1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 *
7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8 * The only Atmel DMA Controller that is not covered by this driver is the one
9 * found on AT91SAM9263.
10 */
11
12 #include <dt-bindings/dma/at91.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24
25 #include "at_hdmac_regs.h"
26 #include "dmaengine.h"
27
28 /*
29 * Glossary
30 * --------
31 *
32 * at_hdmac : Name of the ATmel AHB DMA Controller
33 * at_dma_ / atdma : ATmel DMA controller entity related
34 * atc_ / atchan : ATmel DMA Channel entity related
35 */
36
37 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
38 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
39 |ATC_DIF(AT_DMA_MEM_IF))
40 #define ATC_DMA_BUSWIDTHS\
41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45
46 #define ATC_MAX_DSCR_TRIALS 10
47
48 /*
49 * Initial number of descriptors to allocate for each channel. This could
50 * be increased during dma usage.
51 */
52 static unsigned int init_nr_desc_per_channel = 64;
53 module_param(init_nr_desc_per_channel, uint, 0644);
54 MODULE_PARM_DESC(init_nr_desc_per_channel,
55 "initial descriptors per channel (default: 64)");
56
57
58 /* prototypes */
59 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
60 static void atc_issue_pending(struct dma_chan *chan);
61
62
63 /*----------------------------------------------------------------------*/
64
atc_get_xfer_width(dma_addr_t src,dma_addr_t dst,size_t len)65 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
66 size_t len)
67 {
68 unsigned int width;
69
70 if (!((src | dst | len) & 3))
71 width = 2;
72 else if (!((src | dst | len) & 1))
73 width = 1;
74 else
75 width = 0;
76
77 return width;
78 }
79
atc_first_active(struct at_dma_chan * atchan)80 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
81 {
82 return list_first_entry(&atchan->active_list,
83 struct at_desc, desc_node);
84 }
85
atc_first_queued(struct at_dma_chan * atchan)86 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
87 {
88 return list_first_entry(&atchan->queue,
89 struct at_desc, desc_node);
90 }
91
92 /**
93 * atc_alloc_descriptor - allocate and return an initialized descriptor
94 * @chan: the channel to allocate descriptors for
95 * @gfp_flags: GFP allocation flags
96 *
97 * Note: The ack-bit is positioned in the descriptor flag at creation time
98 * to make initial allocation more convenient. This bit will be cleared
99 * and control will be given to client at usage time (during
100 * preparation functions).
101 */
atc_alloc_descriptor(struct dma_chan * chan,gfp_t gfp_flags)102 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
103 gfp_t gfp_flags)
104 {
105 struct at_desc *desc = NULL;
106 struct at_dma *atdma = to_at_dma(chan->device);
107 dma_addr_t phys;
108
109 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
110 if (desc) {
111 INIT_LIST_HEAD(&desc->tx_list);
112 dma_async_tx_descriptor_init(&desc->txd, chan);
113 /* txd.flags will be overwritten in prep functions */
114 desc->txd.flags = DMA_CTRL_ACK;
115 desc->txd.tx_submit = atc_tx_submit;
116 desc->txd.phys = phys;
117 }
118
119 return desc;
120 }
121
122 /**
123 * atc_desc_get - get an unused descriptor from free_list
124 * @atchan: channel we want a new descriptor for
125 */
atc_desc_get(struct at_dma_chan * atchan)126 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
127 {
128 struct at_desc *desc, *_desc;
129 struct at_desc *ret = NULL;
130 unsigned long flags;
131 unsigned int i = 0;
132
133 spin_lock_irqsave(&atchan->lock, flags);
134 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
135 i++;
136 if (async_tx_test_ack(&desc->txd)) {
137 list_del(&desc->desc_node);
138 ret = desc;
139 break;
140 }
141 dev_dbg(chan2dev(&atchan->chan_common),
142 "desc %p not ACKed\n", desc);
143 }
144 spin_unlock_irqrestore(&atchan->lock, flags);
145 dev_vdbg(chan2dev(&atchan->chan_common),
146 "scanned %u descriptors on freelist\n", i);
147
