1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 #include <linux/sched/mm.h>
51
52 #include <xen/xen.h>
53 #include <xen/xenbus.h>
54 #include <xen/grant_table.h>
55 #include <xen/events.h>
56 #include <xen/page.h>
57 #include <xen/platform_pci.h>
58
59 #include <xen/interface/grant_table.h>
60 #include <xen/interface/io/blkif.h>
61 #include <xen/interface/io/protocols.h>
62
63 #include <asm/xen/hypervisor.h>
64
65 /*
66 * The minimal size of segment supported by the block framework is PAGE_SIZE.
67 * When Linux is using a different page size than Xen, it may not be possible
68 * to put all the data in a single segment.
69 * This can happen when the backend doesn't support indirect descriptor and
70 * therefore the maximum amount of data that a request can carry is
71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
72 *
73 * Note that we only support one extra request. So the Linux page size
74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
75 * 88KB.
76 */
77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
78
79 enum blkif_state {
80 BLKIF_STATE_DISCONNECTED,
81 BLKIF_STATE_CONNECTED,
82 BLKIF_STATE_SUSPENDED,
83 BLKIF_STATE_ERROR,
84 };
85
86 struct grant {
87 grant_ref_t gref;
88 struct page *page;
89 struct list_head node;
90 };
91
92 enum blk_req_status {
93 REQ_PROCESSING,
94 REQ_WAITING,
95 REQ_DONE,
96 REQ_ERROR,
97 REQ_EOPNOTSUPP,
98 };
99
100 struct blk_shadow {
101 struct blkif_request req;
102 struct request *request;
103 struct grant **grants_used;
104 struct grant **indirect_grants;
105 struct scatterlist *sg;
106 unsigned int num_sg;
107 enum blk_req_status status;
108
109 #define NO_ASSOCIATED_ID ~0UL
110 /*
111 * Id of the sibling if we ever need 2 requests when handling a
112 * block I/O request
113 */
114 unsigned long associated_id;
115 };
116
117 struct blkif_req {
118 blk_status_t error;
119 };
120
blkif_req(struct request * rq)121 static inline struct blkif_req *blkif_req(struct request *rq)
122 {
123 return blk_mq_rq_to_pdu(rq);
124 }
125
126 static DEFINE_MUTEX(blkfront_mutex);
127 static const struct block_device_operations xlvbd_block_fops;
128 static struct delayed_work blkfront_work;
129 static LIST_HEAD(info_list);
130
131 /*
132 * Maximum number of segments in indirect requests, the actual value used by
133 * the frontend driver is the minimum of this value and the value provided
134 * by the backend driver.
135 */
136
137 static unsigned int xen_blkif_max_segments = 32;
138 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
139 MODULE_PARM_DESC(max_indirect_segments,
140 "Maximum amount of segments in indirect requests (default is 32)");
141
142 static unsigned int xen_blkif_max_queues = 4;
143 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
144 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
145
146 /*
147 * Maximum order of pages to be used for the shared ring between front and
148 * backend, 4KB page granularity is used.
149 */
150 static unsigned int xen_blkif_max_ring_order;
151 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
152 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
153
154 #define BLK_RING_SIZE(info) \
155 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
156
157 /*
158 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
159 * characters are enough. Define to 20 to keep consistent with backend.
160 */
161 #define RINGREF_NAME_LEN (20)
162 /*
163 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
164 */
165 #define QUEUE_NAME_LEN (17)
166
167 /*
168 * Per-ring info.
169 * Every blkfront device can associate with one or more blkfront_ring_info,
170 * depending on how many hardware queues/rings to be used.
171 */
172 struct blkfront_ring_info {
173 /* Lock to protect data in every ring buffer. */
174 spinlock_t ring_lock;
175 struct blkif_front_ring ring;
176 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
177 unsigned int evtchn, irq;
178 struct work_struct work;
179 struct gnttab_free_callback callback;
180 struct list_head indirect_pages;
181 struct list_head grants;
182 unsigned int persistent_gnts_c;
183 unsigned long shadow_free;
184 struct blkfront_info *dev_info;
185 struct blk_shadow shadow[];
186 };
187
188 /*
189 * We have one of these per vbd, whether ide, scsi or 'other'. They
190 * hang in private_data off the gendisk structure. We may end up
191 * putting all kinds of interesting stuff here :-)
192 */
193 struct blkfront_info
194 {
195 struct mutex mutex;
196 struct xenbus_device *xbdev;
197 struct gendisk *gd;
198 u16 sector_size;
199 unsigned int physical_sector_size;
200 int vdevice;
201 blkif_vdev_t handle;
202 enum blkif_state connected;
203 /* Number of pages per ring buffer. */
204 unsigned int nr_ring_pages;
205 struct request_queue *rq;
206 unsigned int feature_flush:1;
207 unsigned int feature_fua:1;
208 unsigned int feature_discard:1;
209 unsigned int feature_secdiscard:1;
210 unsigned int feature_persistent:1;
211 unsigned int discard_granularity;
212 unsigned int discard_alignment;
213 /* Number of 4KB segments handled */
214 unsigned int max_indirect_segments;
215 int is_ready;
216 struct blk_mq_tag_set tag_set;
217 struct blkfront_ring_info *rinfo;
218 unsigned int nr_rings;
219 unsigned int rinfo_size;
220 /* Save uncomplete reqs and bios for migration. */
221 struct list_head requests;
222 struct bio_list bio_list;
223 struct list_head info_list;
224 };
225
226 static unsigned int nr_minors;
227 static unsigned long *minors;
228 static DEFINE_SPINLOCK(minor_lock);
229
230 #define GRANT_INVALID_REF 0
231
232 #define PARTS_PER_DISK 16
233 #define PARTS_PER_EXT_DISK 256
234
235 #define BLKIF_MAJOR(dev) ((dev)>>8)
236 #define BLKIF_MINOR(dev) ((dev) & 0xff)
237
238 #define EXT_SHIFT 28
239 #define EXTENDED (1<<EXT_SHIFT)
240 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
241 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
242 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
243 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
244 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
245 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
246
247 #define DEV_NAME "xvd" /* name in /dev */
248
249 /*
250 * Grants are always the same size as a Xen page (i.e 4KB).
251 * A physical segment is always the same size as a Linux page.
252 * Number of grants per physical segment
253 */
254 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
255
256 #define GRANTS_PER_INDIRECT_FRAME \
257 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
258
259 #define INDIRECT_GREFS(_grants) \
260 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
261
262 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
263 static void blkfront_gather_backend_features(struct blkfront_info *info);
264 static int negotiate_mq(struct blkfront_info *info);
265
266 #define for_each_rinfo(info, ptr, idx) \
267 for ((ptr) = (info)->rinfo, (idx) = 0; \
268 (idx) < (info)->nr_rings; \
269 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
270
271 static inline struct blkfront_ring_info *
get_rinfo(const struct blkfront_info * info,unsigned int i)272 get_rinfo(const struct blkfront_info *info, unsigned int i)
273 {
274 BUG_ON(i >= info->nr_rings);
275 return (void *)info->rinfo + i * info->rinfo_size;
276 }
277
get_id_from_freelist(struct blkfront_ring_info * rinfo)278 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
279 {
280 unsigned long free = rinfo->shadow_free;
281
282 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
283 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
284 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
285 return free;
286 }
287
add_id_to_freelist(struct blkfront_ring_info * rinfo,unsigned long id)288 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
289 unsigned long id)
290 {
291 if (rinfo->shadow[id].req.u.rw.id != id)
292 return -EINVAL;
293 if (rinfo->shadow[id].request == NULL)
294 return -EINVAL;
295 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
296 rinfo->shadow[id].request = NULL;
297 rinfo->shadow_free = id;
298 return 0;
299 }
300
fill_grant_buffer(struct blkfront_ring_info * rinfo,int num)301 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
302 {
303 struct blkfront_info *info = rinfo->dev_info;
304 struct page *granted_page;
305 struct grant *gnt_list_entry, *n;
306 int i = 0;
307
308 while (i < num) {
309 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
310 if (!gnt_list_entry)
311 goto out_of_memory;
312
313 if (info->feature_persistent) {
314 granted_page = alloc_page(GFP_NOIO);
315 if (!granted_page) {
316 kfree(gnt_list_entry);
317 goto out_of_memory;
318 }
319 gnt_list_entry->page = granted_page;
320 }
321
322 gnt_list_entry->gref = GRANT_INVALID_REF;
323 list_add(&gnt_list_entry->node, &rinfo->grants);
324 i++;
325 }
326
327 return 0;
328
329 out_of_memory:
330 list_for_each_entry_safe(gnt_list_entry, n,
331 &rinfo->grants, node) {
332 list_del(&gnt_list_entry->node);
333 if (info->feature_persistent)
334 __free_page(gnt_list_entry->page);
335 kfree(gnt_list_entry);
336 i--;
337 }
338 BUG_ON(i != 0);
339 return -ENOMEM;
340 }
341
get_free_grant(struct blkfront_ring_info * rinfo)342 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
343 {
344 struct grant *gnt_list_entry;
345
346 BUG_ON(list_empty(&rinfo->grants));
347 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
348 node);
349 list_del(&gnt_list_entry->node);
350
351 if (gnt_list_entry->gref != GRANT_INVALID_REF)
352 rinfo->persistent_gnts_c--;
353
354 return gnt_list_entry;
355 }
356
grant_foreign_access(const struct grant * gnt_list_entry,const struct blkfront_info * info)357 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
358 const struct blkfront_info *info)
359 {
360 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
361 info->xbdev->otherend_id,
362 gnt_list_entry->page,
363 0);
364 }
365
get_grant(grant_ref_t * gref_head,unsigned long gfn,struct blkfront_ring_info * rinfo)366 static struct grant *get_grant(grant_ref_t *gref_head,
367 unsigned long gfn,
368 struct blkfront_ring_info *rinfo)
369 {
370 struct grant *gnt_list_entry = get_free_grant(rinfo);
371 struct blkfront_info *info = rinfo->dev_info;
372
373 if (gnt_list_entry->gref != GRANT_INVALID_REF)
374 return gnt_list_entry;
375
376 /* Assign a gref to this page */
377 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
378 BUG_ON(gnt_list_entry->gref == -ENOSPC);
379 if (info->feature_persistent)
380 grant_foreign_access(gnt_list_entry, info);
381 else {
382 /* Grant access to the GFN passed by the caller */
383 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
384 info->xbdev->otherend_id,
385 gfn, 0);
386 }
387
388 return gnt_list_entry;
389 }
390
get_indirect_grant(grant_ref_t * gref_head,struct blkfront_ring_info * rinfo)391 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
392 struct blkfront_ring_info *rinfo)
393 {
394 struct grant *gnt_list_entry = get_free_grant(rinfo);
395 struct blkfront_info *info = rinfo->dev_info;
396
397 if (gnt_list_entry->gref != GRANT_INVALID_REF)
398 return gnt_list_entry;
399
400 /* Assign a gref to this page */
401 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
402 BUG_ON(gnt_list_entry->gref == -ENOSPC);
403 if (!info->feature_persistent) {
404 struct page *indirect_page;
405
406 /* Fetch a pre-allocated page to use for indirect grefs */
407 BUG_ON(list_empty(&rinfo->indirect_pages));
408 indirect_page = list_first_entry(&rinfo->indirect_pages,
409 struct page, lru);
410 list_del(&indirect_page->lru);
411 gnt_list_entry->page = indirect_page;
412 }
413 grant_foreign_access(gnt_list_entry, info);
414
415 return gnt_list_entry;
416 }
417
op_name(int op)418 static const char *op_name(int op)
419 {
420 static const char *const names[] = {
421 [BLKIF_OP_READ] = "read",
