• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2020
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 2.2.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 #define NULL    ((void *) 0)
61 
62 /* The entropy pool */
63 struct rand_data {
64 	/* all data values that are vital to maintain the security
65 	 * of the RNG are marked as SENSITIVE. A user must not
66 	 * access that information while the RNG executes its loops to
67 	 * calculate the next random value. */
68 	__u64 data;		/* SENSITIVE Actual random number */
69 	__u64 old_data;		/* SENSITIVE Previous random number */
70 	__u64 prev_time;	/* SENSITIVE Previous time stamp */
71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72 	__u64 last_delta;	/* SENSITIVE stuck test */
73 	__s64 last_delta2;	/* SENSITIVE stuck test */
74 	unsigned int osr;	/* Oversample rate */
75 #define JENT_MEMORY_BLOCKS 64
76 #define JENT_MEMORY_BLOCKSIZE 32
77 #define JENT_MEMORY_ACCESSLOOPS 128
78 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
79 	unsigned char *mem;	/* Memory access location with size of
80 				 * memblocks * memblocksize */
81 	unsigned int memlocation; /* Pointer to byte in *mem */
82 	unsigned int memblocks;	/* Number of memory blocks in *mem */
83 	unsigned int memblocksize; /* Size of one memory block in bytes */
84 	unsigned int memaccessloops; /* Number of memory accesses per random
85 				      * bit generation */
86 
87 	/* Repetition Count Test */
88 	int rct_count;			/* Number of stuck values */
89 
90 	/* Adaptive Proportion Test for a significance level of 2^-30 */
91 #define JENT_APT_CUTOFF		325	/* Taken from SP800-90B sec 4.4.2 */
92 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
93 	/* LSB of time stamp to process */
94 #define JENT_APT_LSB		16
95 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
96 	unsigned int apt_observations;	/* Number of collected observations */
97 	unsigned int apt_count;		/* APT counter */
98 	unsigned int apt_base;		/* APT base reference */
99 	unsigned int apt_base_set:1;	/* APT base reference set? */
100 
101 	unsigned int health_failure:1;	/* Permanent health failure */
102 };
103 
104 /* Flags that can be used to initialize the RNG */
105 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
106 					   * entropy, saves MEMORY_SIZE RAM for
107 					   * entropy collector */
108 
109 /* -- error codes for init function -- */
110 #define JENT_ENOTIME		1 /* Timer service not available */
111 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
112 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
113 #define JENT_EVARVAR		5 /* Timer does not produce variations of
114 				   * variations (2nd derivation of time is
115 				   * zero). */
116 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
117 #define JENT_EHEALTH		9 /* Health test failed during initialization */
118 #define JENT_ERCT		10 /* RCT failed during initialization */
119 
120 #include "jitterentropy.h"
121 
122 /***************************************************************************
123  * Adaptive Proportion Test
124  *
125  * This test complies with SP800-90B section 4.4.2.
126  ***************************************************************************/
127 
128 /**
129  * Reset the APT counter
130  *
131  * @ec [in] Reference to entropy collector
132  */
jent_apt_reset(struct rand_data * ec,unsigned int delta_masked)133 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
134 {
135 	/* Reset APT counter */
136 	ec->apt_count = 0;
137 	ec->apt_base = delta_masked;
138 	ec->apt_observations = 0;
139 }
140 
141 /**
142  * Insert a new entropy event into APT
143  *
144  * @ec [in] Reference to entropy collector
145  * @delta_masked [in] Masked time delta to process
146  */
jent_apt_insert(struct rand_data * ec,unsigned int delta_masked)147 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
148 {
149 	/* Initialize the base reference */
150 	if (!ec->apt_base_set) {
151 		ec->apt_base = delta_masked;
152 		ec->apt_base_set = 1;
153 		return;
154 	}
155 
156 	if (delta_masked == ec->apt_base) {
157 		ec->apt_count++;
158 
159 		if (ec->apt_count >= JENT_APT_CUTOFF)
160 			ec->health_failure = 1;
161 	}
162 
163 	ec->apt_observations++;
164 
165 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
166 		jent_apt_reset(ec, delta_masked);
167 }
168 
169 /***************************************************************************
170  * Stuck Test and its use as Repetition Count Test
171  *
172  * The Jitter RNG uses an enhanced version of the Repetition Count Test
173  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
174  * back-to-back values, the input to the RCT is the counting of the stuck
175  * values during the generation of one Jitter RNG output block.