148 /* no more descriptor available in initial pool: create one more */
149 if (!ret)
150 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
151
152 return ret;
153 }
154
155 /**
156 * atc_desc_put - move a descriptor, including any children, to the free list
157 * @atchan: channel we work on
158 * @desc: descriptor, at the head of a chain, to move to free list
159 */
atc_desc_put(struct at_dma_chan * atchan,struct at_desc * desc)160 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
161 {
162 if (desc) {
163 struct at_desc *child;
164 unsigned long flags;
165
166 spin_lock_irqsave(&atchan->lock, flags);
167 list_for_each_entry(child, &desc->tx_list, desc_node)
168 dev_vdbg(chan2dev(&atchan->chan_common),
169 "moving child desc %p to freelist\n",
170 child);
171 list_splice_init(&desc->tx_list, &atchan->free_list);
172 dev_vdbg(chan2dev(&atchan->chan_common),
173 "moving desc %p to freelist\n", desc);
174 list_add(&desc->desc_node, &atchan->free_list);
175 spin_unlock_irqrestore(&atchan->lock, flags);
176 }
177 }
178
179 /**
180 * atc_desc_chain - build chain adding a descriptor
181 * @first: address of first descriptor of the chain
182 * @prev: address of previous descriptor of the chain
183 * @desc: descriptor to queue
184 *
185 * Called from prep_* functions
186 */
atc_desc_chain(struct at_desc ** first,struct at_desc ** prev,struct at_desc * desc)187 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
188 struct at_desc *desc)
189 {
190 if (!(*first)) {
191 *first = desc;
192 } else {
193 /* inform the HW lli about chaining */
194 (*prev)->lli.dscr = desc->txd.phys;
195 /* insert the link descriptor to the LD ring */
196 list_add_tail(&desc->desc_node,
197 &(*first)->tx_list);
198 }
199 *prev = desc;
200 }
201
202 /**
203 * atc_dostart - starts the DMA engine for real
204 * @atchan: the channel we want to start
205 * @first: first descriptor in the list we want to begin with
206 *
207 * Called with atchan->lock held and bh disabled
208 */
atc_dostart(struct at_dma_chan * atchan,struct at_desc * first)209 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
210 {
211 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
212
213 /* ASSERT: channel is idle */
214 if (atc_chan_is_enabled(atchan)) {
215 dev_err(chan2dev(&atchan->chan_common),
216 "BUG: Attempted to start non-idle channel\n");
217 dev_err(chan2dev(&atchan->chan_common),
218 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
219 channel_readl(atchan, SADDR),
220 channel_readl(atchan, DADDR),
221 channel_readl(atchan, CTRLA),
222 channel_readl(atchan, CTRLB),
223 channel_readl(atchan, DSCR));
224
225 /* The tasklet will hopefully advance the queue... */
226 return;
227 }
228
229 vdbg_dump_regs(atchan);
230
231 channel_writel(atchan, SADDR, 0);
232 channel_writel(atchan, DADDR, 0);
233 channel_writel(atchan, CTRLA, 0);
234 channel_writel(atchan, CTRLB, 0);
235 channel_writel(atchan, DSCR, first->txd.phys);
236 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
237 ATC_SPIP_BOUNDARY(first->boundary));
238 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
239 ATC_DPIP_BOUNDARY(first->boundary));
240 dma_writel(atdma, CHER, atchan->mask);
241
242 vdbg_dump_regs(atchan);
243 }
244
245 /*
246 * atc_get_desc_by_cookie - get the descriptor of a cookie
247 * @atchan: the DMA channel
248 * @cookie: the cookie to get the descriptor for
249 */
atc_get_desc_by_cookie(struct at_dma_chan * atchan,dma_cookie_t cookie)250 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
251 dma_cookie_t cookie)
252 {
253 struct at_desc *desc, *_desc;
254
255 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
256 if (desc->txd.cookie == cookie)
257 return desc;
258 }
259
260 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
261 if (desc->txd.cookie == cookie)
262 return desc;
263 }
264
265 return NULL;
266 }
267
268 /**
269 * atc_calc_bytes_left - calculates the number of bytes left according to the
270 * value read from CTRLA.