422 [BLKIF_OP_WRITE] = "write",
423 [BLKIF_OP_WRITE_BARRIER] = "barrier",
424 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
425 [BLKIF_OP_DISCARD] = "discard" };
426
427 if (op < 0 || op >= ARRAY_SIZE(names))
428 return "unknown";
429
430 if (!names[op])
431 return "reserved";
432
433 return names[op];
434 }
xlbd_reserve_minors(unsigned int minor,unsigned int nr)435 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
436 {
437 unsigned int end = minor + nr;
438 int rc;
439
440 if (end > nr_minors) {
441 unsigned long *bitmap, *old;
442
443 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
444 GFP_KERNEL);
445 if (bitmap == NULL)
446 return -ENOMEM;
447
448 spin_lock(&minor_lock);
449 if (end > nr_minors) {
450 old = minors;
451 memcpy(bitmap, minors,
452 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
453 minors = bitmap;
454 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
455 } else
456 old = bitmap;
457 spin_unlock(&minor_lock);
458 kfree(old);
459 }
460
461 spin_lock(&minor_lock);
462 if (find_next_bit(minors, end, minor) >= end) {
463 bitmap_set(minors, minor, nr);
464 rc = 0;
465 } else
466 rc = -EBUSY;
467 spin_unlock(&minor_lock);
468
469 return rc;
470 }
471
xlbd_release_minors(unsigned int minor,unsigned int nr)472 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
473 {
474 unsigned int end = minor + nr;
475
476 BUG_ON(end > nr_minors);
477 spin_lock(&minor_lock);
478 bitmap_clear(minors, minor, nr);
479 spin_unlock(&minor_lock);
480 }
481
blkif_restart_queue_callback(void * arg)482 static void blkif_restart_queue_callback(void *arg)
483 {
484 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
485 schedule_work(&rinfo->work);
486 }
487
blkif_getgeo(struct block_device * bd,struct hd_geometry * hg)488 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
489 {
490 /* We don't have real geometry info, but let's at least return
491 values consistent with the size of the device */
492 sector_t nsect = get_capacity(bd->bd_disk);
493 sector_t cylinders = nsect;
494
495 hg->heads = 0xff;
496 hg->sectors = 0x3f;
497 sector_div(cylinders, hg->heads * hg->sectors);
498 hg->cylinders = cylinders;
499 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
500 hg->cylinders = 0xffff;
501 return 0;
502 }
503
blkif_ioctl(struct block_device * bdev,fmode_t mode,unsigned command,unsigned long argument)504 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
505 unsigned command, unsigned long argument)
506 {
507 struct blkfront_info *info = bdev->bd_disk->private_data;
508 int i;
509
510 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
511 command, (long)argument);
512
513 switch (command) {
514 case CDROMMULTISESSION:
515 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
516 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
517 if (put_user(0, (char __user *)(argument + i)))
518 return -EFAULT;
519 return 0;
520
521 case CDROM_GET_CAPABILITY: {
522 struct gendisk *gd = info->gd;
523 if (gd->flags & GENHD_FL_CD)
524 return 0;
525 return -EINVAL;
526 }
527
528 default:
529 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
530 command);*/
531 return -EINVAL; /* same return as native Linux */
532 }
533
534 return 0;
535 }
536
blkif_ring_get_request(struct blkfront_ring_info * rinfo,struct request * req,struct blkif_request ** ring_req)537 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
538 struct request *req,
539 struct blkif_request **ring_req)
540 {
541 unsigned long id;
542
543 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
544 rinfo->ring.req_prod_pvt++;
545
546 id = get_id_from_freelist(rinfo);
547 rinfo->shadow[id].request = req;
548 rinfo->shadow[id].status = REQ_PROCESSING;
549 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
550
551 rinfo->shadow[id].req.u.rw.id = id;
552
553 return id;
554 }
555
blkif_queue_discard_req(struct request * req,struct blkfront_ring_info * rinfo)556 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
557 {
558 struct blkfront_info *info = rinfo->dev_info;
559 struct blkif_request *ring_req, *final_ring_req;
560 unsigned long id;
561
562 /* Fill out a communications ring structure. */
563 id = blkif_ring_get_request(rinfo, req, &final_ring_req);
564 ring_req = &rinfo->shadow[id].req;
565
566 ring_req->operation = BLKIF_OP_DISCARD;
567 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
568 ring_req->u.discard.id = id;
569 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
570 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
571 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
572 else
573 ring_req->u.discard.flag = 0;
574
575 /* Copy the request to the ring page. */
576 *final_ring_req = *ring_req;
577 rinfo->shadow[id].status = REQ_WAITING;
578
579 return 0;
580 }
581
582 struct setup_rw_req {
583 unsigned int grant_idx;
584 struct blkif_request_segment *segments;
585 struct blkfront_ring_info *rinfo;
586 struct blkif_request *ring_req;
587 grant_ref_t gref_head;
588 unsigned int id;
589 /* Only used when persistent grant is used and it's a read request */
590 bool need_copy;
591 unsigned int bvec_off;
592 char *bvec_data;
593
594 bool require_extra_req;
595 struct blkif_request *extra_ring_req;
596 };
597
blkif_setup_rw_req_grant(unsigned long gfn,unsigned int offset,unsigned int len,void * data)598 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
599 unsigned int len, void *data)
600 {
601 struct setup_rw_req *setup = data;
602 int n, ref;
603 struct grant *gnt_list_entry;
604 unsigned int fsect, lsect;
605 /* Convenient aliases */
606 unsigned int grant_idx = setup->grant_idx;
607 struct blkif_request *ring_req = setup->ring_req;
608 struct blkfront_ring_info *rinfo = setup->rinfo;
609 /*
610 * We always use the shadow of the first request to store the list
611 * of grant associated to the block I/O request. This made the
612 * completion more easy to handle even if the block I/O request is
613 * split.
614 */
615 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
616
617 if (unlikely(setup->require_extra_req &&
618 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
619 /*
620 * We are using the second request, setup grant_idx
621 * to be the index of the segment array.
622 */
623 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
624 ring_req = setup->extra_ring_req;
625 }
626
627 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
628 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
629 if (setup->segments)
630 kunmap_atomic(setup->segments);
631
632 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
633 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
634 shadow->indirect_grants[n] = gnt_list_entry;
635 setup->segments = kmap_atomic(gnt_list_entry->page);
636 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
637 }
638
639 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
640 ref = gnt_list_entry->gref;
641 /*
642 * All the grants are stored in the shadow of the first
643 * request. Therefore we have to use the global index.
644 */
645 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
646
647 if (setup->need_copy) {
648 void *shared_data;
649
650 shared_data = kmap_atomic(gnt_list_entry->page);
651 /*
652 * this does not wipe data stored outside the
653 * range sg->offset..sg->offset+sg->length.
654 * Therefore, blkback *could* see data from
655 * previous requests. This is OK as long as
656 * persistent grants are shared with just one
657 * domain. It may need refactoring if this
658 * changes
659 */
660 memcpy(shared_data + offset,
661 setup->bvec_data + setup->bvec_off,
662 len);
663
664 kunmap_atomic(shared_data);
665 setup->bvec_off += len;
666 }
667
668 fsect = offset >> 9;
669 lsect = fsect + (len >> 9) - 1;
670 if (ring_req->operation != BLKIF_OP_INDIRECT) {
671 ring_req->u.rw.seg[grant_idx] =
672 (struct blkif_request_segment) {
673 .gref = ref,
674 .first_sect = fsect,
675 .last_sect = lsect };
676 } else {
677 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
678 (struct blkif_request_segment) {
679 .gref = ref,
680 .first_sect = fsect,
681 .last_sect = lsect };
682 }
683
684 (setup->grant_idx)++;
685 }
686
blkif_setup_extra_req(struct blkif_request * first,struct blkif_request * second)687 static void blkif_setup_extra_req(struct blkif_request *first,
688 struct blkif_request *second)
689 {
690 uint16_t nr_segments = first->u.rw.nr_segments;
691
692 /*
693 * The second request is only present when the first request uses
694 * all its segments. It's always the continuity of the first one.
695 */
696 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
697
698 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
699 second->u.rw.sector_number = first->u.rw.sector_number +
700 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
701
702 second->u.rw.handle = first->u.rw.handle;
703 second->operation = first->operation;
704 }
705
blkif_queue_rw_req(struct request * req,struct blkfront_ring_info * rinfo)706 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
707 {
708 struct blkfront_info *info = rinfo->dev_info;
709 struct blkif_request *ring_req, *extra_ring_req = NULL;
710 struct blkif_request *final_ring_req, *final_extra_ring_req = NULL;
711 unsigned long id, extra_id = NO_ASSOCIATED_ID;
712 bool require_extra_req = false;
713 int i;
714 struct setup_rw_req setup = {
715 .grant_idx = 0,
716 .segments = NULL,
717 .rinfo = rinfo,
718 .need_copy = rq_data_dir(req) && info->feature_persistent,
719 };
720
721 /*
722 * Used to store if we are able to queue the request by just using
723 * existing persistent grants, or if we have to get new grants,
724 * as there are not sufficiently many free.
725 */
726 bool new_persistent_gnts = false;
727 struct scatterlist *sg;
728 int num_sg, max_grefs, num_grant;
729
730 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
731 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
732 /*
733 * If we are using indirect segments we need to account
734 * for the indirect grefs used in the request.
735 */
736 max_grefs += INDIRECT_GREFS(max_grefs);
737
738 /* Check if we have enough persistent grants to allocate a requests */
739 if (rinfo->persistent_gnts_c < max_grefs) {
740 new_persistent_gnts = true;
741
742 if (gnttab_alloc_grant_references(
743 max_grefs - rinfo->persistent_gnts_c,
744 &setup.gref_head) < 0) {
745 gnttab_request_free_callback(
746 &rinfo->callback,
747 blkif_restart_queue_callback,
748 rinfo,
749 max_grefs - rinfo->persistent_gnts_c);
750 return 1;
751 }
752 }
753
754 /* Fill out a communications ring structure. */
755 id = blkif_ring_get_request(rinfo, req, &final_ring_req);
756 ring_req = &rinfo->shadow[id].req;
757
758 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
759 num_grant = 0;
760 /* Calculate the number of grant used */
761 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
762 num_grant += gnttab_count_grant(sg->offset, sg->length);
763
764 require_extra_req = info->max_indirect_segments == 0 &&
765 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
766 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
767
768 rinfo->shadow[id].num_sg = num_sg;
769 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
770 likely(!require_extra_req)) {
771 /*
772 * The indirect operation can only be a BLKIF_OP_READ or
773 * BLKIF_OP_WRITE
774 */
775 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
776 ring_req->operation = BLKIF_OP_INDIRECT;
777 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
778 BLKIF_OP_WRITE : BLKIF_OP_READ;
779 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
780 ring_req->u.indirect.handle = info->handle;
781 ring_req->u.indirect.nr_segments = num_grant;
782 } else {
783 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
784 ring_req->u.rw.handle = info->handle;
785 ring_req->operation = rq_data_dir(req) ?
