1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27
28 #include <acpi/processor.h>
29 #include <acpi/cppc_acpi.h>
30
31 #include <asm/msr.h>
32 #include <asm/processor.h>
33 #include <asm/cpufeature.h>
34 #include <asm/cpu_device_id.h>
35
36 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
37 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
38 MODULE_LICENSE("GPL");
39
40 enum {
41 UNDEFINED_CAPABLE = 0,
42 SYSTEM_INTEL_MSR_CAPABLE,
43 SYSTEM_AMD_MSR_CAPABLE,
44 SYSTEM_IO_CAPABLE,
45 };
46
47 #define INTEL_MSR_RANGE (0xffff)
48 #define AMD_MSR_RANGE (0x7)
49 #define HYGON_MSR_RANGE (0x7)
50
51 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
52
53 struct acpi_cpufreq_data {
54 unsigned int resume;
55 unsigned int cpu_feature;
56 unsigned int acpi_perf_cpu;
57 cpumask_var_t freqdomain_cpus;
58 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59 u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64
to_perf_data(struct acpi_cpufreq_data * data)65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69
70 static struct cpufreq_driver acpi_cpufreq_driver;
71
72 static unsigned int acpi_pstate_strict;
73
boost_state(unsigned int cpu)74 static bool boost_state(unsigned int cpu)
75 {
76 u32 lo, hi;
77 u64 msr;
78
79 switch (boot_cpu_data.x86_vendor) {
80 case X86_VENDOR_INTEL:
81 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
82 msr = lo | ((u64)hi << 32);
83 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
84 case X86_VENDOR_HYGON:
85 case X86_VENDOR_AMD:
86 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
87 msr = lo | ((u64)hi << 32);
88 return !(msr & MSR_K7_HWCR_CPB_DIS);
89 }
90 return false;
91 }
92
boost_set_msr(bool enable)93 static int boost_set_msr(bool enable)
94 {
95 u32 msr_addr;
96 u64 msr_mask, val;
97
98 switch (boot_cpu_data.x86_vendor) {
99 case X86_VENDOR_INTEL:
100 msr_addr = MSR_IA32_MISC_ENABLE;
101 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
102 break;
103 case X86_VENDOR_HYGON:
104 case X86_VENDOR_AMD:
105 msr_addr = MSR_K7_HWCR;
106 msr_mask = MSR_K7_HWCR_CPB_DIS;
107 break;
108 default:
109 return -EINVAL;
110 }
111
112 rdmsrl(msr_addr, val);
113
114 if (enable)
115 val &= ~msr_mask;
116 else
117 val |= msr_mask;
118
119 wrmsrl(msr_addr, val);
120 return 0;
121 }
122
boost_set_msr_each(void * p_en)123 static void boost_set_msr_each(void *p_en)
124 {
125 bool enable = (bool) p_en;
126
127 boost_set_msr(enable);
128 }
129
set_boost(struct cpufreq_policy * policy,int val)130 static int set_boost(struct cpufreq_policy *policy, int val)
131 {
132 on_each_cpu_mask(policy->cpus, boost_set_msr_each,
133 (void *)(long)val, 1);
134 pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
135 cpumask_pr_args(policy->cpus), val ? "en" : "dis");
136
137 return 0;
138 }
139
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)140 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
141 {
142 struct acpi_cpufreq_data *data = policy->driver_data;
143
144 if (unlikely(!data))
145 return -ENODEV;
146
147 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
148 }
149
150 cpufreq_freq_attr_ro(freqdomain_cpus);
151
152 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
store_cpb(struct cpufreq_policy * policy,const char * buf,size_t count)153 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
154 size_t count)
155 {
156 int ret;
157 unsigned int val = 0;
158
159 if (!acpi_cpufreq_driver.set_boost)
160 return -EINVAL;
161
162 ret = kstrtouint(buf, 10, &val);
163 if (ret || val > 1)
164 return -EINVAL;
165
166 get_online_cpus();
167 set_boost(policy, val);
168 put_online_cpus();
169
170 return count;
171 }
172
show_cpb(struct cpufreq_policy * policy,char * buf)173 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
174 {
175 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
176 }
177
