• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 #define DISABLE_BRANCH_PROFILING
11 
12 /*
13  * Since we're dealing with identity mappings, physical and virtual
14  * addresses are the same, so override these defines which are ultimately
15  * used by the headers in misc.h.
16  */
17 #define __pa(x)  ((unsigned long)(x))
18 #define __va(x)  ((void *)((unsigned long)(x)))
19 
20 /*
21  * Special hack: we have to be careful, because no indirections are
22  * allowed here, and paravirt_ops is a kind of one. As it will only run in
23  * baremetal anyway, we just keep it from happening. (This list needs to
24  * be extended when new paravirt and debugging variants are added.)
25  */
26 #undef CONFIG_PARAVIRT
27 #undef CONFIG_PARAVIRT_XXL
28 #undef CONFIG_PARAVIRT_SPINLOCKS
29 
30 /*
31  * This code runs before CPU feature bits are set. By default, the
32  * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33  * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34  * is provided to handle this situation and, instead, use a variable that
35  * has been set by the early boot code.
36  */
37 #define USE_EARLY_PGTABLE_L5
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/mem_encrypt.h>
42 
43 #include <asm/setup.h>
44 #include <asm/sections.h>
45 #include <asm/cmdline.h>
46 
47 #include "mm_internal.h"
48 
49 #define PGD_FLAGS		_KERNPG_TABLE_NOENC
50 #define P4D_FLAGS		_KERNPG_TABLE_NOENC
51 #define PUD_FLAGS		_KERNPG_TABLE_NOENC
52 #define PMD_FLAGS		_KERNPG_TABLE_NOENC
53 
54 #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
55 
56 #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
57 #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
58 				 (_PAGE_PAT_LARGE | _PAGE_PWT))
59 
60 #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
61 
62 #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
63 
64 #define PTE_FLAGS_DEC		PTE_FLAGS
65 #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
66 				 (_PAGE_PAT | _PAGE_PWT))
67 
68 #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
69 
70 struct sme_populate_pgd_data {
71 	void    *pgtable_area;
72 	pgd_t   *pgd;
73 
74 	pmdval_t pmd_flags;
75 	pteval_t pte_flags;
76 	unsigned long paddr;
77 
78 	unsigned long vaddr;
79 	unsigned long vaddr_end;
80 };
81 
82 /*
83  * This work area lives in the .init.scratch section, which lives outside of
84  * the kernel proper. It is sized to hold the intermediate copy buffer and
85  * more than enough pagetable pages.
86  *
87  * By using this section, the kernel can be encrypted in place and it
88  * avoids any possibility of boot parameters or initramfs images being
89  * placed such that the in-place encryption logic overwrites them.  This
90  * section is 2MB aligned to allow for simple pagetable setup using only
91  * PMD entries (see vmlinux.lds.S).
92  */
93 static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch");
94 
95 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
96 static char sme_cmdline_on[]  __initdata = "on";
97 static char sme_cmdline_off[] __initdata = "off";
98 
sme_clear_pgd(struct sme_populate_pgd_data * ppd)99 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
100 {
101 	unsigned long pgd_start, pgd_end, pgd_size;
102 	pgd_t *pgd_p;
103 
104 	pgd_start = ppd->vaddr & PGDIR_MASK;
105 	pgd_end = ppd->vaddr_end & PGDIR_MASK;
106 
107 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
108 
109 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
110 
111 	memset(pgd_p, 0, pgd_size);
112 }
113 
sme_prepare_pgd(struct sme_populate_pgd_data * ppd)114 static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
115 {
116 	pgd_t *pgd;
117 	p4d_t *p4d;
118 	pud_t *pud;
119 	pmd_t *pmd;
120 
121 	pgd = ppd->pgd + pgd_index(ppd->vaddr);
122 	if (pgd_none(*pgd)) {
123 		p4d = ppd->pgtable_area;
124 		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
125 		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
126 		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
127 	}
128 
129 	p4d = p4d_offset(pgd, ppd->vaddr);
130 	if (p4d_none(*p4d)) {
131 		pud = ppd->pgtable_area;
132 		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
133 		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