786 BLKIF_OP_WRITE : BLKIF_OP_READ;
787 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
788 /*
789 * Ideally we can do an unordered flush-to-disk.
790 * In case the backend onlysupports barriers, use that.
791 * A barrier request a superset of FUA, so we can
792 * implement it the same way. (It's also a FLUSH+FUA,
793 * since it is guaranteed ordered WRT previous writes.)
794 */
795 if (info->feature_flush && info->feature_fua)
796 ring_req->operation =
797 BLKIF_OP_WRITE_BARRIER;
798 else if (info->feature_flush)
799 ring_req->operation =
800 BLKIF_OP_FLUSH_DISKCACHE;
801 else
802 ring_req->operation = 0;
803 }
804 ring_req->u.rw.nr_segments = num_grant;
805 if (unlikely(require_extra_req)) {
806 extra_id = blkif_ring_get_request(rinfo, req,
807 &final_extra_ring_req);
808 extra_ring_req = &rinfo->shadow[extra_id].req;
809
810 /*
811 * Only the first request contains the scatter-gather
812 * list.
813 */
814 rinfo->shadow[extra_id].num_sg = 0;
815
816 blkif_setup_extra_req(ring_req, extra_ring_req);
817
818 /* Link the 2 requests together */
819 rinfo->shadow[extra_id].associated_id = id;
820 rinfo->shadow[id].associated_id = extra_id;
821 }
822 }
823
824 setup.ring_req = ring_req;
825 setup.id = id;
826
827 setup.require_extra_req = require_extra_req;
828 if (unlikely(require_extra_req))
829 setup.extra_ring_req = extra_ring_req;
830
831 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
832 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
833
834 if (setup.need_copy) {
835 setup.bvec_off = sg->offset;
836 setup.bvec_data = kmap_atomic(sg_page(sg));
837 }
838
839 gnttab_foreach_grant_in_range(sg_page(sg),
840 sg->offset,
841 sg->length,
842 blkif_setup_rw_req_grant,
843 &setup);
844
845 if (setup.need_copy)
846 kunmap_atomic(setup.bvec_data);
847 }
848 if (setup.segments)
849 kunmap_atomic(setup.segments);
850
851 /* Copy request(s) to the ring page. */
852 *final_ring_req = *ring_req;
853 rinfo->shadow[id].status = REQ_WAITING;
854 if (unlikely(require_extra_req)) {
855 *final_extra_ring_req = *extra_ring_req;
856 rinfo->shadow[extra_id].status = REQ_WAITING;
857 }
858
859 if (new_persistent_gnts)
860 gnttab_free_grant_references(setup.gref_head);
861
862 return 0;
863 }
864
865 /*
866 * Generate a Xen blkfront IO request from a blk layer request. Reads
867 * and writes are handled as expected.
868 *
869 * @req: a request struct
870 */
blkif_queue_request(struct request * req,struct blkfront_ring_info * rinfo)871 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
872 {
873 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
874 return 1;
875
876 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
877 req_op(req) == REQ_OP_SECURE_ERASE))
878 return blkif_queue_discard_req(req, rinfo);
879 else
880 return blkif_queue_rw_req(req, rinfo);
881 }
882
flush_requests(struct blkfront_ring_info * rinfo)883 static inline void flush_requests(struct blkfront_ring_info *rinfo)
884 {
885 int notify;
886
887 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
888
889 if (notify)
890 notify_remote_via_irq(rinfo->irq);
891 }
892
blkif_request_flush_invalid(struct request * req,struct blkfront_info * info)893 static inline bool blkif_request_flush_invalid(struct request *req,
894 struct blkfront_info *info)
895 {
896 return (blk_rq_is_passthrough(req) ||
897 ((req_op(req) == REQ_OP_FLUSH) &&
898 !info->feature_flush) ||
899 ((req->cmd_flags & REQ_FUA) &&
900 !info->feature_fua));
901 }
902
blkif_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)903 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
904 const struct blk_mq_queue_data *qd)
905 {
906 unsigned long flags;
907 int qid = hctx->queue_num;
908 struct blkfront_info *info = hctx->queue->queuedata;
909 struct blkfront_ring_info *rinfo = NULL;
910
911 rinfo = get_rinfo(info, qid);
912 blk_mq_start_request(qd->rq);
913 spin_lock_irqsave(&rinfo->ring_lock, flags);
914 if (RING_FULL(&rinfo->ring))
915 goto out_busy;
916
917 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
918 goto out_err;
919
920 if (blkif_queue_request(qd->rq, rinfo))
921 goto out_busy;
922
923 flush_requests(rinfo);
924 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
925 return BLK_STS_OK;
926
927 out_err:
928 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
929 return BLK_STS_IOERR;
930
931 out_busy:
932 blk_mq_stop_hw_queue(hctx);
933 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
934 return BLK_STS_DEV_RESOURCE;
935 }
936
blkif_complete_rq(struct request * rq)937 static void blkif_complete_rq(struct request *rq)
938 {
939 blk_mq_end_request(rq, blkif_req(rq)->error);
940 }
941
942 static const struct blk_mq_ops blkfront_mq_ops = {
943 .queue_rq = blkif_queue_rq,
944 .complete = blkif_complete_rq,
945 };
946
blkif_set_queue_limits(struct blkfront_info * info)947 static void blkif_set_queue_limits(struct blkfront_info *info)
948 {
949 struct request_queue *rq = info->rq;
950 struct gendisk *gd = info->gd;
951 unsigned int segments = info->max_indirect_segments ? :
952 BLKIF_MAX_SEGMENTS_PER_REQUEST;
953
954 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
955
956 if (info->feature_discard) {
957 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
958 blk_queue_max_discard_sectors(rq, get_capacity(gd));
959 rq->limits.discard_granularity = info->discard_granularity ?:
960 info->physical_sector_size;
961 rq->limits.discard_alignment = info->discard_alignment;
962 if (info->feature_secdiscard)
963 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
964 }
965
966 /* Hard sector size and max sectors impersonate the equiv. hardware. */
967 blk_queue_logical_block_size(rq, info->sector_size);
968 blk_queue_physical_block_size(rq, info->physical_sector_size);
969 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
970
971 /* Each segment in a request is up to an aligned page in size. */
972 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
973 blk_queue_max_segment_size(rq, PAGE_SIZE);
974
975 /* Ensure a merged request will fit in a single I/O ring slot. */
976 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
977
978 /* Make sure buffer addresses are sector-aligned. */
979 blk_queue_dma_alignment(rq, 511);
980 }
981
xlvbd_init_blk_queue(struct gendisk * gd,u16 sector_size,unsigned int physical_sector_size)982 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
983 unsigned int physical_sector_size)
984 {
985 struct request_queue *rq;
986 struct blkfront_info *info = gd->private_data;
987
988 memset(&info->tag_set, 0, sizeof(info->tag_set));
989 info->tag_set.ops = &blkfront_mq_ops;
990 info->tag_set.nr_hw_queues = info->nr_rings;
991 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
992 /*
993 * When indirect descriptior is not supported, the I/O request
994 * will be split between multiple request in the ring.
995 * To avoid problems when sending the request, divide by
996 * 2 the depth of the queue.
997 */
998 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
999 } else
1000 info->tag_set.queue_depth = BLK_RING_SIZE(info);
1001 info->tag_set.numa_node = NUMA_NO_NODE;
1002 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1003 info->tag_set.cmd_size = sizeof(struct blkif_req);
1004 info->tag_set.driver_data = info;
1005
1006 if (blk_mq_alloc_tag_set(&info->tag_set))
1007 return -EINVAL;
1008 rq = blk_mq_init_queue(&info->tag_set);
1009 if (IS_ERR(rq)) {
1010 blk_mq_free_tag_set(&info->tag_set);
1011 return PTR_ERR(rq);
1012 }
1013
1014 rq->queuedata = info;
1015 info->rq = gd->queue = rq;
1016 info->gd = gd;
1017 info->sector_size = sector_size;
1018 info->physical_sector_size = physical_sector_size;
1019 blkif_set_queue_limits(info);
1020
1021 return 0;
1022 }
1023
flush_info(struct blkfront_info * info)1024 static const char *flush_info(struct blkfront_info *info)
1025 {
1026 if (info->feature_flush && info->feature_fua)
1027 return "barrier: enabled;";
1028 else if (info->feature_flush)
1029 return "flush diskcache: enabled;";
1030 else
1031 return "barrier or flush: disabled;";
1032 }
1033
xlvbd_flush(struct blkfront_info * info)1034 static void xlvbd_flush(struct blkfront_info *info)
1035 {
1036 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1037 info->feature_fua ? true : false);
1038 pr_info("blkfront: %s: %s %s %s %s %s\n",
1039 info->gd->disk_name, flush_info(info),
1040 "persistent grants:", info->feature_persistent ?