176  *
177  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
178  *
179  * During the counting operation, the Jitter RNG always calculates the RCT
180  * cut-off value of C. If that value exceeds the allowed cut-off value,
181  * the Jitter RNG output block will be calculated completely but discarded at
182  * the end. The caller of the Jitter RNG is informed with an error code.
183  ***************************************************************************/
184 
185 /**
186  * Repetition Count Test as defined in SP800-90B section 4.4.1
187  *
188  * @ec [in] Reference to entropy collector
189  * @stuck [in] Indicator whether the value is stuck
190  */
jent_rct_insert(struct rand_data * ec,int stuck)191 static void jent_rct_insert(struct rand_data *ec, int stuck)
192 {
193 	/*
194 	 * If we have a count less than zero, a previous RCT round identified
195 	 * a failure. We will not overwrite it.
196 	 */
197 	if (ec->rct_count < 0)
198 		return;
199 
200 	if (stuck) {
201 		ec->rct_count++;
202 
203 		/*
204 		 * The cutoff value is based on the following consideration:
205 		 * alpha = 2^-30 as recommended in FIPS 140-2 IG 9.8.
206 		 * In addition, we require an entropy value H of 1/OSR as this
207 		 * is the minimum entropy required to provide full entropy.
208 		 * Note, we collect 64 * OSR deltas for inserting them into
209 		 * the entropy pool which should then have (close to) 64 bits
210 		 * of entropy.
211 		 *
212 		 * Note, ec->rct_count (which equals to value B in the pseudo
213 		 * code of SP800-90B section 4.4.1) starts with zero. Hence
214 		 * we need to subtract one from the cutoff value as calculated
215 		 * following SP800-90B.
216 		 */
217 		if ((unsigned int)ec->rct_count >= (31 * ec->osr)) {
218 			ec->rct_count = -1;
219 			ec->health_failure = 1;
220 		}
221 	} else {
222 		ec->rct_count = 0;
223 	}
224 }
225 
226 /**
227  * Is there an RCT health test failure?
228  *
229  * @ec [in] Reference to entropy collector
230  *
231  * @return
232  * 	0 No health test failure
233  * 	1 Permanent health test failure
234  */
jent_rct_failure(struct rand_data * ec)235 static int jent_rct_failure(struct rand_data *ec)
236 {
237 	if (ec->rct_count < 0)
238 		return 1;
239 	return 0;
240 }
241 
jent_delta(__u64 prev,__u64 next)242 static inline __u64 jent_delta(__u64 prev, __u64 next)
243 {
244 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
245 	return (prev < next) ? (next - prev) :
246 			       (JENT_UINT64_MAX - prev + 1 + next);
247 }
248 
249 /**
250  * Stuck test by checking the:
251  * 	1st derivative of the jitter measurement (time delta)
252  * 	2nd derivative of the jitter measurement (delta of time deltas)
253  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
254  *
255  * All values must always be non-zero.
256  *
257  * @ec [in] Reference to entropy collector
258  * @current_delta [in] Jitter time delta
259  *
260  * @return
261  * 	0 jitter measurement not stuck (good bit)
262  * 	1 jitter measurement stuck (reject bit)
263  */
jent_stuck(struct rand_data * ec,__u64 current_delta)264 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
265 {
266 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
267 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
268 
269 	ec->last_delta = current_delta;
270 	ec->last_delta2 = delta2;
271 
272 	/*
273 	 * Insert the result of the comparison of two back-to-back time
274 	 * deltas.
275 	 */
276 	jent_apt_insert(ec, current_delta);
277 
278 	if (!current_delta || !delta2 || !delta3) {
279 		/* RCT with a stuck bit */
280 		jent_rct_insert(ec, 1);
281 		return 1;
282 	}
283 
284 	/* RCT with a non-stuck bit */
285 	jent_rct_insert(ec, 0);
286 
287 	return 0;
288 }
289 
290 /**
291  * Report any health test failures
292  *
293  * @ec [in] Reference to entropy collector
294  *
295  * @return
296  * 	0 No health test failure
297  * 	1 Permanent health test failure
298  */
jent_health_failure(struct rand_data * ec)299 static int jent_health_failure(struct rand_data *ec)
300 {
301 	/* Test is only enabled in FIPS mode */
302 	if (!jent_fips_enabled())
303 		return 0;
304 
305 	return ec->health_failure;
306 }
307 
308 /***************************************************************************
309  * Noise sources
310  ***************************************************************************/
311 
312 /**
313  * Update of the loop count used for the next round of
314  * an entropy collection.