178 cpufreq_freq_attr_rw(cpb);
179 #endif
180
check_est_cpu(unsigned int cpuid)181 static int check_est_cpu(unsigned int cpuid)
182 {
183 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
184
185 return cpu_has(cpu, X86_FEATURE_EST);
186 }
187
check_amd_hwpstate_cpu(unsigned int cpuid)188 static int check_amd_hwpstate_cpu(unsigned int cpuid)
189 {
190 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
191
192 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
193 }
194
extract_io(struct cpufreq_policy * policy,u32 value)195 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
196 {
197 struct acpi_cpufreq_data *data = policy->driver_data;
198 struct acpi_processor_performance *perf;
199 int i;
200
201 perf = to_perf_data(data);
202
203 for (i = 0; i < perf->state_count; i++) {
204 if (value == perf->states[i].status)
205 return policy->freq_table[i].frequency;
206 }
207 return 0;
208 }
209
extract_msr(struct cpufreq_policy * policy,u32 msr)210 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
211 {
212 struct acpi_cpufreq_data *data = policy->driver_data;
213 struct cpufreq_frequency_table *pos;
214 struct acpi_processor_performance *perf;
215
216 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
217 msr &= AMD_MSR_RANGE;
218 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
219 msr &= HYGON_MSR_RANGE;
220 else
221 msr &= INTEL_MSR_RANGE;
222
223 perf = to_perf_data(data);
224
225 cpufreq_for_each_entry(pos, policy->freq_table)
226 if (msr == perf->states[pos->driver_data].status)
227 return pos->frequency;
228 return policy->freq_table[0].frequency;
229 }
230
extract_freq(struct cpufreq_policy * policy,u32 val)231 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
232 {
233 struct acpi_cpufreq_data *data = policy->driver_data;
234
235 switch (data->cpu_feature) {
236 case SYSTEM_INTEL_MSR_CAPABLE:
237 case SYSTEM_AMD_MSR_CAPABLE:
238 return extract_msr(policy, val);
239 case SYSTEM_IO_CAPABLE:
240 return extract_io(policy, val);
241 default:
242 return 0;
243 }
244 }
245
cpu_freq_read_intel(struct acpi_pct_register * not_used)246 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
247 {
248 u32 val, dummy __always_unused;
249
250 rdmsr(MSR_IA32_PERF_CTL, val, dummy);
251 return val;
252 }
253
cpu_freq_write_intel(struct acpi_pct_register * not_used,u32 val)254 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
255 {
256 u32 lo, hi;
257
258 rdmsr(MSR_IA32_PERF_CTL, lo, hi);
259 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
260 wrmsr(MSR_IA32_PERF_CTL, lo, hi);
261 }
262
cpu_freq_read_amd(struct acpi_pct_register * not_used)263 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
264 {
265 u32 val, dummy __always_unused;
266
267 rdmsr(MSR_AMD_PERF_CTL, val, dummy);
268 return val;
269 }
270
cpu_freq_write_amd(struct acpi_pct_register * not_used,u32 val)271 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
272 {
273 wrmsr(MSR_AMD_PERF_CTL, val, 0);
274 }
275
cpu_freq_read_io(struct acpi_pct_register * reg)276 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
277 {
278 u32 val;
279
280 acpi_os_read_port(reg->address, &val, reg->bit_width);
281 return val;
282 }
283
cpu_freq_write_io(struct acpi_pct_register * reg,u32 val)284 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
285 {
286 acpi_os_write_port(reg->address, val, reg->bit_width);
287 }
288
289 struct drv_cmd {
290 struct acpi_pct_register *reg;
291 u32 val;
292 union {
293 void (*write)(struct acpi_pct_register *reg, u32 val);
294 u32 (*read)(struct acpi_pct_register *reg);
295 } func;
296 };
297
298 /* Called via smp_call_function_single(), on the target CPU */
do_drv_read(void * _cmd)299 static void do_drv_read(void *_cmd)
300 {
301 struct drv_cmd *cmd = _cmd;
302
303 cmd->val = cmd->func.read(cmd->reg);
304 }
305