1041 "enabled;" : "disabled;", "indirect descriptors:",
1042 info->max_indirect_segments ? "enabled;" : "disabled;");
1043 }
1044
xen_translate_vdev(int vdevice,int * minor,unsigned int * offset)1045 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1046 {
1047 int major;
1048 major = BLKIF_MAJOR(vdevice);
1049 *minor = BLKIF_MINOR(vdevice);
1050 switch (major) {
1051 case XEN_IDE0_MAJOR:
1052 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1053 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1054 EMULATED_HD_DISK_MINOR_OFFSET;
1055 break;
1056 case XEN_IDE1_MAJOR:
1057 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1058 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1059 EMULATED_HD_DISK_MINOR_OFFSET;
1060 break;
1061 case XEN_SCSI_DISK0_MAJOR:
1062 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1063 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1064 break;
1065 case XEN_SCSI_DISK1_MAJOR:
1066 case XEN_SCSI_DISK2_MAJOR:
1067 case XEN_SCSI_DISK3_MAJOR:
1068 case XEN_SCSI_DISK4_MAJOR:
1069 case XEN_SCSI_DISK5_MAJOR:
1070 case XEN_SCSI_DISK6_MAJOR:
1071 case XEN_SCSI_DISK7_MAJOR:
1072 *offset = (*minor / PARTS_PER_DISK) +
1073 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1074 EMULATED_SD_DISK_NAME_OFFSET;
1075 *minor = *minor +
1076 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1077 EMULATED_SD_DISK_MINOR_OFFSET;
1078 break;
1079 case XEN_SCSI_DISK8_MAJOR:
1080 case XEN_SCSI_DISK9_MAJOR:
1081 case XEN_SCSI_DISK10_MAJOR:
1082 case XEN_SCSI_DISK11_MAJOR:
1083 case XEN_SCSI_DISK12_MAJOR:
1084 case XEN_SCSI_DISK13_MAJOR:
1085 case XEN_SCSI_DISK14_MAJOR:
1086 case XEN_SCSI_DISK15_MAJOR:
1087 *offset = (*minor / PARTS_PER_DISK) +
1088 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1089 EMULATED_SD_DISK_NAME_OFFSET;
1090 *minor = *minor +
1091 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1092 EMULATED_SD_DISK_MINOR_OFFSET;
1093 break;
1094 case XENVBD_MAJOR:
1095 *offset = *minor / PARTS_PER_DISK;
1096 break;
1097 default:
1098 printk(KERN_WARNING "blkfront: your disk configuration is "
1099 "incorrect, please use an xvd device instead\n");
1100 return -ENODEV;
1101 }
1102 return 0;
1103 }
1104
encode_disk_name(char * ptr,unsigned int n)1105 static char *encode_disk_name(char *ptr, unsigned int n)
1106 {
1107 if (n >= 26)
1108 ptr = encode_disk_name(ptr, n / 26 - 1);
1109 *ptr = 'a' + n % 26;
1110 return ptr + 1;
1111 }
1112
xlvbd_alloc_gendisk(blkif_sector_t capacity,struct blkfront_info * info,u16 vdisk_info,u16 sector_size,unsigned int physical_sector_size)1113 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1114 struct blkfront_info *info,
1115 u16 vdisk_info, u16 sector_size,
1116 unsigned int physical_sector_size)
1117 {
1118 struct gendisk *gd;
1119 int nr_minors = 1;
1120 int err;
1121 unsigned int offset;
1122 int minor;
1123 int nr_parts;
1124 char *ptr;
1125
1126 BUG_ON(info->gd != NULL);
1127 BUG_ON(info->rq != NULL);
1128
1129 if ((info->vdevice>>EXT_SHIFT) > 1) {
1130 /* this is above the extended range; something is wrong */
1131 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1132 return -ENODEV;
1133 }
1134
1135 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1136 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1137 if (err)
1138 return err;
1139 nr_parts = PARTS_PER_DISK;
1140 } else {
1141 minor = BLKIF_MINOR_EXT(info->vdevice);
1142 nr_parts = PARTS_PER_EXT_DISK;
1143 offset = minor / nr_parts;
1144 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1145 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1146 "emulated IDE disks,\n\t choose an xvd device name"
1147 "from xvde on\n", info->vdevice);
1148 }
1149 if (minor >> MINORBITS) {
1150 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1151 info->vdevice, minor);
1152 return -ENODEV;
1153 }
1154
1155 if ((minor % nr_parts) == 0)
1156 nr_minors = nr_parts;
1157
1158 err = xlbd_reserve_minors(minor, nr_minors);
1159 if (err)
1160 goto out;
1161 err = -ENODEV;
1162
1163 gd = alloc_disk(nr_minors);
1164 if (gd == NULL)
1165 goto release;
1166
1167 strcpy(gd->disk_name, DEV_NAME);
1168 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1169 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1170 if (nr_minors > 1)
1171 *ptr = 0;
1172 else
1173 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1174 "%d", minor & (nr_parts - 1));
1175
1176 gd->major = XENVBD_MAJOR;
1177 gd->first_minor = minor;
1178 gd->fops = &xlvbd_block_fops;
1179 gd->private_data = info;
1180 set_capacity(gd, capacity);
1181
1182 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1183 del_gendisk(gd);
1184 goto release;
1185 }
1186
1187 xlvbd_flush(info);
1188
1189 if (vdisk_info & VDISK_READONLY)
1190 set_disk_ro(gd, 1);
1191
1192 if (vdisk_info & VDISK_REMOVABLE)
1193 gd->flags |= GENHD_FL_REMOVABLE;
1194
1195 if (vdisk_info & VDISK_CDROM)
1196 gd->flags |= GENHD_FL_CD;
1197
1198 return 0;
1199
1200 release:
1201 xlbd_release_minors(minor, nr_minors);
1202 out:
1203 return err;
1204 }
1205
xlvbd_release_gendisk(struct blkfront_info * info)1206 static void xlvbd_release_gendisk(struct blkfront_info *info)
1207 {
1208 unsigned int minor, nr_minors, i;
1209 struct blkfront_ring_info *rinfo;
1210
1211 if (info->rq == NULL)
1212 return;
1213
1214 /* No more blkif_request(). */
1215 blk_mq_stop_hw_queues(info->rq);
1216
1217 for_each_rinfo(info, rinfo, i) {
1218 /* No more gnttab callback work. */
1219 gnttab_cancel_free_callback(&rinfo->callback);
1220
1221 /* Flush gnttab callback work. Must be done with no locks held. */
1222 flush_work(&rinfo->work);
1223 }
1224
1225 del_gendisk(info->gd);
1226
1227 minor = info->gd->first_minor;
1228 nr_minors = info->gd->minors;
1229 xlbd_release_minors(minor, nr_minors);
1230
1231 blk_cleanup_queue(info->rq);
1232 blk_mq_free_tag_set(&info->tag_set);
1233 info->rq = NULL;
1234
1235 put_disk(info->gd);
1236 info->gd = NULL;
1237 }
1238
1239 /* Already hold rinfo->ring_lock. */
kick_pending_request_queues_locked(struct blkfront_ring_info * rinfo)1240 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1241 {
1242 if (!RING_FULL(&rinfo->ring))
1243 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1244 }
1245
kick_pending_request_queues(struct blkfront_ring_info * rinfo)1246 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1247 {
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&rinfo->ring_lock, flags);
1251 kick_pending_request_queues_locked(rinfo);
1252 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1253 }
1254
blkif_restart_queue(struct work_struct * work)1255 static void blkif_restart_queue(struct work_struct *work)
1256 {
1257 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1258
1259 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1260 kick_pending_request_queues(rinfo);
1261 }
1262
blkif_free_ring(struct blkfront_ring_info * rinfo)1263 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1264 {
1265 struct grant *persistent_gnt, *n;
1266 struct blkfront_info *info = rinfo->dev_info;
1267 int i, j, segs;
1268
1269 /*
1270 * Remove indirect pages, this only happens when using indirect
1271 * descriptors but not persistent grants
1272 */
1273 if (!list_empty(&rinfo->indirect_pages)) {
1274 struct page *indirect_page, *n;
1275
1276 BUG_ON(info->feature_persistent);
1277 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1278 list_del(&indirect_page->lru);
1279 __free_page(indirect_page);
1280 }
1281 }
1282
1283 /* Remove all persistent grants. */
1284 if (!list_empty(&rinfo->grants)) {
1285 list_for_each_entry_safe(persistent_gnt, n,
1286 &rinfo->grants, node) {
1287 list_del(&persistent_gnt->node);
1288 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1289 gnttab_end_foreign_access(persistent_gnt->gref,
1290 0, 0UL);
1291 rinfo->persistent_gnts_c--;
1292 }
1293 if (info->feature_persistent)
1294 __free_page(persistent_gnt->page);
1295 kfree(persistent_gnt);
1296 }
1297 }
1298 BUG_ON(rinfo->persistent_gnts_c != 0);
1299
1300 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1301 /*
1302 * Clear persistent grants present in requests already
1303 * on the shared ring
1304 */
1305 if (!rinfo->shadow[i].request)
1306 goto free_shadow;
1307
1308 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1309 rinfo->shadow[i].req.u.indirect.nr_segments :
1310 rinfo->shadow[i].req.u.rw.nr_segments;
1311 for (j = 0; j < segs; j++) {
1312 persistent_gnt = rinfo->shadow[i].grants_used[j];
1313 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1314 if (info->feature_persistent)
1315 __free_page(persistent_gnt->page);
1316 kfree(persistent_gnt);
1317 }
1318
1319 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1320 /*
1321 * If this is not an indirect operation don't try to
1322 * free indirect segments
1323 */
1324 goto free_shadow;
1325
1326 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1327 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1328 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1329 __free_page(persistent_gnt->page);
1330 kfree(persistent_gnt);
1331 }
1332
1333 free_shadow:
1334 kvfree(rinfo->shadow[i].grants_used);
1335 rinfo->shadow[i].grants_used = NULL;
1336 kvfree(rinfo->shadow[i].indirect_grants);
1337 rinfo->shadow[i].indirect_grants = NULL;
1338 kvfree(rinfo->shadow[i].sg);
1339 rinfo->shadow[i].sg = NULL;
1340 }
1341
1342 /* No more gnttab callback work. */
1343 gnttab_cancel_free_callback(&rinfo->callback);
1344
1345 /* Flush gnttab callback work. Must be done with no locks held. */
1346 flush_work(&rinfo->work);
1347
1348 /* Free resources associated with old device channel. */
1349 for (i = 0; i < info->nr_ring_pages; i++) {
1350 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1351 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1352 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1353 }
1354 }
1355 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1356 rinfo->ring.sring = NULL;
1357
1358 if (rinfo->irq)
1359 unbind_from_irqhandler(rinfo->irq, rinfo);
1360 rinfo->evtchn = rinfo->irq = 0;
1361 }
1362
blkif_free(struct blkfront_info * info,int suspend)1363 static void blkif_free(struct blkfront_info *info, int suspend)
1364 {
1365 unsigned int i;
1366 struct blkfront_ring_info *rinfo;
1367
1368 /* Prevent new requests being issued until we fix things up. */
1369 info->connected = suspend ?