315  *
316  * Input:
317  * @ec entropy collector struct -- may be NULL
318  * @bits is the number of low bits of the timer to consider
319  * @min is the number of bits we shift the timer value to the right at
320  *	the end to make sure we have a guaranteed minimum value
321  *
322  * @return Newly calculated loop counter
323  */
jent_loop_shuffle(struct rand_data * ec,unsigned int bits,unsigned int min)324 static __u64 jent_loop_shuffle(struct rand_data *ec,
325 			       unsigned int bits, unsigned int min)
326 {
327 	__u64 time = 0;
328 	__u64 shuffle = 0;
329 	unsigned int i = 0;
330 	unsigned int mask = (1<<bits) - 1;
331 
332 	jent_get_nstime(&time);
333 	/*
334 	 * Mix the current state of the random number into the shuffle
335 	 * calculation to balance that shuffle a bit more.
336 	 */
337 	if (ec)
338 		time ^= ec->data;
339 	/*
340 	 * We fold the time value as much as possible to ensure that as many
341 	 * bits of the time stamp are included as possible.
342 	 */
343 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
344 		shuffle ^= time & mask;
345 		time = time >> bits;
346 	}
347 
348 	/*
349 	 * We add a lower boundary value to ensure we have a minimum
350 	 * RNG loop count.
351 	 */
352 	return (shuffle + (1<<min));
353 }
354 
355 /**
356  * CPU Jitter noise source -- this is the noise source based on the CPU
357  *			      execution time jitter
358  *
359  * This function injects the individual bits of the time value into the
360  * entropy pool using an LFSR.
361  *
362  * The code is deliberately inefficient with respect to the bit shifting
363  * and shall stay that way. This function is the root cause why the code
364  * shall be compiled without optimization. This function not only acts as
365  * folding operation, but this function's execution is used to measure
366  * the CPU execution time jitter. Any change to the loop in this function
367  * implies that careful retesting must be done.
368  *
369  * @ec [in] entropy collector struct
370  * @time [in] time stamp to be injected
371  * @loop_cnt [in] if a value not equal to 0 is set, use the given value as
372  *		  number of loops to perform the folding
373  * @stuck [in] Is the time stamp identified as stuck?
374  *
375  * Output:
376  * updated ec->data
377  *
378  * @return Number of loops the folding operation is performed
379  */
jent_lfsr_time(struct rand_data * ec,__u64 time,__u64 loop_cnt,int stuck)380 static void jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt,
381 			   int stuck)
382 {
383 	unsigned int i;
384 	__u64 j = 0;
385 	__u64 new = 0;
386 #define MAX_FOLD_LOOP_BIT 4
387 #define MIN_FOLD_LOOP_BIT 0
388 	__u64 fold_loop_cnt =
389 		jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
390 
391 	/*
392 	 * testing purposes -- allow test app to set the counter, not
393 	 * needed during runtime
394 	 */
395 	if (loop_cnt)
396 		fold_loop_cnt = loop_cnt;
397 	for (j = 0; j < fold_loop_cnt; j++) {
398 		new = ec->data;
399 		for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
400 			__u64 tmp = time << (DATA_SIZE_BITS - i);
401 
402 			tmp = tmp >> (DATA_SIZE_BITS - 1);
403 
404 			/*
405 			* Fibonacci LSFR with polynomial of
406 			*  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
407 			*  primitive according to
408 			*   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
409 			* (the shift values are the polynomial values minus one
410 			* due to counting bits from 0 to 63). As the current
411 			* position is always the LSB, the polynomial only needs
412 			* to shift data in from the left without wrap.
413 			*/
414 			tmp ^= ((new >> 63) & 1);
415 			tmp ^= ((new >> 60) & 1);
416 			tmp ^= ((new >> 55) & 1);
417 			tmp ^= ((new >> 30) & 1);
418 			tmp ^= ((new >> 27) & 1);
419 			tmp ^= ((new >> 22) & 1);
420 			new <<= 1;
421 			new ^= tmp;
422 		}
423 	}
424 
425 	/*
426 	 * If the time stamp is stuck, do not finally insert the value into
427 	 * the entropy pool. Although this operation should not do any harm
428 	 * even when the time stamp has no entropy, SP800-90B requires that
429 	 * any conditioning operation (SP800-90B considers the LFSR to be a
430 	 * conditioning operation) to have an identical amount of input
431 	 * data according to section 3.1.5.