271 *
272 * @current_len: the number of bytes left before reading CTRLA
273 * @ctrla: the value of CTRLA
274 */
atc_calc_bytes_left(int current_len,u32 ctrla)275 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
276 {
277 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
278 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
279
280 /*
281 * According to the datasheet, when reading the Control A Register
282 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
283 * number of transfers completed on the Source Interface.
284 * So btsize is always a number of source width transfers.
285 */
286 return current_len - (btsize << src_width);
287 }
288
289 /**
290 * atc_get_bytes_left - get the number of bytes residue for a cookie
291 * @chan: DMA channel
292 * @cookie: transaction identifier to check status of
293 */
atc_get_bytes_left(struct dma_chan * chan,dma_cookie_t cookie)294 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
295 {
296 struct at_dma_chan *atchan = to_at_dma_chan(chan);
297 struct at_desc *desc_first = atc_first_active(atchan);
298 struct at_desc *desc;
299 int ret;
300 u32 ctrla, dscr, trials;
301
302 /*
303 * If the cookie doesn't match to the currently running transfer then
304 * we can return the total length of the associated DMA transfer,
305 * because it is still queued.
306 */
307 desc = atc_get_desc_by_cookie(atchan, cookie);
308 if (desc == NULL)
309 return -EINVAL;
310 else if (desc != desc_first)
311 return desc->total_len;
312
313 /* cookie matches to the currently running transfer */
314 ret = desc_first->total_len;
315
316 if (desc_first->lli.dscr) {
317 /* hardware linked list transfer */
318
319 /*
320 * Calculate the residue by removing the length of the child
321 * descriptors already transferred from the total length.
322 * To get the current child descriptor we can use the value of
323 * the channel's DSCR register and compare it against the value
324 * of the hardware linked list structure of each child
325 * descriptor.
326 *
327 * The CTRLA register provides us with the amount of data
328 * already read from the source for the current child
329 * descriptor. So we can compute a more accurate residue by also
330 * removing the number of bytes corresponding to this amount of
331 * data.
332 *
333 * However, the DSCR and CTRLA registers cannot be read both
334 * atomically. Hence a race condition may occur: the first read
335 * register may refer to one child descriptor whereas the second
336 * read may refer to a later child descriptor in the list
337 * because of the DMA transfer progression inbetween the two
338 * reads.
339 *
340 * One solution could have been to pause the DMA transfer, read
341 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
342 * this approach presents some drawbacks:
343 * - If the DMA transfer is paused, RX overruns or TX underruns
344 * are more likey to occur depending on the system latency.
345 * Taking the USART driver as an example, it uses a cyclic DMA
346 * transfer to read data from the Receive Holding Register
347 * (RHR) to avoid RX overruns since the RHR is not protected
348 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
349 * to compute the residue would break the USART driver design.
350 * - The atc_pause() function masks interrupts but we'd rather
351 * avoid to do so for system latency purpose.
352 *
353 * Then we'd rather use another solution: the DSCR is read a
354 * first time, the CTRLA is read in turn, next the DSCR is read
355 * a second time. If the two consecutive read values of the DSCR
356 * are the same then we assume both refers to the very same
357 * child descriptor as well as the CTRLA value read inbetween
358 * does. For cyclic tranfers, the assumption is that a full loop
359 * is "not so fast".
360 * If the two DSCR values are different, we read again the CTRLA
361 * then the DSCR till two consecutive read values from DSCR are
362 * equal or till the maxium trials is reach.
363 * This algorithm is very unlikely not to find a stable value for
364 * DSCR.