drv_read(struct acpi_cpufreq_data * data,const struct cpumask * mask)306 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
307 {
308 struct acpi_processor_performance *perf = to_perf_data(data);
309 struct drv_cmd cmd = {
310 .reg = &perf->control_register,
311 .func.read = data->cpu_freq_read,
312 };
313 int err;
314
315 err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
316 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
317 return cmd.val;
318 }
319
320 /* Called via smp_call_function_many(), on the target CPUs */
do_drv_write(void * _cmd)321 static void do_drv_write(void *_cmd)
322 {
323 struct drv_cmd *cmd = _cmd;
324
325 cmd->func.write(cmd->reg, cmd->val);
326 }
327
drv_write(struct acpi_cpufreq_data * data,const struct cpumask * mask,u32 val)328 static void drv_write(struct acpi_cpufreq_data *data,
329 const struct cpumask *mask, u32 val)
330 {
331 struct acpi_processor_performance *perf = to_perf_data(data);
332 struct drv_cmd cmd = {
333 .reg = &perf->control_register,
334 .val = val,
335 .func.write = data->cpu_freq_write,
336 };
337 int this_cpu;
338
339 this_cpu = get_cpu();
340 if (cpumask_test_cpu(this_cpu, mask))
341 do_drv_write(&cmd);
342
343 smp_call_function_many(mask, do_drv_write, &cmd, 1);
344 put_cpu();
345 }
346
get_cur_val(const struct cpumask * mask,struct acpi_cpufreq_data * data)347 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
348 {
349 u32 val;
350
351 if (unlikely(cpumask_empty(mask)))
352 return 0;
353
354 val = drv_read(data, mask);
355
356 pr_debug("%s = %u\n", __func__, val);
357
358 return val;
359 }
360
get_cur_freq_on_cpu(unsigned int cpu)361 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
362 {
363 struct acpi_cpufreq_data *data;
364 struct cpufreq_policy *policy;
365 unsigned int freq;
366 unsigned int cached_freq;
367
368 pr_debug("%s (%d)\n", __func__, cpu);
369
370 policy = cpufreq_cpu_get_raw(cpu);
371 if (unlikely(!policy))
372 return 0;
373
374 data = policy->driver_data;
375 if (unlikely(!data || !policy->freq_table))
376 return 0;
377
378 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
379 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
380 if (freq != cached_freq) {
381 /*
382 * The dreaded BIOS frequency change behind our back.
383 * Force set the frequency on next target call.
384 */
385 data->resume = 1;
386 }
387
388 pr_debug("cur freq = %u\n", freq);
389
390 return freq;
391 }
392
check_freqs(struct cpufreq_policy * policy,const struct cpumask * mask,unsigned int freq)393 static unsigned int check_freqs(struct cpufreq_policy *policy,
394 const struct cpumask *mask, unsigned int freq)
395 {
396 struct acpi_cpufreq_data *data = policy->driver_data;
397 unsigned int cur_freq;
398 unsigned int i;
399
400 for (i = 0; i < 100; i++) {
401 cur_freq = extract_freq(policy, get_cur_val(mask, data));
402 if (cur_freq == freq)
403 return 1;
404 udelay(10);
405 }
406 return 0;
407 }
408
acpi_cpufreq_target(struct cpufreq_policy * policy,unsigned int index)409 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
410 unsigned int index)
411 {
412 struct acpi_cpufreq_data *data = policy->driver_data;
413 struct acpi_processor_performance *perf;
414 const struct cpumask *mask;
415 unsigned int next_perf_state = 0; /* Index into perf table */
416 int result = 0;
417
418 if (unlikely(!data)) {
419 return -ENODEV;
420 }
421
422 perf = to_perf_data(data);
423 next_perf_state = policy->freq_table[index].driver_data;
424 if (perf->state == next_perf_state) {
425 if (unlikely(data->resume)) {
426 pr_debug("Called after resume, resetting to P%d\n",
427 next_perf_state);
428 data->resume = 0;
429 } else {
430 pr_debug("Already at target state (P%d)\n",
431 next_perf_state);
432 return 0;
433 }
434 }
435
436 /*
437 * The core won't allow CPUs to go away until the governor has been
438 * stopped, so we can rely on the stability of policy->cpus.