432 	 */
433 	if (!stuck)
434 		ec->data = new;
435 }
436 
437 /**
438  * Memory Access noise source -- this is a noise source based on variations in
439  *				 memory access times
440  *
441  * This function performs memory accesses which will add to the timing
442  * variations due to an unknown amount of CPU wait states that need to be
443  * added when accessing memory. The memory size should be larger than the L1
444  * caches as outlined in the documentation and the associated testing.
445  *
446  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
447  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
448  * variations as the CPU has hardly to wait. Starting with L2, significant
449  * variations are added because L2 typically does not belong to the CPU any more
450  * and therefore a wider range of CPU wait states is necessary for accesses.
451  * L3 and real memory accesses have even a wider range of wait states. However,
452  * to reliably access either L3 or memory, the ec->mem memory must be quite
453  * large which is usually not desirable.
454  *
455  * @ec [in] Reference to the entropy collector with the memory access data -- if
456  *	    the reference to the memory block to be accessed is NULL, this noise
457  *	    source is disabled
458  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
459  *		  number of loops to perform the LFSR
460  */
jent_memaccess(struct rand_data * ec,__u64 loop_cnt)461 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
462 {
463 	unsigned int wrap = 0;
464 	__u64 i = 0;
465 #define MAX_ACC_LOOP_BIT 7
466 #define MIN_ACC_LOOP_BIT 0
467 	__u64 acc_loop_cnt =
468 		jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
469 
470 	if (NULL == ec || NULL == ec->mem)
471 		return;
472 	wrap = ec->memblocksize * ec->memblocks;
473 
474 	/*
475 	 * testing purposes -- allow test app to set the counter, not
476 	 * needed during runtime
477 	 */
478 	if (loop_cnt)
479 		acc_loop_cnt = loop_cnt;
480 
481 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
482 		unsigned char *tmpval = ec->mem + ec->memlocation;
483 		/*
484 		 * memory access: just add 1 to one byte,
485 		 * wrap at 255 -- memory access implies read
486 		 * from and write to memory location
487 		 */
488 		*tmpval = (*tmpval + 1) & 0xff;
489 		/*
490 		 * Addition of memblocksize - 1 to pointer
491 		 * with wrap around logic to ensure that every
492 		 * memory location is hit evenly
493 		 */
494 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
495 		ec->memlocation = ec->memlocation % wrap;
496 	}
497 }
498 
499 /***************************************************************************
500  * Start of entropy processing logic
501  ***************************************************************************/
502 /**
503  * This is the heart of the entropy generation: calculate time deltas and
504  * use the CPU jitter in the time deltas. The jitter is injected into the
505  * entropy pool.
506  *
507  * WARNING: ensure that ->prev_time is primed before using the output
508  *	    of this function! This can be done by calling this function
509  *	    and not using its result.
510  *
511  * @ec [in] Reference to entropy collector
512  *
513  * @return result of stuck test
514  */
jent_measure_jitter(struct rand_data * ec)515 static int jent_measure_jitter(struct rand_data *ec)
516 {
517 	__u64 time = 0;
518 	__u64 current_delta = 0;
519 	int stuck;
520 
521 	/* Invoke one noise source before time measurement to add variations */
522 	jent_memaccess(ec, 0);
523 
524 	/*
525 	 * Get time stamp and calculate time delta to previous
526 	 * invocation to measure the timing variations
527 	 */
528 	jent_get_nstime(&time);
529 	current_delta = jent_delta(ec->prev_time, time);
530 	ec->prev_time = time;
531 
532 	/* Check whether we have a stuck measurement. */
533 	stuck = jent_stuck(ec, current_delta);
534 
535 	/* Now call the next noise sources which also injects the data */
536 	jent_lfsr_time(ec, current_delta, 0, stuck);
537 
538 	return stuck;
539 }
540 
541 /**
542  * Generator of one 64 bit random number
543  * Function fills rand_data->data
544  *
545  * @ec [in] Reference to entropy collector
546  */
jent_gen_entropy(struct rand_data * ec)547 static void jent_gen_entropy(struct rand_data *ec)
548 {
549 	unsigned int k = 0;
550 
551 	/* priming of the ->prev_time value */
552 	jent_measure_jitter(ec);
553 
554 	while (1) {
555 		/* If a stuck measurement is received, repeat measurement */
556 		if (jent_measure_jitter(ec))
557 			continue;
558 
559 		/*
560 		 * We multiply the loop value with ->osr to obtain the
561 		 * oversampling rate requested by the caller
562 		 */
563 		if (++k >= (DATA_SIZE_BITS * ec->osr))
564 			break;
565 	}
566 }
567 
568 /**
569  * Entry function: Obtain entropy for the caller.