365 */
366
367 dscr = channel_readl(atchan, DSCR);
368 rmb(); /* ensure DSCR is read before CTRLA */
369 ctrla = channel_readl(atchan, CTRLA);
370 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
371 u32 new_dscr;
372
373 rmb(); /* ensure DSCR is read after CTRLA */
374 new_dscr = channel_readl(atchan, DSCR);
375
376 /*
377 * If the DSCR register value has not changed inside the
378 * DMA controller since the previous read, we assume
379 * that both the dscr and ctrla values refers to the
380 * very same descriptor.
381 */
382 if (likely(new_dscr == dscr))
383 break;
384
385 /*
386 * DSCR has changed inside the DMA controller, so the
387 * previouly read value of CTRLA may refer to an already
388 * processed descriptor hence could be outdated.
389 * We need to update ctrla to match the current
390 * descriptor.
391 */
392 dscr = new_dscr;
393 rmb(); /* ensure DSCR is read before CTRLA */
394 ctrla = channel_readl(atchan, CTRLA);
395 }
396 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
397 return -ETIMEDOUT;
398
399 /* for the first descriptor we can be more accurate */
400 if (desc_first->lli.dscr == dscr)
401 return atc_calc_bytes_left(ret, ctrla);
402
403 ret -= desc_first->len;
404 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
405 if (desc->lli.dscr == dscr)
406 break;
407
408 ret -= desc->len;
409 }
410
411 /*
412 * For the current descriptor in the chain we can calculate
413 * the remaining bytes using the channel's register.
414 */
415 ret = atc_calc_bytes_left(ret, ctrla);
416 } else {
417 /* single transfer */
418 ctrla = channel_readl(atchan, CTRLA);
419 ret = atc_calc_bytes_left(ret, ctrla);
420 }
421
422 return ret;
423 }
424
425 /**
426 * atc_chain_complete - finish work for one transaction chain
427 * @atchan: channel we work on
428 * @desc: descriptor at the head of the chain we want do complete
429 */
430 static void
atc_chain_complete(struct at_dma_chan * atchan,struct at_desc * desc)431 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
432 {
433 struct dma_async_tx_descriptor *txd = &desc->txd;
434 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
435 unsigned long flags;
436
437 dev_vdbg(chan2dev(&atchan->chan_common),
438 "descriptor %u complete\n", txd->cookie);
439
440 spin_lock_irqsave(&atchan->lock, flags);
441
442 /* mark the descriptor as complete for non cyclic cases only */
443 if (!atc_chan_is_cyclic(atchan))
444 dma_cookie_complete(txd);
445
446 /* If the transfer was a memset, free our temporary buffer */
447 if (desc->memset_buffer) {
448 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
449 desc->memset_paddr);
450 desc->memset_buffer = false;
451 }
452
453 /* move children to free_list */
454 list_splice_init(&desc->tx_list, &atchan->free_list);
455 /* move myself to free_list */
456 list_move(&desc->desc_node, &atchan->free_list);
457
458 spin_unlock_irqrestore(&atchan->lock, flags);
459
460 dma_descriptor_unmap(txd);
461 /* for cyclic transfers,
462 * no need to replay callback function while stopping */
463 if (!atc_chan_is_cyclic(atchan))
464 dmaengine_desc_get_callback_invoke(txd, NULL);
465
466 dma_run_dependencies(txd);
467 }
468
469 /**
470 * atc_complete_all - finish work for all transactions
471 * @atchan: channel to complete transactions for
472 *
473 * Eventually submit queued descriptors if any
474 *
475 * Assume channel is idle while calling this function
476 * Called with atchan->lock held and bh disabled
477 */
atc_complete_all(struct at_dma_chan * atchan)478 static void atc_complete_all(struct at_dma_chan *atchan)
479 {
480 struct at_desc *desc, *_desc;
481 LIST_HEAD(list);
482 unsigned long flags;
483
484 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
485
486 spin_lock_irqsave(&atchan->lock, flags);
487
488 /*
489 * Submit queued descriptors ASAP, i.e. before we go through
490 * the completed ones.