439 */
440 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
441 cpumask_of(policy->cpu) : policy->cpus;
442
443 drv_write(data, mask, perf->states[next_perf_state].control);
444
445 if (acpi_pstate_strict) {
446 if (!check_freqs(policy, mask,
447 policy->freq_table[index].frequency)) {
448 pr_debug("%s (%d)\n", __func__, policy->cpu);
449 result = -EAGAIN;
450 }
451 }
452
453 if (!result)
454 perf->state = next_perf_state;
455
456 return result;
457 }
458
acpi_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)459 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
460 unsigned int target_freq)
461 {
462 struct acpi_cpufreq_data *data = policy->driver_data;
463 struct acpi_processor_performance *perf;
464 struct cpufreq_frequency_table *entry;
465 unsigned int next_perf_state, next_freq, index;
466
467 /*
468 * Find the closest frequency above target_freq.
469 */
470 if (policy->cached_target_freq == target_freq)
471 index = policy->cached_resolved_idx;
472 else
473 index = cpufreq_table_find_index_dl(policy, target_freq);
474
475 entry = &policy->freq_table[index];
476 next_freq = entry->frequency;
477 next_perf_state = entry->driver_data;
478
479 perf = to_perf_data(data);
480 if (perf->state == next_perf_state) {
481 if (unlikely(data->resume))
482 data->resume = 0;
483 else
484 return next_freq;
485 }
486
487 data->cpu_freq_write(&perf->control_register,
488 perf->states[next_perf_state].control);
489 perf->state = next_perf_state;
490 return next_freq;
491 }
492
493 static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data * data,unsigned int cpu)494 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
495 {
496 struct acpi_processor_performance *perf;
497
498 perf = to_perf_data(data);
499 if (cpu_khz) {
500 /* search the closest match to cpu_khz */
501 unsigned int i;
502 unsigned long freq;
503 unsigned long freqn = perf->states[0].core_frequency * 1000;
504
505 for (i = 0; i < (perf->state_count-1); i++) {
506 freq = freqn;
507 freqn = perf->states[i+1].core_frequency * 1000;
508 if ((2 * cpu_khz) > (freqn + freq)) {
509 perf->state = i;
510 return freq;
511 }
512 }
513 perf->state = perf->state_count-1;
514 return freqn;
515 } else {
516 /* assume CPU is at P0... */
517 perf->state = 0;
518 return perf->states[0].core_frequency * 1000;
519 }
520 }
521
free_acpi_perf_data(void)522 static void free_acpi_perf_data(void)
523 {
524 unsigned int i;
525
526 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
527 for_each_possible_cpu(i)
528 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
529 ->shared_cpu_map);
530 free_percpu(acpi_perf_data);
531 }
532
cpufreq_boost_online(unsigned int cpu)533 static int cpufreq_boost_online(unsigned int cpu)
534 {
535 /*
536 * On the CPU_UP path we simply keep the boost-disable flag
537 * in sync with the current global state.
538 */
539 return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
540 }
541
cpufreq_boost_down_prep(unsigned int cpu)542 static int cpufreq_boost_down_prep(unsigned int cpu)
543 {
544 /*
545 * Clear the boost-disable bit on the CPU_DOWN path so that
546 * this cpu cannot block the remaining ones from boosting.
547 */
548 return boost_set_msr(1);
549 }
550
551 /*
552 * acpi_cpufreq_early_init - initialize ACPI P-States library
553 *
554 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
555 * in order to determine correct frequency and voltage pairings. We can
556 * do _PDC and _PSD and find out the processor dependency for the
557 * actual init that will happen later...
