero. 1405 */ 1406 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1407 1408 /* 1409 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1410 * here must not modify the "iret" frame while we're writing to 1411 * it or it will end up containing garbage. 1412 */ 1413 addq $(10*8), %rsp 1414 .rept 5 1415 pushq -6*8(%rsp) 1416 .endr 1417 subq $(5*8), %rsp 1418end_repeat_nmi: 1419 1420 /* 1421 * Everything below this point can be preempted by a nested NMI. 1422 * If this happens, then the inner NMI will change the "iret" 1423 * frame to point back to repeat_nmi. 1424 */ 1425 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1426 1427 /* 1428 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1429 * as we should not be calling schedule in NMI context. 1430 * Even with normal interrupts enabled. An NMI should not be 1431 * setting NEED_RESCHED or anything that normal interrupts and 1432 * exceptions might do. 1433 */ 1434 call paranoid_entry 1435 UNWIND_HINT_REGS 1436 1437 movq %rsp, %rdi 1438 movq $-1, %rsi 1439 call exc_nmi 1440 1441 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1442 IBRS_EXIT save_reg=%r15 1443 1444 /* Always restore stashed CR3 value (see paranoid_entry) */ 1445 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1446 1447 /* 1448 * The above invocation of paranoid_entry stored the GSBASE 1449 * related information in R/EBX depending on the availability 1450 * of FSGSBASE. 1451 * 1452 * If FSGSBASE is enabled, restore the saved GSBASE value 1453 * unconditionally, otherwise take the conditional SWAPGS path. 1454 */ 1455 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1456 1457 wrgsbase %rbx 1458 jmp nmi_restore 1459 1460nmi_no_fsgsbase: 1461 /* EBX == 0 -> invoke SWAPGS */ 1462 testl %ebx, %ebx 1463 jnz nmi_restore 1464 1465nmi_swapgs: 1466 swapgs 1467 1468nmi_restore: 1469 POP_REGS 1470 1471 /* 1472 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1473 * at the "iret" frame. 1474 */ 1475 addq $6*8, %rsp 1476 1477 /* 1478 * Clear "NMI executing". Set DF first so that we can easily 1479 * distinguish the remaining code between here and IRET from 1480 * the SYSCALL entry and exit paths. 1481 * 1482 * We arguably should just inspect RIP instead, but I (Andy) wrote 1483 * this code when I had the misapprehension that Xen PV supported 1484 * NMIs, and Xen PV would break that approach. 1485 */ 1486 std 1487 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1488 1489 /* 1490 * iretq reads the "iret" frame and exits the NMI stack in a 1491 * single instruction. We are returning to kernel mode, so this 1492 * cannot result in a fault. Similarly, we don't need to worry 1493 * about espfix64 on the way back to kernel mode. 1494 */ 1495 iretq 1496SYM_CODE_END(asm_exc_nmi) 1497 1498#ifndef CONFIG_IA32_EMULATION 1499/* 1500 * This handles SYSCALL from 32-bit code. There is no way to program 1501 * MSRs to fully disable 32-bit SYSCALL. 1502 */ 1503SYM_CODE_START(ignore_sysret) 1504 UNWIND_HINT_EMPTY 1505 mov $-ENOSYS, %eax 1506 sysretl 1507SYM_CODE_END(ignore_sysret) 1508#endif 1509 1510.pushsection .text, "ax" 1511SYM_CODE_START(rewind_stack_do_exit) 1512 UNWIND_HINT_FUNC 1513 /* Prevent any naive code from trying to unwind to our caller. */ 1514 xorl %ebp, %ebp 1515 1516 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1517 leaq -PTREGS_SIZE(%rax), %rsp 1518 UNWIND_HINT_REGS 1519 1520 call do_exit 1521SYM_CODE_END(rewind_stack_do_exit) 1522.popsection 1523