491 */
492 if (!list_empty(&atchan->queue))
493 atc_dostart(atchan, atc_first_queued(atchan));
494 /* empty active_list now it is completed */
495 list_splice_init(&atchan->active_list, &list);
496 /* empty queue list by moving descriptors (if any) to active_list */
497 list_splice_init(&atchan->queue, &atchan->active_list);
498
499 spin_unlock_irqrestore(&atchan->lock, flags);
500
501 list_for_each_entry_safe(desc, _desc, &list, desc_node)
502 atc_chain_complete(atchan, desc);
503 }
504
505 /**
506 * atc_advance_work - at the end of a transaction, move forward
507 * @atchan: channel where the transaction ended
508 */
atc_advance_work(struct at_dma_chan * atchan)509 static void atc_advance_work(struct at_dma_chan *atchan)
510 {
511 unsigned long flags;
512 int ret;
513
514 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
515
516 spin_lock_irqsave(&atchan->lock, flags);
517 ret = atc_chan_is_enabled(atchan);
518 spin_unlock_irqrestore(&atchan->lock, flags);
519 if (ret)
520 return;
521
522 if (list_empty(&atchan->active_list) ||
523 list_is_singular(&atchan->active_list))
524 return atc_complete_all(atchan);
525
526 atc_chain_complete(atchan, atc_first_active(atchan));
527
528 /* advance work */
529 spin_lock_irqsave(&atchan->lock, flags);
530 atc_dostart(atchan, atc_first_active(atchan));
531 spin_unlock_irqrestore(&atchan->lock, flags);
532 }
533
534
535 /**
536 * atc_handle_error - handle errors reported by DMA controller
537 * @atchan: channel where error occurs
538 */
atc_handle_error(struct at_dma_chan * atchan)539 static void atc_handle_error(struct at_dma_chan *atchan)
540 {
541 struct at_desc *bad_desc;
542 struct at_desc *child;
543 unsigned long flags;
544
545 spin_lock_irqsave(&atchan->lock, flags);
546 /*
547 * The descriptor currently at the head of the active list is
548 * broked. Since we don't have any way to report errors, we'll
549 * just have to scream loudly and try to carry on.
550 */
551 bad_desc = atc_first_active(atchan);
552 list_del_init(&bad_desc->desc_node);
553
554 /* As we are stopped, take advantage to push queued descriptors
555 * in active_list */
556 list_splice_init(&atchan->queue, atchan->active_list.prev);
557
558 /* Try to restart the controller */
559 if (!list_empty(&atchan->active_list))
560 atc_dostart(atchan, atc_first_active(atchan));
561
562 /*
563 * KERN_CRITICAL may seem harsh, but since this only happens
564 * when someone submits a bad physical address in a
565 * descriptor, we should consider ourselves lucky that the
566 * controller flagged an error instead of scribbling over
567 * random memory locations.
568 */
569 dev_crit(chan2dev(&atchan->chan_common),
570 "Bad descriptor submitted for DMA!\n");
571 dev_crit(chan2dev(&atchan->chan_common),
572 " cookie: %d\n", bad_desc->txd.cookie);
573 atc_dump_lli(atchan, &bad_desc->lli);
574 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
575 atc_dump_lli(atchan, &child->lli);
576
577 spin_unlock_irqrestore(&atchan->lock, flags);
578
579 /* Pretend the descriptor completed successfully */
580 atc_chain_complete(atchan, bad_desc);
581 }
582
583 /**
584 * atc_handle_cyclic - at the end of a period, run callback function
585 * @atchan: channel used for cyclic operations
586 */
atc_handle_cyclic(struct at_dma_chan * atchan)587 static void atc_handle_cyclic(struct at_dma_chan *atchan)
588 {
589 struct at_desc *first = atc_first_active(atchan);
590 struct dma_async_tx_descriptor *txd = &first->txd;
591
592 dev_vdbg(chan2dev(&atchan->chan_common),
593 "new cyclic period llp 0x%08x\n",
594 channel_readl(atchan, DSCR));
595
596 dmaengine_desc_get_callback_invoke(txd, NULL);
597 }
598
599 /*-- IRQ & Tasklet ---------------------------------------------------*/
600