134 		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
135 	}
136 
137 	pud = pud_offset(p4d, ppd->vaddr);
138 	if (pud_none(*pud)) {
139 		pmd = ppd->pgtable_area;
140 		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
141 		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
142 		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
143 	}
144 
145 	if (pud_large(*pud))
146 		return NULL;
147 
148 	return pud;
149 }
150 
sme_populate_pgd_large(struct sme_populate_pgd_data * ppd)151 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
152 {
153 	pud_t *pud;
154 	pmd_t *pmd;
155 
156 	pud = sme_prepare_pgd(ppd);
157 	if (!pud)
158 		return;
159 
160 	pmd = pmd_offset(pud, ppd->vaddr);
161 	if (pmd_large(*pmd))
162 		return;
163 
164 	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
165 }
166 
sme_populate_pgd(struct sme_populate_pgd_data * ppd)167 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
168 {
169 	pud_t *pud;
170 	pmd_t *pmd;
171 	pte_t *pte;
172 
173 	pud = sme_prepare_pgd(ppd);
174 	if (!pud)
175 		return;
176 
177 	pmd = pmd_offset(pud, ppd->vaddr);
178 	if (pmd_none(*pmd)) {
179 		pte = ppd->pgtable_area;
180 		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
181 		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
182 		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
183 	}
184 
185 	if (pmd_large(*pmd))
186 		return;
187 
188 	pte = pte_offset_map(pmd, ppd->vaddr);
189 	if (pte_none(*pte))
190 		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
191 }
192 
__sme_map_range_pmd(struct sme_populate_pgd_data * ppd)193 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
194 {
195 	while (ppd->vaddr < ppd->vaddr_end) {
196 		sme_populate_pgd_large(ppd);
197 
198 		ppd->vaddr += PMD_PAGE_SIZE;
199 		ppd->paddr += PMD_PAGE_SIZE;
200 	}
201 }
202 
__sme_map_range_pte(struct sme_populate_pgd_data * ppd)203 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
204 {
205 	while (ppd->vaddr < ppd->vaddr_end) {
206 		sme_populate_pgd(ppd);
207 
208 		ppd->vaddr += PAGE_SIZE;
209 		ppd->paddr += PAGE_SIZE;
210 	}
211 }
212 
__sme_map_range(struct sme_populate_pgd_data * ppd,pmdval_t pmd_flags,pteval_t pte_flags)213 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
214 				   pmdval_t pmd_flags, pteval_t pte_flags)
215 {
216 	unsigned long vaddr_end;
217 
218 	ppd->pmd_flags = pmd_flags;
219 	ppd->pte_flags = pte_flags;
220 
221 	/* Save original end value since we modify the struct value */
222 	vaddr_end = ppd->vaddr_end;
223 
224 	/* If start is not 2MB aligned, create PTE entries */
225 	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
226 	__sme_map_range_pte(ppd);
227 
228 	/* Create PMD entries */
229 	ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
230 	__sme_map_range_pmd(ppd);
231 
232 	/* If end is not 2MB aligned, create PTE entries */
233 	ppd->vaddr_end = vaddr_end;
234 	__sme_map_range_pte(ppd);
235 }
236 
sme_map_range_encrypted(struct sme_populate_pgd_data * ppd)237 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
238 {
239 	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
240 }
241 
sme_map_range_decrypted(struct sme_populate_pgd_data * ppd)242 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
243 {
244 	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
245 }
246 
sme_map_range_decrypted_wp(struct sme_populate_pgd_data * ppd)247 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
248 {
249 	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
250 }
251 
sme_pgtable_calc(unsigned long len)252 static unsigned long __init sme_pgtable_calc(unsigned long len)
253 {
254 	unsigned long entries = 0, tables = 0;
255 
256 	/*
257 	 * Perform a relatively simplistic calculation of the pagetable
258 	 * entries that are needed. Those mappings will be covered mostly
259 	 * by 2MB PMD entries so we can conservatively calculate the required
260 	 * number of P4D, PUD and PMD structures needed to perform the
261 	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
262 	 * would be needed for the start and end portion of the address range
263 	 * that fall outside of the 2MB alignment.  This results in, at most,
264 	 * two extra pages to hold PTE entries for each range that is mapped.