570  *
571  * This function invokes the entropy gathering logic as often to generate
572  * as many bytes as requested by the caller. The entropy gathering logic
573  * creates 64 bit per invocation.
574  *
575  * This function truncates the last 64 bit entropy value output to the exact
576  * size specified by the caller.
577  *
578  * @ec [in] Reference to entropy collector
579  * @data [in] pointer to buffer for storing random data -- buffer must already
580  *	      exist
581  * @len [in] size of the buffer, specifying also the requested number of random
582  *	     in bytes
583  *
584  * @return 0 when request is fulfilled or an error
585  *
586  * The following error codes can occur:
587  *	-1	entropy_collector is NULL
588  *	-2	RCT failed
589  *	-3	APT test failed
590  */
jent_read_entropy(struct rand_data * ec,unsigned char * data,unsigned int len)591 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
592 		      unsigned int len)
593 {
594 	unsigned char *p = data;
595 
596 	if (!ec)
597 		return -1;
598 
599 	while (0 < len) {
600 		unsigned int tocopy;
601 
602 		jent_gen_entropy(ec);
603 
604 		if (jent_health_failure(ec)) {
605 			int ret;
606 
607 			if (jent_rct_failure(ec))
608 				ret = -2;
609 			else
610 				ret = -3;
611 
612 			/*
613 			 * Re-initialize the noise source
614 			 *
615 			 * If the health test fails, the Jitter RNG remains
616 			 * in failure state and will return a health failure
617 			 * during next invocation.
618 			 */
619 			if (jent_entropy_init())
620 				return ret;
621 
622 			/* Set APT to initial state */
623 			jent_apt_reset(ec, 0);
624 			ec->apt_base_set = 0;
625 
626 			/* Set RCT to initial state */
627 			ec->rct_count = 0;
628 
629 			/* Re-enable Jitter RNG */
630 			ec->health_failure = 0;
631 
632 			/*
633 			 * Return the health test failure status to the
634 			 * caller as the generated value is not appropriate.
635 			 */
636 			return ret;
637 		}
638 
639 		if ((DATA_SIZE_BITS / 8) < len)
640 			tocopy = (DATA_SIZE_BITS / 8);
641 		else
642 			tocopy = len;
643 		jent_memcpy(p, &ec->data, tocopy);
644 
645 		len -= tocopy;
646 		p += tocopy;
647 	}
648 
649 	return 0;
650 }
651 
652 /***************************************************************************
653  * Initialization logic
654  ***************************************************************************/
655 
jent_entropy_collector_alloc(unsigned int osr,unsigned int flags)656 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
657 					       unsigned int flags)
658 {
659 	struct rand_data *entropy_collector;
660 
661 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
662 	if (!entropy_collector)
663 		return NULL;
664 
665 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
666 		/* Allocate memory for adding variations based on memory
667 		 * access
668 		 */
669 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
670 		if (!entropy_collector->mem) {
671 			jent_zfree(entropy_collector);
672 			return NULL;
673 		}
674 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
675 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
676 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
677 	}
678 
679 	/* verify and set the oversampling rate */
680 	if (0 == osr)
681 		osr = 1; /* minimum sampling rate is 1 */
682 	entropy_collector->osr = osr;
683 
684 	/* fill the data pad with non-zero values */
685 	jent_gen_entropy(entropy_collector);
686 
687 	return entropy_collector;
688 }
689 
jent_entropy_collector_free(struct rand_data * entropy_collector)690 void jent_entropy_collector_free(struct rand_data *entropy_collector)
691 {
692 	jent_zfree(entropy_collector->mem);
693 	entropy_collector->mem = NULL;
694 	jent_zfree(entropy_collector);
695 }
696 
jent_entropy_init(void)697 int jent_entropy_init(void)
698 {
699 	int i;
700 	__u64 delta_sum = 0;
701 	__u64 old_delta = 0;
702 	unsigned int nonstuck = 0;
703 	int time_backwards = 0;
704 	int count_mod = 0;
705 	int count_stuck = 0;
706 	struct rand_data ec = { 0 };
707 
708 	/* Required for RCT */
709 	ec.osr = 1;
710 
711 	/* We could perform statistical tests here, but the problem is
712 	 * that we only have a few loop counts to do testing. These
713 	 * loop counts may show some slight skew and we produce
714 	 * false positives.