atc_tasklet(struct tasklet_struct * t)601 static void atc_tasklet(struct tasklet_struct *t)
602 {
603 struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet);
604
605 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
606 return atc_handle_error(atchan);
607
608 if (atc_chan_is_cyclic(atchan))
609 return atc_handle_cyclic(atchan);
610
611 atc_advance_work(atchan);
612 }
613
at_dma_interrupt(int irq,void * dev_id)614 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
615 {
616 struct at_dma *atdma = (struct at_dma *)dev_id;
617 struct at_dma_chan *atchan;
618 int i;
619 u32 status, pending, imr;
620 int ret = IRQ_NONE;
621
622 do {
623 imr = dma_readl(atdma, EBCIMR);
624 status = dma_readl(atdma, EBCISR);
625 pending = status & imr;
626
627 if (!pending)
628 break;
629
630 dev_vdbg(atdma->dma_common.dev,
631 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
632 status, imr, pending);
633
634 for (i = 0; i < atdma->dma_common.chancnt; i++) {
635 atchan = &atdma->chan[i];
636 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
637 if (pending & AT_DMA_ERR(i)) {
638 /* Disable channel on AHB error */
639 dma_writel(atdma, CHDR,
640 AT_DMA_RES(i) | atchan->mask);
641 /* Give information to tasklet */
642 set_bit(ATC_IS_ERROR, &atchan->status);
643 }
644 tasklet_schedule(&atchan->tasklet);
645 ret = IRQ_HANDLED;
646 }
647 }
648
649 } while (pending);
650
651 return ret;
652 }
653
654
655 /*-- DMA Engine API --------------------------------------------------*/
656
657 /**
658 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
659 * @tx: descriptor at the head of the transaction chain
660 *
661 * Queue chain if DMA engine is working already
662 *
663 * Cookie increment and adding to active_list or queue must be atomic
664 */
atc_tx_submit(struct dma_async_tx_descriptor * tx)665 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
666 {
667 struct at_desc *desc = txd_to_at_desc(tx);
668 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
669 dma_cookie_t cookie;
670 unsigned long flags;
671
672 spin_lock_irqsave(&atchan->lock, flags);
673 cookie = dma_cookie_assign(tx);
674
675 if (list_empty(&atchan->active_list)) {
676 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
677 desc->txd.cookie);
678 atc_dostart(atchan, desc);
679 list_add_tail(&desc->desc_node, &atchan->active_list);
680 } else {
681 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
682 desc->txd.cookie);
683 list_add_tail(&desc->desc_node, &atchan->queue);
684 }
685
686 spin_unlock_irqrestore(&atchan->lock, flags);
687
688 return cookie;
689 }
690
691 /**
692 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
693 * @chan: the channel to prepare operation on
694 * @xt: Interleaved transfer template
695 * @flags: tx descriptor status flags
696 */
697 static struct dma_async_tx_descriptor *
atc_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)698 atc_prep_dma_interleaved(struct dma_chan *chan,
699 struct dma_interleaved_template *xt,
700 unsigned long flags)
701 {
702 struct at_dma_chan *atchan = to_at_dma_chan(chan);
703 struct data_chunk *first;
704 struct at_desc *desc = NULL;
705 size_t xfer_count;
706 unsigned int dwidth;
707 u32 ctrla;
708 u32 ctrlb;
709 size_t len = 0;
710 int i;
711
712 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
713 return NULL;
714
715 first = xt->sgl;
716
717 dev_info(chan2dev(chan),
718 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
719 __func__, &xt->src_start, &xt->dst_start, xt->numf,
720 xt->frame_size, flags);
721
722 /*
723 * The controller can only "skip" X bytes every Y bytes, so we
724 * need to make sure we are given a template that fit that
725 * description, ie a template with chunks that always have the
726 * same size, with the same ICGs.