1370 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1371 /* No more blkif_request(). */
1372 if (info->rq)
1373 blk_mq_stop_hw_queues(info->rq);
1374
1375 for_each_rinfo(info, rinfo, i)
1376 blkif_free_ring(rinfo);
1377
1378 kvfree(info->rinfo);
1379 info->rinfo = NULL;
1380 info->nr_rings = 0;
1381 }
1382
1383 struct copy_from_grant {
1384 const struct blk_shadow *s;
1385 unsigned int grant_idx;
1386 unsigned int bvec_offset;
1387 char *bvec_data;
1388 };
1389
blkif_copy_from_grant(unsigned long gfn,unsigned int offset,unsigned int len,void * data)1390 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1391 unsigned int len, void *data)
1392 {
1393 struct copy_from_grant *info = data;
1394 char *shared_data;
1395 /* Convenient aliases */
1396 const struct blk_shadow *s = info->s;
1397
1398 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1399
1400 memcpy(info->bvec_data + info->bvec_offset,
1401 shared_data + offset, len);
1402
1403 info->bvec_offset += len;
1404 info->grant_idx++;
1405
1406 kunmap_atomic(shared_data);
1407 }
1408
blkif_rsp_to_req_status(int rsp)1409 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1410 {
1411 switch (rsp)
1412 {
1413 case BLKIF_RSP_OKAY:
1414 return REQ_DONE;
1415 case BLKIF_RSP_EOPNOTSUPP:
1416 return REQ_EOPNOTSUPP;
1417 case BLKIF_RSP_ERROR:
1418 default:
1419 return REQ_ERROR;
1420 }
1421 }
1422
1423 /*
1424 * Get the final status of the block request based on two ring response
1425 */
blkif_get_final_status(enum blk_req_status s1,enum blk_req_status s2)1426 static int blkif_get_final_status(enum blk_req_status s1,
1427 enum blk_req_status s2)
1428 {
1429 BUG_ON(s1 < REQ_DONE);
1430 BUG_ON(s2 < REQ_DONE);
1431
1432 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1433 return BLKIF_RSP_ERROR;
1434 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1435 return BLKIF_RSP_EOPNOTSUPP;
1436 return BLKIF_RSP_OKAY;
1437 }
1438
blkif_completion(unsigned long * id,struct blkfront_ring_info * rinfo,struct blkif_response * bret)1439 static bool blkif_completion(unsigned long *id,
1440 struct blkfront_ring_info *rinfo,
1441 struct blkif_response *bret)
1442 {
1443 int i = 0;
1444 struct scatterlist *sg;
1445 int num_sg, num_grant;
1446 struct blkfront_info *info = rinfo->dev_info;
1447 struct blk_shadow *s = &rinfo->shadow[*id];
1448 struct copy_from_grant data = {
1449 .grant_idx = 0,
1450 };
1451
1452 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1453 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1454
1455 /* The I/O request may be split in two. */
1456 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1457 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1458
1459 /* Keep the status of the current response in shadow. */
1460 s->status = blkif_rsp_to_req_status(bret->status);
1461
1462 /* Wait the second response if not yet here. */
1463 if (s2->status < REQ_DONE)
1464 return false;
1465
1466 bret->status = blkif_get_final_status(s->status,
1467 s2->status);
1468
1469 /*
1470 * All the grants is stored in the first shadow in order
1471 * to make the completion code simpler.
1472 */
1473 num_grant += s2->req.u.rw.nr_segments;
1474
1475 /*
1476 * The two responses may not come in order. Only the
1477 * first request will store the scatter-gather list.
1478 */
1479 if (s2->num_sg != 0) {
1480 /* Update "id" with the ID of the first response. */
1481 *id = s->associated_id;
1482 s = s2;
1483 }
1484
1485 /*
1486 * We don't need anymore the second request, so recycling
1487 * it now.
1488 */
1489 if (add_id_to_freelist(rinfo, s->associated_id))
1490 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1491 info->gd->disk_name, s->associated_id);
1492 }
1493
1494 data.s = s;
1495 num_sg = s->num_sg;
1496
1497 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1498 for_each_sg(s->sg, sg, num_sg, i) {
1499 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1500
1501 data.bvec_offset = sg->offset;
1502 data.bvec_data = kmap_atomic(sg_page(sg));
1503
1504 gnttab_foreach_grant_in_range(sg_page(sg),
1505 sg->offset,
1506 sg->length,
1507 blkif_copy_from_grant,
1508 &data);
1509
1510 kunmap_atomic(data.bvec_data);
1511 }
1512 }
1513 /* Add the persistent grant into the list of free grants */
1514 for (i = 0; i < num_grant; i++) {
1515 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1516 /*
1517 * If the grant is still mapped by the backend (the
1518 * backend has chosen to make this grant persistent)
1519 * we add it at the head of the list, so it will be
1520 * reused first.
1521 */
1522 if (!info->feature_persistent)
1523 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1524 s->grants_used[i]->gref);
1525 list_add(&s->grants_used[i]->node, &rinfo->grants);
1526 rinfo->persistent_gnts_c++;
1527 } else {
1528 /*
1529 * If the grant is not mapped by the backend we end the
1530 * foreign access and add it to the tail of the list,
1531 * so it will not be picked again unless we run out of
1532 * persistent grants.
1533 */
1534 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1535 s->grants_used[i]->gref = GRANT_INVALID_REF;
1536 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1537 }
1538 }
1539 if (s->req.operation == BLKIF_OP_INDIRECT) {
1540 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1541 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1542 if (!info->feature_persistent)
1543 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1544 s->indirect_grants[i]->gref);
1545 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1546 rinfo->persistent_gnts_c++;
1547 } else {
1548 struct page *indirect_page;
1549
1550 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1551 /*
1552 * Add the used indirect page back to the list of
1553 * available pages for indirect grefs.
1554 */
1555 if (!info->feature_persistent) {
1556 indirect_page = s->indirect_grants[i]->page;
1557 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1558 }
1559 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1560 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1561 }
1562 }
1563 }
1564
1565 return true;
1566 }
1567
blkif_interrupt(int irq,void * dev_id)1568 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1569 {
1570 struct request *req;
1571 struct blkif_response bret;
1572 RING_IDX i, rp;
1573 unsigned long flags;
1574 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1575 struct blkfront_info *info = rinfo->dev_info;
1576 unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
1577
1578 if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1579 xen_irq_lateeoi(irq, XEN_EOI_FLAG_SPURIOUS);
1580 return IRQ_HANDLED;
1581 }
1582
1583 spin_lock_irqsave(&rinfo->ring_lock, flags);
1584 again:
1585 rp = READ_ONCE(rinfo->ring.sring->rsp_prod);
1586 virt_rmb(); /* Ensure we see queued responses up to 'rp'. */
1587 if (RING_RESPONSE_PROD_OVERFLOW(&rinfo->ring, rp)) {
1588 pr_alert("%s: illegal number of responses %u\n",
1589 info->gd->disk_name, rp - rinfo->ring.rsp_cons);
1590 goto err;
1591 }
1592
1593 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1594 unsigned long id;
1595 unsigned int op;
1596
1597 eoiflag = 0;
1598
1599 RING_COPY_RESPONSE(&rinfo->ring, i, &bret);
1600 id = bret.id;
1601
1602 /*
1603 * The backend has messed up and given us an id that we would
1604 * never have given to it (we stamp it up to BLK_RING_SIZE -
1605 * look in get_id_from_freelist.
1606 */
1607 if (id >= BLK_RING_SIZE(info)) {
1608 pr_alert("%s: response has incorrect id (%ld)\n",
1609 info->gd->disk_name, id);
1610 goto err;
1611 }
1612 if (rinfo->shadow[id].status != REQ_WAITING) {
1613 pr_alert("%s: response references no pending request\n",
1614 info->gd->disk_name);
1615 goto err;
1616 }
1617
1618 rinfo->shadow[id].status = REQ_PROCESSING;
1619 req = rinfo->shadow[id].request;
1620
1621 op = rinfo->shadow[id].req.operation;
1622 if (op == BLKIF_OP_INDIRECT)
1623 op = rinfo->shadow[id].req.u.indirect.indirect_op;
1624 if (bret.operation != op) {
1625 pr_alert("%s: response has wrong operation (%u instead of %u)\n",
1626 info->gd->disk_name, bret.operation, op);
1627 goto err;
1628 }
1629
1630 if (bret.operation != BLKIF_OP_DISCARD) {
1631 /*
1632 * We may need to wait for an extra response if the
1633 * I/O request is split in 2
1634 */
1635 if (!blkif_completion(&id, rinfo, &bret))
1636 continue;
1637 }
1638
1639 if (add_id_to_freelist(rinfo, id)) {
1640 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1641 info->gd->disk_name, op_name(bret.operation), id);
1642 continue;
1643 }
1644
1645 if (bret.status == BLKIF_RSP_OKAY)
1646 blkif_req(req)->error = BLK_STS_OK;
1647 else
1648 blkif_req(req)->error = BLK_STS_IOERR;
1649
1650 switch (bret.operation) {
1651 case BLKIF_OP_DISCARD:
1652 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1653 struct request_queue *rq = info->rq;
1654
1655 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1656 info->gd->disk_name, op_name(bret.operation));
1657 blkif_req(req)->error = BLK_STS_NOTSUPP;
1658 info->feature_discard = 0;
1659 info->feature_secdiscard = 0;
1660 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1661 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1662 }
1663 break;
1664 case BLKIF_OP_FLUSH_DISKCACHE:
1665 case BLKIF_OP_WRITE_BARRIER:
1666 if (unlikely(bret.status == BLKIF_RSP_EOPNOTSUPP)) {
1667 pr_warn_ratelimited("blkfront: %s: %s op failed\n",
1668 info->gd->disk_name, op_name(bret.operation));
1669 blkif_req(req)->error = BLK_STS_NOTSUPP;
1670 }
1671 if (unlikely(bret.status == BLKIF_RSP_ERROR &&
1672 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1673 pr_warn_ratelimited("blkfront: %s: empty %s op failed\n",
1674 info->gd->disk_name, op_name(bret.operation));
1675 blkif_req(req)->error = BLK_STS_NOTSUPP;
1676 }
1677 if (unlikely(blkif_req(req)->error)) {
1678 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1679 blkif_req(req)->error = BLK_STS_OK;
1680 info->feature_fua = 0;
1681 info->feature_flush = 0;
1682 xlvbd_flush(info);
1683 }
1684 fallthrough;
1685 case BLKIF_OP_READ:
1686 case BLKIF_OP_WRITE:
1687 if (unlikely(bret.status != BLKIF_RSP_OKAY))
1688 dev_dbg_ratelimited(&info->xbdev->dev,
1689 "Bad return from blkdev data request: %#x\n",
1690 bret.status);
1691
1692 break;
1693 default:
1694 BUG();
1695 }
1696
1697 if (likely(!blk_should_fake_timeout(req->q)))
1698 blk_mq_complete_request(req);
1699 }
1700
1701 rinfo->ring.rsp_cons = i;
1702
1703 if (i != rinfo->ring.req_prod_pvt) {
1704 int more_to_do;
1705 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1706 if (more_to_do)
1707 goto again;
1708 } else
1709 rinfo->ring.sring->rsp_event = i + 1;
1710
1711 kick_pending_request_queues_locked(rinfo);
1712
1713 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1714
1715 xen_irq_lateeoi(irq, eoiflag);
1716
1717 return IRQ_HANDLED;
1718
1719 err:
1720 info->connected = BLKIF_STATE_ERROR;
1721
1722 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1723
1724 /* No EOI in order to avoid further interrupts. */
1725
1726 pr_alert("%s disabled for further use\n", info->gd->disk_name);
1727 return IRQ_HANDLED;
1728 }
1729
1730
setup_blkring(struct xenbus_device * dev,struct blkfront_ring_info * rinfo)1731 static int setup_blkring(struct xenbus_device *dev,
1732 struct blkfront_ring_info *rinfo)
1733 {
1734 struct blkif_sring *sring;
1735 int err, i;
1736 struct blkfront_info *info = rinfo->dev_info;
1737 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1738 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1739
1740 for (i = 0; i < info->nr_ring_pages; i++)
1741 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1742
1743 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1744 get_order(ring_size));
1745 if (!sring) {
1746 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1747 return -ENOMEM;
1748 }
1749 SHARED_RING_INIT(sring);
1750 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1751
1752 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1753 if (err < 0) {
1754 free_pages((unsigned long)sring, get_order(ring_size));
1755 rinfo->ring.sring = NULL;
1756 goto fail;
1757 }
1758 for (i = 0; i < info->nr_ring_pages; i++)
1759 rinfo->ring_ref[i] = gref[i];
1760
1761 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1762 if (err)
1763 goto fail;
1764
1765 err = bind_evtchn_to_irqhandler_lateeoi(rinfo->evtchn, blkif_interrupt,
1766 0, "blkif", rinfo);
1767 if (err <= 0) {
1768 xenbus_dev_fatal(dev, err,
1769 "bind_evtchn_to_irqhandler failed");
1770 goto fail;
1771 }
1772 rinfo->irq = err;
1773
1774 return 0;
1775 fail:
1776 blkif_free(info, 0);
1777 return err;
1778 }
1779
1780 /*
1781 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1782 * ring buffer may have multi pages depending on ->nr_ring_pages.