558 */
acpi_cpufreq_early_init(void)559 static int __init acpi_cpufreq_early_init(void)
560 {
561 unsigned int i;
562 pr_debug("%s\n", __func__);
563
564 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
565 if (!acpi_perf_data) {
566 pr_debug("Memory allocation error for acpi_perf_data.\n");
567 return -ENOMEM;
568 }
569 for_each_possible_cpu(i) {
570 if (!zalloc_cpumask_var_node(
571 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
572 GFP_KERNEL, cpu_to_node(i))) {
573
574 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
575 free_acpi_perf_data();
576 return -ENOMEM;
577 }
578 }
579
580 /* Do initialization in ACPI core */
581 acpi_processor_preregister_performance(acpi_perf_data);
582 return 0;
583 }
584
585 #ifdef CONFIG_SMP
586 /*
587 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
588 * or do it in BIOS firmware and won't inform about it to OS. If not
589 * detected, this has a side effect of making CPU run at a different speed
590 * than OS intended it to run at. Detect it and handle it cleanly.
591 */
592 static int bios_with_sw_any_bug;
593
sw_any_bug_found(const struct dmi_system_id * d)594 static int sw_any_bug_found(const struct dmi_system_id *d)
595 {
596 bios_with_sw_any_bug = 1;
597 return 0;
598 }
599
600 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
601 {
602 .callback = sw_any_bug_found,
603 .ident = "Supermicro Server X6DLP",
604 .matches = {
605 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
606 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
607 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
608 },
609 },
610 { }
611 };
612
acpi_cpufreq_blacklist(struct cpuinfo_x86 * c)613 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
614 {
615 /* Intel Xeon Processor 7100 Series Specification Update
616 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
617 * AL30: A Machine Check Exception (MCE) Occurring during an
618 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
619 * Both Processor Cores to Lock Up. */
620 if (c->x86_vendor == X86_VENDOR_INTEL) {
621 if ((c->x86 == 15) &&
622 (c->x86_model == 6) &&
623 (c->x86_stepping == 8)) {
624 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
625 return -ENODEV;
626 }
627 }
628 return 0;
629 }
630 #endif
631
632 #ifdef CONFIG_ACPI_CPPC_LIB
get_max_boost_ratio(unsigned int cpu)633 static u64 get_max_boost_ratio(unsigned int cpu)
634 {
635 struct cppc_perf_caps perf_caps;
636 u64 highest_perf, nominal_perf;
637 int ret;
638
639 if (acpi_pstate_strict)
640 return 0;
641
642 ret = cppc_get_perf_caps(cpu, &perf_caps);
643 if (ret) {
644 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
645 cpu, ret);
646 return 0;
647 }
648
649 highest_perf = perf_caps.highest_perf;
650 nominal_perf = perf_caps.nominal_perf;
651
652 if (!highest_perf || !nominal_perf) {
653 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
654 return 0;
655 }
656
657 if (highest_perf < nominal_perf) {
658 pr_debug("CPU%d: nominal performance above highest\n", cpu);
659 return 0;
660 }
661
662 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
663 }
664 #else
get_max_boost_ratio(unsigned int cpu)665 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
666 #endif
667
acpi_cpufreq_cpu_init(struct cpufreq_policy * policy)668 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
669 {
670 struct cpufreq_frequency_table *freq_table;
671 struct acpi_processor_performance *perf;
672 struct acpi_cpufreq_data *data;
673 unsigned int cpu = policy->cpu;
674 struct cpuinfo_x86 *c = &cpu_data(cpu);
675 unsigned int valid_states = 0;
676 unsigned int result = 0;
677 u64 max_boost_ratio;
678 unsigned int i;
679 #ifdef CONFIG_SMP
680 static int blacklisted;
681 #endif
682
683 pr_debug("%s\n", __func__);
684
685 #ifdef CONFIG_SMP
686 if (blacklisted)
687 return blacklisted;
688 blacklisted = acpi_cpufreq_blacklist(c);
689 if (blacklisted)
690 return blacklisted;
691 #endif
692
693 data = kzalloc(sizeof(*data), GFP_KERNEL);
694 if (!data)
695 return -ENOMEM;
696
697 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
698 result = -ENOMEM;
699 goto err_free;
700 }
701
702 perf = per_cpu_ptr(acpi_perf_data, cpu);
703 data->acpi_perf_cpu = cpu;
704 policy->driver_data = data;
705
706 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
707 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
708
709 result = acpi_processor_register_performance(perf, cpu);
710 if (result)
711 goto err_free_mask;
712
713 policy->shared_type = perf->shared_type;
714
715 /*
716 * Will let policy->cpus know about dependency only when software
717 * coordination is required.