727 */
728 for (i = 0; i < xt->frame_size; i++) {
729 struct data_chunk *chunk = xt->sgl + i;
730
731 if ((chunk->size != xt->sgl->size) ||
732 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
733 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
734 dev_err(chan2dev(chan),
735 "%s: the controller can transfer only identical chunks\n",
736 __func__);
737 return NULL;
738 }
739
740 len += chunk->size;
741 }
742
743 dwidth = atc_get_xfer_width(xt->src_start,
744 xt->dst_start, len);
745
746 xfer_count = len >> dwidth;
747 if (xfer_count > ATC_BTSIZE_MAX) {
748 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
749 return NULL;
750 }
751
752 ctrla = ATC_SRC_WIDTH(dwidth) |
753 ATC_DST_WIDTH(dwidth);
754
755 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
756 | ATC_SRC_ADDR_MODE_INCR
757 | ATC_DST_ADDR_MODE_INCR
758 | ATC_SRC_PIP
759 | ATC_DST_PIP
760 | ATC_FC_MEM2MEM;
761
762 /* create the transfer */
763 desc = atc_desc_get(atchan);
764 if (!desc) {
765 dev_err(chan2dev(chan),
766 "%s: couldn't allocate our descriptor\n", __func__);
767 return NULL;
768 }
769
770 desc->lli.saddr = xt->src_start;
771 desc->lli.daddr = xt->dst_start;
772 desc->lli.ctrla = ctrla | xfer_count;
773 desc->lli.ctrlb = ctrlb;
774
775 desc->boundary = first->size >> dwidth;
776 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
777 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
778
779 desc->txd.cookie = -EBUSY;
780 desc->total_len = desc->len = len;
781
782 /* set end-of-link to the last link descriptor of list*/
783 set_desc_eol(desc);
784
785 desc->txd.flags = flags; /* client is in control of this ack */
786
787 return &desc->txd;
788 }
789
790 /**
791 * atc_prep_dma_memcpy - prepare a memcpy operation
792 * @chan: the channel to prepare operation on
793 * @dest: operation virtual destination address
794 * @src: operation virtual source address
795 * @len: operation length
796 * @flags: tx descriptor status flags
797 */
798 static struct dma_async_tx_descriptor *
atc_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)799 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
800 size_t len, unsigned long flags)
801 {
802 struct at_dma_chan *atchan = to_at_dma_chan(chan);
803 struct at_desc *desc = NULL;
804 struct at_desc *first = NULL;
805 struct at_desc *prev = NULL;
806 size_t xfer_count;
807 size_t offset;
808 unsigned int src_width;
809 unsigned int dst_width;
810 u32 ctrla;
811 u32 ctrlb;
812
813 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
814 &dest, &src, len, flags);
815
816 if (unlikely(!len)) {
817 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
818 return NULL;
819 }
820
821 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
822 | ATC_SRC_ADDR_MODE_INCR
823 | ATC_DST_ADDR_MODE_INCR
824 | ATC_FC_MEM2MEM;
825
826 /*
827 * We can be a lot more clever here, but this should take care
828 * of the most common optimization.