265 	 * Incrementing the count for each covers the case where the addresses
266 	 * cross entries.
267 	 */
268 
269 	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
270 	if (PTRS_PER_P4D > 1)
271 		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
272 	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
273 	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
274 	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
275 
276 	/*
277 	 * Now calculate the added pagetable structures needed to populate
278 	 * the new pagetables.
279 	 */
280 
281 	if (PTRS_PER_P4D > 1)
282 		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
283 	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
284 	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
285 
286 	return entries + tables;
287 }
288 
sme_encrypt_kernel(struct boot_params * bp)289 void __init sme_encrypt_kernel(struct boot_params *bp)
290 {
291 	unsigned long workarea_start, workarea_end, workarea_len;
292 	unsigned long execute_start, execute_end, execute_len;
293 	unsigned long kernel_start, kernel_end, kernel_len;
294 	unsigned long initrd_start, initrd_end, initrd_len;
295 	struct sme_populate_pgd_data ppd;
296 	unsigned long pgtable_area_len;
297 	unsigned long decrypted_base;
298 
299 	if (!sme_active())
300 		return;
301 
302 	/*
303 	 * Prepare for encrypting the kernel and initrd by building new
304 	 * pagetables with the necessary attributes needed to encrypt the
305 	 * kernel in place.
306 	 *
307 	 *   One range of virtual addresses will map the memory occupied
308 	 *   by the kernel and initrd as encrypted.
309 	 *
310 	 *   Another range of virtual addresses will map the memory occupied
311 	 *   by the kernel and initrd as decrypted and write-protected.
312 	 *
313 	 *     The use of write-protect attribute will prevent any of the
314 	 *     memory from being cached.
315 	 */
316 
317 	/* Physical addresses gives us the identity mapped virtual addresses */
318 	kernel_start = __pa_symbol(_text);
319 	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
320 	kernel_len = kernel_end - kernel_start;
321 
322 	initrd_start = 0;
323 	initrd_end = 0;
324 	initrd_len = 0;
325 #ifdef CONFIG_BLK_DEV_INITRD
326 	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
327 		     ((unsigned long)bp->ext_ramdisk_size << 32);
328 	if (initrd_len) {
329 		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
330 			       ((unsigned long)bp->ext_ramdisk_image << 32);
331 		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
332 		initrd_len = initrd_end - initrd_start;
333 	}
334 #endif
335 
336 	/*
337 	 * We're running identity mapped, so we must obtain the address to the
338 	 * SME encryption workarea using rip-relative addressing.
339 	 */
340 	asm ("lea sme_workarea(%%rip), %0"
341 	     : "=r" (workarea_start)
342 	     : "p" (sme_workarea));
343 
344 	/*
345 	 * Calculate required number of workarea bytes needed:
346 	 *   executable encryption area size:
347 	 *     stack page (PAGE_SIZE)
348 	 *     encryption routine page (PAGE_SIZE)
349 	 *     intermediate copy buffer (PMD_PAGE_SIZE)
350 	 *   pagetable structures for the encryption of the kernel
351 	 *   pagetable structures for workarea (in case not currently mapped)
352 	 */
353 	execute_start = workarea_start;
354 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
355 	execute_len = execute_end - execute_start;
356 
357 	/*
358 	 * One PGD for both encrypted and decrypted mappings and a set of
359 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
360 	 */
361 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
362 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
363 	if (initrd_len)
364 		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
365 
366 	/* PUDs and PMDs needed in the current pagetables for the workarea */
367 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
368 
369 	/*
370 	 * The total workarea includes the executable encryption area and
371 	 * the pagetable area. The start of the workarea is already 2MB
372 	 * aligned, align the end of the workarea on a 2MB boundary so that
373 	 * we don't try to create/allocate PTE entries from the workarea
374 	 * before it is mapped.
375 	 */
376 	workarea_len = execute_len + pgtable_area_len;
377 	workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
378 
379 	/*
380 	 * Set the address to the start of where newly created pagetable
381 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
382 	 * structures are created when the workarea is added to the current
383 	 * pagetables and when the new encrypted and decrypted kernel
384 	 * mappings are populated.