1783 */
write_per_ring_nodes(struct xenbus_transaction xbt,struct blkfront_ring_info * rinfo,const char * dir)1784 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1785 struct blkfront_ring_info *rinfo, const char *dir)
1786 {
1787 int err;
1788 unsigned int i;
1789 const char *message = NULL;
1790 struct blkfront_info *info = rinfo->dev_info;
1791
1792 if (info->nr_ring_pages == 1) {
1793 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1794 if (err) {
1795 message = "writing ring-ref";
1796 goto abort_transaction;
1797 }
1798 } else {
1799 for (i = 0; i < info->nr_ring_pages; i++) {
1800 char ring_ref_name[RINGREF_NAME_LEN];
1801
1802 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1803 err = xenbus_printf(xbt, dir, ring_ref_name,
1804 "%u", rinfo->ring_ref[i]);
1805 if (err) {
1806 message = "writing ring-ref";
1807 goto abort_transaction;
1808 }
1809 }
1810 }
1811
1812 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1813 if (err) {
1814 message = "writing event-channel";
1815 goto abort_transaction;
1816 }
1817
1818 return 0;
1819
1820 abort_transaction:
1821 xenbus_transaction_end(xbt, 1);
1822 if (message)
1823 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1824
1825 return err;
1826 }
1827
free_info(struct blkfront_info * info)1828 static void free_info(struct blkfront_info *info)
1829 {
1830 list_del(&info->info_list);
1831 kfree(info);
1832 }
1833
1834 /* Common code used when first setting up, and when resuming. */
talk_to_blkback(struct xenbus_device * dev,struct blkfront_info * info)1835 static int talk_to_blkback(struct xenbus_device *dev,
1836 struct blkfront_info *info)
1837 {
1838 const char *message = NULL;
1839 struct xenbus_transaction xbt;
1840 int err;
1841 unsigned int i, max_page_order;
1842 unsigned int ring_page_order;
1843 struct blkfront_ring_info *rinfo;
1844
1845 if (!info)
1846 return -ENODEV;
1847
1848 max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1849 "max-ring-page-order", 0);
1850 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1851 info->nr_ring_pages = 1 << ring_page_order;
1852
1853 err = negotiate_mq(info);
1854 if (err)
1855 goto destroy_blkring;
1856
1857 for_each_rinfo(info, rinfo, i) {
1858 /* Create shared ring, alloc event channel. */
1859 err = setup_blkring(dev, rinfo);
1860 if (err)
1861 goto destroy_blkring;
1862 }
1863
1864 again:
1865 err = xenbus_transaction_start(&xbt);
1866 if (err) {
1867 xenbus_dev_fatal(dev, err, "starting transaction");
1868 goto destroy_blkring;
1869 }
1870
1871 if (info->nr_ring_pages > 1) {
1872 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1873 ring_page_order);
1874 if (err) {
1875 message = "writing ring-page-order";
1876 goto abort_transaction;
1877 }
1878 }
1879
1880 /* We already got the number of queues/rings in _probe */
1881 if (info->nr_rings == 1) {
1882 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1883 if (err)
1884 goto destroy_blkring;
1885 } else {
1886 char *path;
1887 size_t pathsize;
1888
1889 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1890 info->nr_rings);
1891 if (err) {
1892 message = "writing multi-queue-num-queues";
1893 goto abort_transaction;
1894 }
1895
1896 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1897 path = kmalloc(pathsize, GFP_KERNEL);
1898 if (!path) {
1899 err = -ENOMEM;
1900 message = "ENOMEM while writing ring references";
1901 goto abort_transaction;
1902 }
1903
1904 for_each_rinfo(info, rinfo, i) {
1905 memset(path, 0, pathsize);
1906 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1907 err = write_per_ring_nodes(xbt, rinfo, path);
1908 if (err) {
1909 kfree(path);
1910 goto destroy_blkring;
1911 }
1912 }
1913 kfree(path);
1914 }
1915 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1916 XEN_IO_PROTO_ABI_NATIVE);
1917 if (err) {
1918 message = "writing protocol";
1919 goto abort_transaction;
1920 }
1921 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1922 info->feature_persistent);
1923 if (err)
1924 dev_warn(&dev->dev,
1925 "writing persistent grants feature to xenbus");
1926
1927 err = xenbus_transaction_end(xbt, 0);
1928 if (err) {
1929 if (err == -EAGAIN)
1930 goto again;
1931 xenbus_dev_fatal(dev, err, "completing transaction");
1932 goto destroy_blkring;
1933 }
1934
1935 for_each_rinfo(info, rinfo, i) {
1936 unsigned int j;
1937
1938 for (j = 0; j < BLK_RING_SIZE(info); j++)
1939 rinfo->shadow[j].req.u.rw.id = j + 1;
1940 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1941 }
1942 xenbus_switch_state(dev, XenbusStateInitialised);
1943
1944 return 0;
1945
1946 abort_transaction:
1947 xenbus_transaction_end(xbt, 1);
1948 if (message)
1949 xenbus_dev_fatal(dev, err, "%s", message);
1950 destroy_blkring:
1951 blkif_free(info, 0);
1952
1953 mutex_lock(&blkfront_mutex);
1954 free_info(info);
1955 mutex_unlock(&blkfront_mutex);
1956
1957 dev_set_drvdata(&dev->dev, NULL);
1958
1959 return err;
1960 }
1961
negotiate_mq(struct blkfront_info * info)1962 static int negotiate_mq(struct blkfront_info *info)
1963 {
1964 unsigned int backend_max_queues;
1965 unsigned int i;
1966 struct blkfront_ring_info *rinfo;
1967
1968 BUG_ON(info->nr_rings);
1969
1970 /* Check if backend supports multiple queues. */
1971 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1972 "multi-queue-max-queues", 1);
1973 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1974 /* We need at least one ring. */
1975 if (!info->nr_rings)
1976 info->nr_rings = 1;
1977
1978 info->rinfo_size = struct_size(info->rinfo, shadow,
1979 BLK_RING_SIZE(info));
1980 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1981 if (!info->rinfo) {
1982 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1983 info->nr_rings = 0;
1984 return -ENOMEM;
1985 }
1986
1987 for_each_rinfo(info, rinfo, i) {
1988 INIT_LIST_HEAD(&rinfo->indirect_pages);
1989 INIT_LIST_HEAD(&rinfo->grants);
1990 rinfo->dev_info = info;
1991 INIT_WORK(&rinfo->work, blkif_restart_queue);
1992 spin_lock_init(&rinfo->ring_lock);
1993 }
1994 return 0;
1995 }
1996
1997 /* Enable the persistent grants feature. */
1998 static bool feature_persistent = true;
1999 module_param(feature_persistent, bool, 0644);
2000 MODULE_PARM_DESC(feature_persistent,
2001 "Enables the persistent grants feature");
2002
2003 /**
2004 * Entry point to this code when a new device is created. Allocate the basic
2005 * structures and the ring buffer for communication with the backend, and
2006 * inform the backend of the appropriate details for those. Switch to
2007 * Initialised state.
2008 */
blkfront_probe(struct xenbus_device * dev,const struct xenbus_device_id * id)2009 static int blkfront_probe(struct xenbus_device *dev,
2010 const struct xenbus_device_id *id)
2011 {
2012 int err, vdevice;
2013 struct blkfront_info *info;
2014
2015 /* FIXME: Use dynamic device id if this is not set. */
2016 err = xenbus_scanf(XBT_NIL, dev->nodename,
2017 "virtual-device", "%i", &vdevice);
2018 if (err != 1) {
2019 /* go looking in the extended area instead */
2020 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
2021 "%i", &vdevice);
2022 if (err != 1) {
2023 xenbus_dev_fatal(dev, err, "reading virtual-device");
2024 return err;
2025 }
2026 }
2027
2028 if (xen_hvm_domain()) {
2029 char *type;
2030 int len;
2031 /* no unplug has been done: do not hook devices != xen vbds */
2032 if (xen_has_pv_and_legacy_disk_devices()) {
2033 int major;
2034
2035 if (!VDEV_IS_EXTENDED(vdevice))
2036 major = BLKIF_MAJOR(vdevice);
2037 else
2038 major = XENVBD_MAJOR;
2039
2040 if (major != XENVBD_MAJOR) {
2041 printk(KERN_INFO
2042 "%s: HVM does not support vbd %d as xen block device\n",
2043 __func__, vdevice);
2044 return -ENODEV;
2045 }
2046 }
2047 /* do not create a PV cdrom device if we are an HVM guest */
2048 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
2049 if (IS_ERR(type))
2050 return -ENODEV;
2051 if (strncmp(type, "cdrom", 5) == 0) {
2052 kfree(type);
2053 return -ENODEV;
2054 }
2055 kfree(type);
2056 }
2057 info = kzalloc(sizeof(*info), GFP_KERNEL);
2058 if (!info) {
2059 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
2060 return -ENOMEM;
2061 }
2062
2063 info->xbdev = dev;
2064
2065 mutex_init(&info->mutex);
2066 info->vdevice = vdevice;
2067 info->connected = BLKIF_STATE_DISCONNECTED;
2068
2069 info->feature_persistent = feature_persistent;
2070
2071 /* Front end dir is a number, which is used as the id. */
2072 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2073 dev_set_drvdata(&dev->dev, info);
2074
2075 mutex_lock(&blkfront_mutex);
2076 list_add(&info->info_list, &info_list);
2077 mutex_unlock(&blkfront_mutex);
2078
2079 return 0;
2080 }
2081
blkif_recover(struct blkfront_info * info)2082 static int blkif_recover(struct blkfront_info *info)
2083 {
2084 unsigned int r_index;
2085 struct request *req, *n;
2086 int rc;
2087 struct bio *bio;
2088 unsigned int segs;
2089 struct blkfront_ring_info *rinfo;
2090
2091 blkfront_gather_backend_features(info);
2092 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2093 blkif_set_queue_limits(info);
2094 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2095 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2096
2097 for_each_rinfo(info, rinfo, r_index) {
2098 rc = blkfront_setup_indirect(rinfo);
2099 if (rc)
2100 return rc;
2101 }
2102 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2103
2104 /* Now safe for us to use the shared ring */
2105 info->connected = BLKIF_STATE_CONNECTED;
2106
2107 for_each_rinfo(info, rinfo, r_index) {
2108 /* Kick any other new requests queued since we resumed */
2109 kick_pending_request_queues(rinfo);
2110 }
2111
2112 list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2113 /* Requeue pending requests (flush or discard) */
2114 list_del_init(&req->queuelist);
2115 BUG_ON(req->nr_phys_segments > segs);
2116 blk_mq_requeue_request(req, false);
2117 }
2118 blk_mq_start_stopped_hw_queues(info->rq, true);
2119 blk_mq_kick_requeue_list(info->rq);
2120
2121 while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2122 /* Traverse the list of pending bios and re-queue them */
2123 submit_bio(bio);
2124 }
2125
2126 return 0;
2127 }
2128
2129 /**
2130 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2131 * driver restart. We tear down our blkif structure and recreate it, but
2132 * leave the device-layer structures intact so that this is transparent to the
2133 * rest of the kernel.