718 */
719 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
720 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
721 cpumask_copy(policy->cpus, perf->shared_cpu_map);
722 }
723 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
724
725 #ifdef CONFIG_SMP
726 dmi_check_system(sw_any_bug_dmi_table);
727 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
728 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
729 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
730 }
731
732 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
733 !acpi_pstate_strict) {
734 cpumask_clear(policy->cpus);
735 cpumask_set_cpu(cpu, policy->cpus);
736 cpumask_copy(data->freqdomain_cpus,
737 topology_sibling_cpumask(cpu));
738 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
739 pr_info_once("overriding BIOS provided _PSD data\n");
740 }
741 #endif
742
743 /* capability check */
744 if (perf->state_count <= 1) {
745 pr_debug("No P-States\n");
746 result = -ENODEV;
747 goto err_unreg;
748 }
749
750 if (perf->control_register.space_id != perf->status_register.space_id) {
751 result = -ENODEV;
752 goto err_unreg;
753 }
754
755 switch (perf->control_register.space_id) {
756 case ACPI_ADR_SPACE_SYSTEM_IO:
757 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
758 boot_cpu_data.x86 == 0xf) {
759 pr_debug("AMD K8 systems must use native drivers.\n");
760 result = -ENODEV;
761 goto err_unreg;
762 }
763 pr_debug("SYSTEM IO addr space\n");
764 data->cpu_feature = SYSTEM_IO_CAPABLE;
765 data->cpu_freq_read = cpu_freq_read_io;
766 data->cpu_freq_write = cpu_freq_write_io;
767 break;
768 case ACPI_ADR_SPACE_FIXED_HARDWARE:
769 pr_debug("HARDWARE addr space\n");
770 if (check_est_cpu(cpu)) {
771 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
772 data->cpu_freq_read = cpu_freq_read_intel;
773 data->cpu_freq_write = cpu_freq_write_intel;
774 break;
775 }
776 if (check_amd_hwpstate_cpu(cpu)) {
777 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
778 data->cpu_freq_read = cpu_freq_read_amd;
779 data->cpu_freq_write = cpu_freq_write_amd;
780 break;
781 }
782 result = -ENODEV;
783 goto err_unreg;
784 default:
785 pr_debug("Unknown addr space %d\n",
786 (u32) (perf->control_register.space_id));
787 result = -ENODEV;
788 goto err_unreg;
789 }
790
791 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
792 GFP_KERNEL);
793 if (!freq_table) {
794 result = -ENOMEM;
795 goto err_unreg;
796 }
797
798 /* detect transition latency */
799 policy->cpuinfo.transition_latency = 0;
800 for (i = 0; i < perf->state_count; i++) {
801 if ((perf->states[i].transition_latency * 1000) >
802 policy->cpuinfo.transition_latency)
803 policy->cpuinfo.transition_latency =
804 perf->states[i].transition_latency * 1000;
805 }
806
807 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
808 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
809 policy->cpuinfo.transition_latency > 20 * 1000) {
810 policy->cpuinfo.transition_latency = 20 * 1000;
811 pr_info_once("P-state transition latency capped at 20 uS\n");
812 }
813
814 /* table init */
815 for (i = 0; i < perf->state_count; i++) {
816 if (i > 0 && perf->states[i].core_frequency >=
817 freq_table[valid_states-1].frequency / 1000)
818 continue;
819
820 freq_table[valid_states].driver_data = i;
821 freq_table[valid_states].frequency =
822 perf->states[i].core_frequency * 1000;
823 valid_states++;
824 }
825 freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
826
827 max_boost_ratio = get_max_boost_ratio(cpu);
828 if (max_boost_ratio) {
829 unsigned int freq = freq_table[0].frequency;
830
831 /*
832 * Because the loop above sorts the freq_table entries in the
833 * descending order, freq is the maximum frequency in the table.