715 	 *
716 	 * Moreover, only old systems show potentially problematic
717 	 * jitter entropy that could potentially be caught here. But
718 	 * the RNG is intended for hardware that is available or widely
719 	 * used, but not old systems that are long out of favor. Thus,
720 	 * no statistical tests.
721 	 */
722 
723 	/*
724 	 * We could add a check for system capabilities such as clock_getres or
725 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
726 	 * following sanity checks verify that we have a high-resolution
727 	 * timer.
728 	 */
729 	/*
730 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
731 	 * definitely too little.
732 	 *
733 	 * SP800-90B requires at least 1024 initial test cycles.
734 	 */
735 #define TESTLOOPCOUNT 1024
736 #define CLEARCACHE 100
737 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
738 		__u64 time = 0;
739 		__u64 time2 = 0;
740 		__u64 delta = 0;
741 		unsigned int lowdelta = 0;
742 		int stuck;
743 
744 		/* Invoke core entropy collection logic */
745 		jent_get_nstime(&time);
746 		ec.prev_time = time;
747 		jent_lfsr_time(&ec, time, 0, 0);
748 		jent_get_nstime(&time2);
749 
750 		/* test whether timer works */
751 		if (!time || !time2)
752 			return JENT_ENOTIME;
753 		delta = jent_delta(time, time2);
754 		/*
755 		 * test whether timer is fine grained enough to provide
756 		 * delta even when called shortly after each other -- this
757 		 * implies that we also have a high resolution timer
758 		 */
759 		if (!delta)
760 			return JENT_ECOARSETIME;
761 
762 		stuck = jent_stuck(&ec, delta);
763 
764 		/*
765 		 * up to here we did not modify any variable that will be
766 		 * evaluated later, but we already performed some work. Thus we
767 		 * already have had an impact on the caches, branch prediction,
768 		 * etc. with the goal to clear it to get the worst case
769 		 * measurements.
770 		 */
771 		if (CLEARCACHE > i)
772 			continue;
773 
774 		if (stuck)
775 			count_stuck++;
776 		else {
777 			nonstuck++;
778 
779 			/*
780 			 * Ensure that the APT succeeded.
781 			 *
782 			 * With the check below that count_stuck must be less
783 			 * than 10% of the overall generated raw entropy values
784 			 * it is guaranteed that the APT is invoked at
785 			 * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times.
786 			 */
787 			if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) {
788 				jent_apt_reset(&ec,
789 					       delta & JENT_APT_WORD_MASK);
790 				if (jent_health_failure(&ec))
791 					return JENT_EHEALTH;
792 			}
793 		}
794 
795 		/* Validate RCT */
796 		if (jent_rct_failure(&ec))
797 			return JENT_ERCT;
798 
799 		/* test whether we have an increasing timer */
800 		if (!(time2 > time))
801 			time_backwards++;
802 
803 		/* use 32 bit value to ensure compilation on 32 bit arches */
804 		lowdelta = time2 - time;
805 		if (!(lowdelta % 100))
806 			count_mod++;
807 
808 		/*
809 		 * ensure that we have a varying delta timer which is necessary
810 		 * for the calculation of entropy -- perform this check
811 		 * only after the first loop is executed as we need to prime
812 		 * the old_data value
813 		 */
814 		if (delta > old_delta)
815 			delta_sum += (delta - old_delta);
816 		else
817 			delta_sum += (old_delta - delta);
818 		old_delta = delta;
819 	}
820 
821 	/*
822 	 * we allow up to three times the time running backwards.
823 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
824 	 * if such an operation just happens to interfere with our test, it
825 	 * should not fail. The value of 3 should cover the NTP case being
826 	 * performed during our test run.
827 	 */
828 	if (3 < time_backwards)
829 		return JENT_ENOMONOTONIC;
830 
831 	/*
832 	 * Variations of deltas of time must on average be larger
833 	 * than 1 to ensure the entropy estimation
834 	 * implied with 1 is preserved
835 	 */
836 	if ((delta_sum) <= 1)
837 		return JENT_EVARVAR;
838 
839 	/*
840 	 * Ensure that we have variations in the time stamp below 10 for at
841 	 * least 10% of all checks -- on some platforms, the counter increments
842 	 * in multiples of 100, but not always
843 	 */
844 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
845 		return JENT_ECOARSETIME;
846 
847 	/*
848 	 * If we have more than 90% stuck results, then this Jitter RNG is
849 	 * likely to not work well.
850 	 */
851 	if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
852 		return JENT_ESTUCK;
853 
854 	return 0;
855 }
856