2134 */
blkfront_resume(struct xenbus_device * dev)2135 static int blkfront_resume(struct xenbus_device *dev)
2136 {
2137 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2138 int err = 0;
2139 unsigned int i, j;
2140 struct blkfront_ring_info *rinfo;
2141
2142 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2143
2144 bio_list_init(&info->bio_list);
2145 INIT_LIST_HEAD(&info->requests);
2146 for_each_rinfo(info, rinfo, i) {
2147 struct bio_list merge_bio;
2148 struct blk_shadow *shadow = rinfo->shadow;
2149
2150 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2151 /* Not in use? */
2152 if (!shadow[j].request)
2153 continue;
2154
2155 /*
2156 * Get the bios in the request so we can re-queue them.
2157 */
2158 if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2159 req_op(shadow[j].request) == REQ_OP_DISCARD ||
2160 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2161 shadow[j].request->cmd_flags & REQ_FUA) {
2162 /*
2163 * Flush operations don't contain bios, so
2164 * we need to requeue the whole request
2165 *
2166 * XXX: but this doesn't make any sense for a
2167 * write with the FUA flag set..
2168 */
2169 list_add(&shadow[j].request->queuelist, &info->requests);
2170 continue;
2171 }
2172 merge_bio.head = shadow[j].request->bio;
2173 merge_bio.tail = shadow[j].request->biotail;
2174 bio_list_merge(&info->bio_list, &merge_bio);
2175 shadow[j].request->bio = NULL;
2176 blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2177 }
2178 }
2179
2180 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2181
2182 err = talk_to_blkback(dev, info);
2183 if (!err)
2184 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2185
2186 /*
2187 * We have to wait for the backend to switch to
2188 * connected state, since we want to read which
2189 * features it supports.
2190 */
2191
2192 return err;
2193 }
2194
blkfront_closing(struct blkfront_info * info)2195 static void blkfront_closing(struct blkfront_info *info)
2196 {
2197 struct xenbus_device *xbdev = info->xbdev;
2198 struct block_device *bdev = NULL;
2199
2200 mutex_lock(&info->mutex);
2201
2202 if (xbdev->state == XenbusStateClosing) {
2203 mutex_unlock(&info->mutex);
2204 return;
2205 }
2206
2207 if (info->gd)
2208 bdev = bdget_disk(info->gd, 0);
2209
2210 mutex_unlock(&info->mutex);
2211
2212 if (!bdev) {
2213 xenbus_frontend_closed(xbdev);
2214 return;
2215 }
2216
2217 mutex_lock(&bdev->bd_mutex);
2218
2219 if (bdev->bd_openers) {
2220 xenbus_dev_error(xbdev, -EBUSY,
2221 "Device in use; refusing to close");
2222 xenbus_switch_state(xbdev, XenbusStateClosing);
2223 } else {
2224 xlvbd_release_gendisk(info);
2225 xenbus_frontend_closed(xbdev);
2226 }
2227
2228 mutex_unlock(&bdev->bd_mutex);
2229 bdput(bdev);
2230 }
2231
blkfront_setup_discard(struct blkfront_info * info)2232 static void blkfront_setup_discard(struct blkfront_info *info)
2233 {
2234 info->feature_discard = 1;
2235 info->discard_granularity = xenbus_read_unsigned(info->xbdev->otherend,
2236 "discard-granularity",
2237 0);
2238 info->discard_alignment = xenbus_read_unsigned(info->xbdev->otherend,
2239 "discard-alignment", 0);
2240 info->feature_secdiscard =
2241 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2242 0);
2243 }
2244
blkfront_setup_indirect(struct blkfront_ring_info * rinfo)2245 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2246 {
2247 unsigned int psegs, grants, memflags;
2248 int err, i;
2249 struct blkfront_info *info = rinfo->dev_info;
2250
2251 memflags = memalloc_noio_save();
2252
2253 if (info->max_indirect_segments == 0) {
2254 if (!HAS_EXTRA_REQ)
2255 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2256 else {
2257 /*
2258 * When an extra req is required, the maximum
2259 * grants supported is related to the size of the
2260 * Linux block segment.
2261 */
2262 grants = GRANTS_PER_PSEG;
2263 }
2264 }
2265 else
2266 grants = info->max_indirect_segments;
2267 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2268
2269 err = fill_grant_buffer(rinfo,
2270 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2271 if (err)
2272 goto out_of_memory;
2273
2274 if (!info->feature_persistent && info->max_indirect_segments) {
2275 /*
2276 * We are using indirect descriptors but not persistent
2277 * grants, we need to allocate a set of pages that can be
2278 * used for mapping indirect grefs
2279 */
2280 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2281
2282 BUG_ON(!list_empty(&rinfo->indirect_pages));
2283 for (i = 0; i < num; i++) {
2284 struct page *indirect_page = alloc_page(GFP_KERNEL);
2285 if (!indirect_page)
2286 goto out_of_memory;
2287 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2288 }
2289 }
2290
2291 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2292 rinfo->shadow[i].grants_used =
2293 kvcalloc(grants,
2294 sizeof(rinfo->shadow[i].grants_used[0]),
2295 GFP_KERNEL);
2296 rinfo->shadow[i].sg = kvcalloc(psegs,
2297 sizeof(rinfo->shadow[i].sg[0]),
2298 GFP_KERNEL);
2299 if (info->max_indirect_segments)
2300 rinfo->shadow[i].indirect_grants =
2301 kvcalloc(INDIRECT_GREFS(grants),
2302 sizeof(rinfo->shadow[i].indirect_grants[0]),
2303 GFP_KERNEL);
2304 if ((rinfo->shadow[i].grants_used == NULL) ||
2305 (rinfo->shadow[i].sg == NULL) ||
2306 (info->max_indirect_segments &&
2307 (rinfo->shadow[i].indirect_grants == NULL)))
2308 goto out_of_memory;
2309 sg_init_table(rinfo->shadow[i].sg, psegs);
2310 }
2311
2312 memalloc_noio_restore(memflags);
2313
2314 return 0;
2315
2316 out_of_memory:
2317 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2318 kvfree(rinfo->shadow[i].grants_used);
2319 rinfo->shadow[i].grants_used = NULL;
2320 kvfree(rinfo->shadow[i].sg);
2321 rinfo->shadow[i].sg = NULL;
2322 kvfree(rinfo->shadow[i].indirect_grants);
2323 rinfo->shadow[i].indirect_grants = NULL;
2324 }
2325 if (!list_empty(&rinfo->indirect_pages)) {
2326 struct page *indirect_page, *n;
2327 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2328 list_del(&indirect_page->lru);
2329 __free_page(indirect_page);
2330 }
2331 }
2332
2333 memalloc_noio_restore(memflags);
2334
2335 return -ENOMEM;
2336 }
2337
2338 /*
2339 * Gather all backend feature-*
2340 */
blkfront_gather_backend_features(struct blkfront_info * info)2341 static void blkfront_gather_backend_features(struct blkfront_info *info)
2342 {
2343 unsigned int indirect_segments;
2344
2345 info->feature_flush = 0;
2346 info->feature_fua = 0;
2347
2348 /*
2349 * If there's no "feature-barrier" defined, then it means
2350 * we're dealing with a very old backend which writes
2351 * synchronously; nothing to do.
2352 *
2353 * If there are barriers, then we use flush.
2354 */
2355 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2356 info->feature_flush = 1;
2357 info->feature_fua = 1;
2358 }
2359
2360 /*
2361 * And if there is "feature-flush-cache" use that above
2362 * barriers.
2363 */
2364 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2365 0)) {
2366 info->feature_flush = 1;
2367 info->feature_fua = 0;
2368 }
2369
2370 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2371 blkfront_setup_discard(info);
2372
2373 if (info->feature_persistent)
2374 info->feature_persistent =
2375 !!xenbus_read_unsigned(info->xbdev->otherend,
2376 "feature-persistent", 0);
2377
2378 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2379 "feature-max-indirect-segments", 0);
2380 if (indirect_segments > xen_blkif_max_segments)
2381 indirect_segments = xen_blkif_max_segments;
2382 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2383 indirect_segments = 0;
2384 info->max_indirect_segments = indirect_segments;
2385
2386 if (info->feature_persistent) {
2387 mutex_lock(&blkfront_mutex);
2388 schedule_delayed_work(&blkfront_work, HZ * 10);
2389 mutex_unlock(&blkfront_mutex);
2390 }
2391 }
2392
2393 /*
2394 * Invoked when the backend is finally 'ready' (and has told produced
2395 * the details about the physical device - #sectors, size, etc).
2396 */
blkfront_connect(struct blkfront_info * info)2397 static void blkfront_connect(struct blkfront_info *info)
2398 {
2399 unsigned long long sectors;
2400 unsigned long sector_size;
2401 unsigned int physical_sector_size;
2402 unsigned int binfo;
2403 int err, i;
2404 struct blkfront_ring_info *rinfo;
2405
2406 switch (info->connected) {
2407 case BLKIF_STATE_CONNECTED:
2408 /*
2409 * Potentially, the back-end may be signalling
2410 * a capacity change; update the capacity.
2411 */
2412 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2413 "sectors", "%Lu", §ors);
2414 if (XENBUS_EXIST_ERR(err))
2415 return;
2416 printk(KERN_INFO "Setting capacity to %Lu\n",
2417 sectors);
2418 set_capacity_revalidate_and_notify(info->gd, sectors, true);
2419
2420 return;
2421 case BLKIF_STATE_SUSPENDED:
2422 /*
2423 * If we are recovering from suspension, we need to wait
2424 * for the backend to announce it's features before
2425 * reconnecting, at least we need to know if the backend
2426 * supports indirect descriptors, and how many.
2427 */
2428 blkif_recover(info);
2429 return;
2430
2431 default:
2432 break;
2433 }
2434
2435 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2436 __func__, info->xbdev->otherend);
2437
2438 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2439 "sectors", "%llu", §ors,
2440 "info", "%u", &binfo,
2441 "sector-size", "%lu", §or_size,
2442 NULL);
2443 if (err) {
2444 xenbus_dev_fatal(info->xbdev, err,
2445 "reading backend fields at %s",
2446 info->xbdev->otherend);
2447 return;
2448 }
2449
2450 /*
2451 * physcial-sector-size is a newer field, so old backends may not
2452 * provide this. Assume physical sector size to be the same as
2453 * sector_size in that case.