834 * Assume that it corresponds to the CPPC nominal frequency and
835 * use it to set cpuinfo.max_freq.
836 */
837 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
838 } else {
839 /*
840 * If the maximum "boost" frequency is unknown, ask the arch
841 * scale-invariance code to use the "nominal" performance for
842 * CPU utilization scaling so as to prevent the schedutil
843 * governor from selecting inadequate CPU frequencies.
844 */
845 arch_set_max_freq_ratio(true);
846 }
847
848 policy->freq_table = freq_table;
849 perf->state = 0;
850
851 switch (perf->control_register.space_id) {
852 case ACPI_ADR_SPACE_SYSTEM_IO:
853 /*
854 * The core will not set policy->cur, because
855 * cpufreq_driver->get is NULL, so we need to set it here.
856 * However, we have to guess it, because the current speed is
857 * unknown and not detectable via IO ports.
858 */
859 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
860 break;
861 case ACPI_ADR_SPACE_FIXED_HARDWARE:
862 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
863 break;
864 default:
865 break;
866 }
867
868 /* notify BIOS that we exist */
869 acpi_processor_notify_smm(THIS_MODULE);
870
871 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
872 for (i = 0; i < perf->state_count; i++)
873 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
874 (i == perf->state ? '*' : ' '), i,
875 (u32) perf->states[i].core_frequency,
876 (u32) perf->states[i].power,
877 (u32) perf->states[i].transition_latency);
878
879 /*
880 * the first call to ->target() should result in us actually
881 * writing something to the appropriate registers.
882 */
883 data->resume = 1;
884
885 policy->fast_switch_possible = !acpi_pstate_strict &&
886 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
887
888 return result;
889
890 err_unreg:
891 acpi_processor_unregister_performance(cpu);
892 err_free_mask:
893 free_cpumask_var(data->freqdomain_cpus);
894 err_free:
895 kfree(data);
896 policy->driver_data = NULL;
897
898 return result;
899 }
900
acpi_cpufreq_cpu_exit(struct cpufreq_policy * policy)901 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
902 {
903 struct acpi_cpufreq_data *data = policy->driver_data;
904
905 pr_debug("%s\n", __func__);
906
907 policy->fast_switch_possible = false;
908 policy->driver_data = NULL;
909 acpi_processor_unregister_performance(data->acpi_perf_cpu);
910 free_cpumask_var(data->freqdomain_cpus);
911 kfree(policy->freq_table);
912 kfree(data);
913
914 return 0;
915 }
916
acpi_cpufreq_cpu_ready(struct cpufreq_policy * policy)917 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
918 {
919 struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
920 policy->cpu);
921 unsigned int freq = policy->freq_table[0].frequency;
922
923 if (perf->states[0].core_frequency * 1000 != freq)
924 pr_warn(FW_WARN "P-state 0 is not max freq\n");
925 }
926
acpi_cpufreq_resume(struct cpufreq_policy * policy)927 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
928 {
929 struct acpi_cpufreq_data *data = policy->driver_data;
930
931 pr_debug("%s\n", __func__);
932
933 data->resume = 1;
934
935 return 0;
936 }
937
938 static struct freq_attr *acpi_cpufreq_attr[] = {
939 &cpufreq_freq_attr_scaling_available_freqs,
940 &freqdomain_cpus,
941 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
942 &cpb,
943 #endif
944 NULL,
945 };
946
947 static struct cpufreq_driver acpi_cpufreq_driver = {
948 .verify = cpufreq_generic_frequency_table_verify,
949 .target_index = acpi_cpufreq_target,
950 .fast_switch = acpi_cpufreq_fast_switch,
951 .bios_limit = acpi_processor_get_bios_limit,
952 .init = acpi_cpufreq_cpu_init,
953 .exit = acpi_cpufreq_cpu_exit,
954 .ready = acpi_cpufreq_cpu_ready,
955 .resume = acpi_cpufreq_resume,
956 .name = "acpi-cpufreq",
957 .attr = acpi_cpufreq_attr,
958 };
959
960 static enum cpuhp_state acpi_cpufreq_online;
961
acpi_cpufreq_boost_init(void)962 static void __init acpi_cpufreq_boost_init(void)
963 {
964 int ret;
965
966 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
967 pr_debug("Boost capabilities not present in the processor\n");
968 return;
969 }
970
971 acpi_cpufreq_driver.set_boost = set_boost;
972 acpi_cpufreq_driver.boost_enabled = boost_state(0);
973
974 /*
975 * This calls the online callback on all online cpu and forces all
976 * MSRs to the same value.