385 	 */
386 	ppd.pgtable_area = (void *)execute_end;
387 
388 	/*
389 	 * Make sure the current pagetable structure has entries for
390 	 * addressing the workarea.
391 	 */
392 	ppd.pgd = (pgd_t *)native_read_cr3_pa();
393 	ppd.paddr = workarea_start;
394 	ppd.vaddr = workarea_start;
395 	ppd.vaddr_end = workarea_end;
396 	sme_map_range_decrypted(&ppd);
397 
398 	/* Flush the TLB - no globals so cr3 is enough */
399 	native_write_cr3(__native_read_cr3());
400 
401 	/*
402 	 * A new pagetable structure is being built to allow for the kernel
403 	 * and initrd to be encrypted. It starts with an empty PGD that will
404 	 * then be populated with new PUDs and PMDs as the encrypted and
405 	 * decrypted kernel mappings are created.
406 	 */
407 	ppd.pgd = ppd.pgtable_area;
408 	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
409 	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
410 
411 	/*
412 	 * A different PGD index/entry must be used to get different
413 	 * pagetable entries for the decrypted mapping. Choose the next
414 	 * PGD index and convert it to a virtual address to be used as
415 	 * the base of the mapping.
416 	 */
417 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
418 	if (initrd_len) {
419 		unsigned long check_base;
420 
421 		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
422 		decrypted_base = max(decrypted_base, check_base);
423 	}
424 	decrypted_base <<= PGDIR_SHIFT;
425 
426 	/* Add encrypted kernel (identity) mappings */
427 	ppd.paddr = kernel_start;
428 	ppd.vaddr = kernel_start;
429 	ppd.vaddr_end = kernel_end;
430 	sme_map_range_encrypted(&ppd);
431 
432 	/* Add decrypted, write-protected kernel (non-identity) mappings */
433 	ppd.paddr = kernel_start;
434 	ppd.vaddr = kernel_start + decrypted_base;
435 	ppd.vaddr_end = kernel_end + decrypted_base;
436 	sme_map_range_decrypted_wp(&ppd);
437 
438 	if (initrd_len) {
439 		/* Add encrypted initrd (identity) mappings */
440 		ppd.paddr = initrd_start;
441 		ppd.vaddr = initrd_start;
442 		ppd.vaddr_end = initrd_end;
443 		sme_map_range_encrypted(&ppd);
444 		/*
445 		 * Add decrypted, write-protected initrd (non-identity) mappings
446 		 */
447 		ppd.paddr = initrd_start;
448 		ppd.vaddr = initrd_start + decrypted_base;
449 		ppd.vaddr_end = initrd_end + decrypted_base;
450 		sme_map_range_decrypted_wp(&ppd);
451 	}
452 
453 	/* Add decrypted workarea mappings to both kernel mappings */
454 	ppd.paddr = workarea_start;
455 	ppd.vaddr = workarea_start;
456 	ppd.vaddr_end = workarea_end;
457 	sme_map_range_decrypted(&ppd);
458 
459 	ppd.paddr = workarea_start;
460 	ppd.vaddr = workarea_start + decrypted_base;
461 	ppd.vaddr_end = workarea_end + decrypted_base;
462 	sme_map_range_decrypted(&ppd);
463 
464 	/* Perform the encryption */
465 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
466 			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
467 
468 	if (initrd_len)
469 		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
470 				    initrd_len, workarea_start,
471 				    (unsigned long)ppd.pgd);
472 
473 	/*
474 	 * At this point we are running encrypted.  Remove the mappings for
475 	 * the decrypted areas - all that is needed for this is to remove
476 	 * the PGD entry/entries.