2454 */
2455 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2456 "physical-sector-size",
2457 sector_size);
2458 blkfront_gather_backend_features(info);
2459 for_each_rinfo(info, rinfo, i) {
2460 err = blkfront_setup_indirect(rinfo);
2461 if (err) {
2462 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2463 info->xbdev->otherend);
2464 blkif_free(info, 0);
2465 break;
2466 }
2467 }
2468
2469 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2470 physical_sector_size);
2471 if (err) {
2472 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2473 info->xbdev->otherend);
2474 goto fail;
2475 }
2476
2477 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2478
2479 /* Kick pending requests. */
2480 info->connected = BLKIF_STATE_CONNECTED;
2481 for_each_rinfo(info, rinfo, i)
2482 kick_pending_request_queues(rinfo);
2483
2484 device_add_disk(&info->xbdev->dev, info->gd, NULL);
2485
2486 info->is_ready = 1;
2487 return;
2488
2489 fail:
2490 blkif_free(info, 0);
2491 return;
2492 }
2493
2494 /**
2495 * Callback received when the backend's state changes.
2496 */
blkback_changed(struct xenbus_device * dev,enum xenbus_state backend_state)2497 static void blkback_changed(struct xenbus_device *dev,
2498 enum xenbus_state backend_state)
2499 {
2500 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2501
2502 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2503
2504 switch (backend_state) {
2505 case XenbusStateInitWait:
2506 if (dev->state != XenbusStateInitialising)
2507 break;
2508 if (talk_to_blkback(dev, info))
2509 break;
2510 case XenbusStateInitialising:
2511 case XenbusStateInitialised:
2512 case XenbusStateReconfiguring:
2513 case XenbusStateReconfigured:
2514 case XenbusStateUnknown:
2515 break;
2516
2517 case XenbusStateConnected:
2518 /*
2519 * talk_to_blkback sets state to XenbusStateInitialised
2520 * and blkfront_connect sets it to XenbusStateConnected
2521 * (if connection went OK).
2522 *
2523 * If the backend (or toolstack) decides to poke at backend
2524 * state (and re-trigger the watch by setting the state repeatedly
2525 * to XenbusStateConnected (4)) we need to deal with this.
2526 * This is allowed as this is used to communicate to the guest
2527 * that the size of disk has changed!
2528 */
2529 if ((dev->state != XenbusStateInitialised) &&
2530 (dev->state != XenbusStateConnected)) {
2531 if (talk_to_blkback(dev, info))
2532 break;
2533 }
2534
2535 blkfront_connect(info);
2536 break;
2537
2538 case XenbusStateClosed:
2539 if (dev->state == XenbusStateClosed)
2540 break;
2541 fallthrough;
2542 case XenbusStateClosing:
2543 if (info)
2544 blkfront_closing(info);
2545 break;
2546 }
2547 }
2548
blkfront_remove(struct xenbus_device * xbdev)2549 static int blkfront_remove(struct xenbus_device *xbdev)
2550 {
2551 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2552 struct block_device *bdev = NULL;
2553 struct gendisk *disk;
2554
2555 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2556
2557 if (!info)
2558 return 0;
2559
2560 blkif_free(info, 0);
2561
2562 mutex_lock(&info->mutex);
2563
2564 disk = info->gd;
2565 if (disk)
2566 bdev = bdget_disk(disk, 0);
2567
2568 info->xbdev = NULL;
2569 mutex_unlock(&info->mutex);
2570
2571 if (!bdev) {
2572 mutex_lock(&blkfront_mutex);
2573 free_info(info);
2574 mutex_unlock(&blkfront_mutex);
2575 return 0;
2576 }
2577
2578 /*
2579 * The xbdev was removed before we reached the Closed
2580 * state. See if it's safe to remove the disk. If the bdev
2581 * isn't closed yet, we let release take care of it.
2582 */
2583
2584 mutex_lock(&bdev->bd_mutex);
2585 info = disk->private_data;
2586
2587 dev_warn(disk_to_dev(disk),
2588 "%s was hot-unplugged, %d stale handles\n",
2589 xbdev->nodename, bdev->bd_openers);
2590
2591 if (info && !bdev->bd_openers) {
2592 xlvbd_release_gendisk(info);
2593 disk->private_data = NULL;
2594 mutex_lock(&blkfront_mutex);
2595 free_info(info);
2596 mutex_unlock(&blkfront_mutex);
2597 }
2598
2599 mutex_unlock(&bdev->bd_mutex);
2600 bdput(bdev);
2601
2602 return 0;
2603 }
2604
blkfront_is_ready(struct xenbus_device * dev)2605 static int blkfront_is_ready(struct xenbus_device *dev)
2606 {
2607 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2608
2609 return info->is_ready && info->xbdev;
2610 }
2611
blkif_open(struct block_device * bdev,fmode_t mode)2612 static int blkif_open(struct block_device *bdev, fmode_t mode)
2613 {
2614 struct gendisk *disk = bdev->bd_disk;
2615 struct blkfront_info *info;
2616 int err = 0;
2617
2618 mutex_lock(&blkfront_mutex);
2619
2620 info = disk->private_data;
2621 if (!info) {
2622 /* xbdev gone */
2623 err = -ERESTARTSYS;
2624 goto out;
2625 }
2626
2627 mutex_lock(&info->mutex);
2628
2629 if (!info->gd)
2630 /* xbdev is closed */
2631 err = -ERESTARTSYS;
2632
2633 mutex_unlock(&info->mutex);
2634
2635 out:
2636 mutex_unlock(&blkfront_mutex);
2637 return err;
2638 }
2639
blkif_release(struct gendisk * disk,fmode_t mode)2640 static void blkif_release(struct gendisk *disk, fmode_t mode)
2641 {
2642 struct blkfront_info *info = disk->private_data;
2643 struct block_device *bdev;
2644 struct xenbus_device *xbdev;
2645
2646 mutex_lock(&blkfront_mutex);
2647
2648 bdev = bdget_disk(disk, 0);
2649
2650 if (!bdev) {
2651 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2652 goto out_mutex;
2653 }
2654 if (bdev->bd_openers)
2655 goto out;
2656
2657 /*
2658 * Check if we have been instructed to close. We will have
2659 * deferred this request, because the bdev was still open.
2660 */
2661
2662 mutex_lock(&info->mutex);
2663 xbdev = info->xbdev;
2664
2665 if (xbdev && xbdev->state == XenbusStateClosing) {
2666 /* pending switch to state closed */
2667 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2668 xlvbd_release_gendisk(info);
2669 xenbus_frontend_closed(info->xbdev);
2670 }
2671
2672 mutex_unlock(&info->mutex);
2673
2674 if (!xbdev) {
2675 /* sudden device removal */
2676 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2677 xlvbd_release_gendisk(info);
2678 disk->private_data = NULL;
2679 free_info(info);
2680 }
2681
2682 out:
2683 bdput(bdev);
2684 out_mutex:
2685 mutex_unlock(&blkfront_mutex);
2686 }
2687
2688 static const struct block_device_operations xlvbd_block_fops =
2689 {
2690 .owner = THIS_MODULE,
2691 .open = blkif_open,
2692 .release = blkif_release,
2693 .getgeo = blkif_getgeo,
2694 .ioctl = blkif_ioctl,
2695 .compat_ioctl = blkdev_compat_ptr_ioctl,
2696 };
2697
2698
2699 static const struct xenbus_device_id blkfront_ids[] = {
2700 { "vbd" },
2701 { "" }
2702 };
2703
2704 static struct xenbus_driver blkfront_driver = {
2705 .ids = blkfront_ids,
2706 .probe = blkfront_probe,
2707 .remove = blkfront_remove,
2708 .resume = blkfront_resume,
2709 .otherend_changed = blkback_changed,
2710 .is_ready = blkfront_is_ready,
2711 };
2712
purge_persistent_grants(struct blkfront_info * info)2713 static void purge_persistent_grants(struct blkfront_info *info)
2714 {
2715 unsigned int i;
2716 unsigned long flags;
2717 struct blkfront_ring_info *rinfo;
2718
2719 for_each_rinfo(info, rinfo, i) {
2720 struct grant *gnt_list_entry, *tmp;
2721
2722 spin_lock_irqsave(&rinfo->ring_lock, flags);
2723
2724 if (rinfo->persistent_gnts_c == 0) {
2725 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2726 continue;
2727 }
2728
2729 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2730 node) {
2731 if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2732 gnttab_query_foreign_access(gnt_list_entry->gref))
2733 continue;
2734
2735 list_del(&gnt_list_entry->node);
2736 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL);
2737 rinfo->persistent_gnts_c--;
2738 gnt_list_entry->gref = GRANT_INVALID_REF;
2739 list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2740 }
2741
2742 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2743 }
2744 }
2745
blkfront_delay_work(struct work_struct * work)2746 static void blkfront_delay_work(struct work_struct *work)
2747 {
2748 struct blkfront_info *info;
2749 bool need_schedule_work = false;
2750
2751 mutex_lock(&blkfront_mutex);
2752
2753 list_for_each_entry(info, &info_list, info_list) {
2754 if (info->feature_persistent) {
2755 need_schedule_work = true;
2756 mutex_lock(&info->mutex);
2757 purge_persistent_grants(info);
2758 mutex_unlock(&info->mutex);
2759 }
2760 }
2761
2762 if (need_schedule_work)
2763 schedule_delayed_work(&blkfront_work, HZ * 10);
2764
2765 mutex_unlock(&blkfront_mutex);
2766 }
2767
xlblk_init(void)2768 static int __init xlblk_init(void)
2769 {
2770 int ret;
2771 int nr_cpus = num_online_cpus();
2772
2773 if (!xen_domain())
2774 return -ENODEV;
2775
2776 if (!xen_has_pv_disk_devices())
2777 return -ENODEV;
2778
2779 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2780 pr_warn("xen_blk: can't get major %d with name %s\n",
2781 XENVBD_MAJOR, DEV_NAME);
2782 return -ENODEV;
2783 }
2784
2785 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2786 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2787
2788 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2789 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2790 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2791 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2792 }
2793
2794 if (xen_blkif_max_queues > nr_cpus) {
2795 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2796 xen_blkif_max_queues, nr_cpus);
2797 xen_blkif_max_queues = nr_cpus;
2798 }
2799
2800 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2801
2802 ret = xenbus_register_frontend(&blkfront_driver);
2803 if (ret) {
2804 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2805 return ret;
2806 }
2807
2808 return 0;
2809 }
2810 module_init(xlblk_init);
2811
2812
xlblk_exit(void)2813 static void __exit xlblk_exit(void)
2814 {
2815 cancel_delayed_work_sync(&blkfront_work);
2816
2817 xenbus_unregister_driver(&blkfront_driver);
2818 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2819 kfree(minors);
2820 }
2821 module_exit(xlblk_exit);
2822
2823 MODULE_DESCRIPTION("Xen virtual block device frontend");
2824 MODULE_LICENSE("GPL");
2825 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2826 MODULE_ALIAS("xen:vbd");
2827 MODULE_ALIAS("xenblk");
2828