977 */
978 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
979 cpufreq_boost_online, cpufreq_boost_down_prep);
980 if (ret < 0) {
981 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
982 return;
983 }
984 acpi_cpufreq_online = ret;
985 }
986
acpi_cpufreq_boost_exit(void)987 static void acpi_cpufreq_boost_exit(void)
988 {
989 if (acpi_cpufreq_online > 0)
990 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
991 }
992
acpi_cpufreq_init(void)993 static int __init acpi_cpufreq_init(void)
994 {
995 int ret;
996
997 if (acpi_disabled)
998 return -ENODEV;
999
1000 /* don't keep reloading if cpufreq_driver exists */
1001 if (cpufreq_get_current_driver())
1002 return -EEXIST;
1003
1004 pr_debug("%s\n", __func__);
1005
1006 ret = acpi_cpufreq_early_init();
1007 if (ret)
1008 return ret;
1009
1010 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1011 /* this is a sysfs file with a strange name and an even stranger
1012 * semantic - per CPU instantiation, but system global effect.
1013 * Lets enable it only on AMD CPUs for compatibility reasons and
1014 * only if configured. This is considered legacy code, which
1015 * will probably be removed at some point in the future.
1016 */
1017 if (!check_amd_hwpstate_cpu(0)) {
1018 struct freq_attr **attr;
1019
1020 pr_debug("CPB unsupported, do not expose it\n");
1021
1022 for (attr = acpi_cpufreq_attr; *attr; attr++)
1023 if (*attr == &cpb) {
1024 *attr = NULL;
1025 break;
1026 }
1027 }
1028 #endif
1029 acpi_cpufreq_boost_init();
1030
1031 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1032 if (ret) {
1033 free_acpi_perf_data();
1034 acpi_cpufreq_boost_exit();
1035 }
1036 return ret;
1037 }
1038
acpi_cpufreq_exit(void)1039 static void __exit acpi_cpufreq_exit(void)
1040 {
1041 pr_debug("%s\n", __func__);
1042
1043 acpi_cpufreq_boost_exit();
1044
1045 cpufreq_unregister_driver(&acpi_cpufreq_driver);
1046
1047 free_acpi_perf_data();
1048 }
1049
1050 module_param(acpi_pstate_strict, uint, 0644);
1051 MODULE_PARM_DESC(acpi_pstate_strict,
1052 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1053 "performed during frequency changes.");
1054
1055 late_initcall(acpi_cpufreq_init);
1056 module_exit(acpi_cpufreq_exit);
1057
1058 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1059 X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1060 X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1061 {}
1062 };
1063 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1064
1065 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1066 {ACPI_PROCESSOR_OBJECT_HID, },
1067 {ACPI_PROCESSOR_DEVICE_HID, },
1068 {},
1069 };
1070 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1071
1072 MODULE_ALIAS("acpi");
1073