477 	 */
478 	ppd.vaddr = kernel_start + decrypted_base;
479 	ppd.vaddr_end = kernel_end + decrypted_base;
480 	sme_clear_pgd(&ppd);
481 
482 	if (initrd_len) {
483 		ppd.vaddr = initrd_start + decrypted_base;
484 		ppd.vaddr_end = initrd_end + decrypted_base;
485 		sme_clear_pgd(&ppd);
486 	}
487 
488 	ppd.vaddr = workarea_start + decrypted_base;
489 	ppd.vaddr_end = workarea_end + decrypted_base;
490 	sme_clear_pgd(&ppd);
491 
492 	/* Flush the TLB - no globals so cr3 is enough */
493 	native_write_cr3(__native_read_cr3());
494 }
495 
sme_enable(struct boot_params * bp)496 void __init sme_enable(struct boot_params *bp)
497 {
498 	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
499 	unsigned int eax, ebx, ecx, edx;
500 	unsigned long feature_mask;
501 	bool active_by_default;
502 	unsigned long me_mask;
503 	char buffer[16];
504 	u64 msr;
505 
506 	/* Check for the SME/SEV support leaf */
507 	eax = 0x80000000;
508 	ecx = 0;
509 	native_cpuid(&eax, &ebx, &ecx, &edx);
510 	if (eax < 0x8000001f)
511 		return;
512 
513 #define AMD_SME_BIT	BIT(0)
514 #define AMD_SEV_BIT	BIT(1)
515 
516 	/*
517 	 * Check for the SME/SEV feature:
518 	 *   CPUID Fn8000_001F[EAX]
519 	 *   - Bit 0 - Secure Memory Encryption support
520 	 *   - Bit 1 - Secure Encrypted Virtualization support
521 	 *   CPUID Fn8000_001F[EBX]
522 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
523 	 */
524 	eax = 0x8000001f;
525 	ecx = 0;
526 	native_cpuid(&eax, &ebx, &ecx, &edx);
527 	/* Check whether SEV or SME is supported */
528 	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
529 		return;
530 
531 	me_mask = 1UL << (ebx & 0x3f);
532 
533 	/* Check the SEV MSR whether SEV or SME is enabled */
534 	sev_status   = __rdmsr(MSR_AMD64_SEV);
535 	feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
536 
537 	/* Check if memory encryption is enabled */
538 	if (feature_mask == AMD_SME_BIT) {
539 		/*
540 		 * No SME if Hypervisor bit is set. This check is here to
541 		 * prevent a guest from trying to enable SME. For running as a
542 		 * KVM guest the MSR_K8_SYSCFG will be sufficient, but there
543 		 * might be other hypervisors which emulate that MSR as non-zero
544 		 * or even pass it through to the guest.
545 		 * A malicious hypervisor can still trick a guest into this
546 		 * path, but there is no way to protect against that.
547 		 */
548 		eax = 1;
549 		ecx = 0;
550 		native_cpuid(&eax, &ebx, &ecx, &edx);
551 		if (ecx & BIT(31))
552 			return;
553 
554 		/* For SME, check the SYSCFG MSR */
555 		msr = __rdmsr(MSR_K8_SYSCFG);
556 		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
557 			return;
558 	} else {
559 		/* SEV state cannot be controlled by a command line option */
560 		sme_me_mask = me_mask;
561 		sev_enabled = true;
562 		physical_mask &= ~sme_me_mask;
563 		return;
564 	}
565 
566 	/*
567 	 * Fixups have not been applied to phys_base yet and we're running
568 	 * identity mapped, so we must obtain the address to the SME command
569 	 * line argument data using rip-relative addressing.
570 	 */
571 	asm ("lea sme_cmdline_arg(%%rip), %0"
572 	     : "=r" (cmdline_arg)
573 	     : "p" (sme_cmdline_arg));
574 	asm ("lea sme_cmdline_on(%%rip), %0"
575 	     : "=r" (cmdline_on)
576 	     : "p" (sme_cmdline_on));
577 	asm ("lea sme_cmdline_off(%%rip), %0"
578 	     : "=r" (cmdline_off)
579 	     : "p" (sme_cmdline_off));
580 
581 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
582 		active_by_default = true;
583 	else
584 		active_by_default = false;
585 
586 	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
587 				     ((u64)bp->ext_cmd_line_ptr << 32));
588 
589 	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
590 
591 	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
592 		sme_me_mask = me_mask;
593 	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
594 		sme_me_mask = 0;
595 	else
596 		sme_me_mask = active_by_default ? me_mask : 0;
597 
598 	physical_mask &= ~sme_me_mask;
599 }
600