829 */
830 src_width = dst_width = atc_get_xfer_width(src, dest, len);
831
832 ctrla = ATC_SRC_WIDTH(src_width) |
833 ATC_DST_WIDTH(dst_width);
834
835 for (offset = 0; offset < len; offset += xfer_count << src_width) {
836 xfer_count = min_t(size_t, (len - offset) >> src_width,
837 ATC_BTSIZE_MAX);
838
839 desc = atc_desc_get(atchan);
840 if (!desc)
841 goto err_desc_get;
842
843 desc->lli.saddr = src + offset;
844 desc->lli.daddr = dest + offset;
845 desc->lli.ctrla = ctrla | xfer_count;
846 desc->lli.ctrlb = ctrlb;
847
848 desc->txd.cookie = 0;
849 desc->len = xfer_count << src_width;
850
851 atc_desc_chain(&first, &prev, desc);
852 }
853
854 /* First descriptor of the chain embedds additional information */
855 first->txd.cookie = -EBUSY;
856 first->total_len = len;
857
858 /* set end-of-link to the last link descriptor of list*/
859 set_desc_eol(desc);
860
861 first->txd.flags = flags; /* client is in control of this ack */
862
863 return &first->txd;
864
865 err_desc_get:
866 atc_desc_put(atchan, first);
867 return NULL;
868 }
869
atc_create_memset_desc(struct dma_chan * chan,dma_addr_t psrc,dma_addr_t pdst,size_t len)870 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
871 dma_addr_t psrc,
872 dma_addr_t pdst,
873 size_t len)
874 {
875 struct at_dma_chan *atchan = to_at_dma_chan(chan);
876 struct at_desc *desc;
877 size_t xfer_count;
878
879 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
880 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
881 ATC_SRC_ADDR_MODE_FIXED |
882 ATC_DST_ADDR_MODE_INCR |
883 ATC_FC_MEM2MEM;
884
885 xfer_count = len >> 2;
886 if (xfer_count > ATC_BTSIZE_MAX) {
887 dev_err(chan2dev(chan), "%s: buffer is too big\n",
888 __func__);
889 return NULL;
890 }
891
892 desc = atc_desc_get(atchan);
893 if (!desc) {
894 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
895 __func__);
896 return NULL;
897 }
898
899 desc->lli.saddr = psrc;
900 desc->lli.daddr = pdst;
901 desc->lli.ctrla = ctrla | xfer_count;
902 desc->lli.ctrlb = ctrlb;
903
904 desc->txd.cookie = 0;
905 desc->len = len;
906
907 return desc;
908 }
909
910 /**
911 * atc_prep_dma_memset - prepare a memcpy operation
912 * @chan: the channel to prepare operation on
913 * @dest: operation virtual destination address
914 * @value: value to set memory buffer to
915 * @len: operation length
916 * @flags: tx descriptor status flags
917 */
918 static struct dma_async_tx_descriptor *
atc_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)919 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
920 size_t len, unsigned long flags)
921 {
922 struct at_dma *atdma = to_at_dma(chan->device);
923 struct at_desc *desc;
924 void __iomem *vaddr;
925 dma_addr_t paddr;
926
927 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
928 &dest, value, len, flags);
929
930 if (unlikely(!len)) {
931 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
932 return NULL;
933 }
934
935 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
936 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
937 __func__);
938 return NULL;
939 }
940
941 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
942 if (!vaddr) {
943 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
944 __func__);
945 return NULL;
946 }
947 *(u32*)vaddr = value;
948
949 desc = atc_create_memset_desc(chan, paddr, dest, len);
950 if (!desc) {
951 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
952 __func__);
953 goto err_free_buffer;
954 }
955
956 desc->memset_paddr = paddr;
957 desc->memset_vaddr = vaddr;
958 desc->memset_buffer = true;
959
960 desc->txd.cookie = -EBUSY;
961 desc->total_len = len;
962
963 /* set end-of-link on the descriptor */
964 set_desc_eol(desc);
965
966 desc->txd.flags = flags;
967
968 return &desc->txd;
969
970 err_free_buffer:
971 dma_pool_free(atdma->memset_pool, vaddr, paddr);
972 return NULL;
973 }
974
975 static struct dma_async_tx_descriptor *
atc_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)976 atc_prep_dma_memset_sg(struct dma_chan *chan,
977 struct scatterlist *sgl,
978 unsigned int sg_len, int value,
979 unsigned long flags)
980 {
981 struct at_dma_chan *atchan = to_at_dma_chan(chan);
982 struct at_dma *atdma = to_at_dma(chan->device);
983 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
984 struct scatterlist *sg;
985 void __iomem *vaddr;
986 dma_addr_t paddr;
987 size_t total_len = 0;
988 int i;
989
990 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
991 value, sg_len, flags);
992
993 if (unlikely(!sgl || !sg_len)) {
994 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
995 __func__);
996 return NULL;
997 }
998
999 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1000 if (!vaddr) {
1001 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1002 __func__);
1003 return NULL;
1004 }
1005 *(u32*)vaddr = value;
1006
1007 for_each_sg(sgl, sg, sg_len, i) {
1008 dma_addr_t dest = sg_dma_address(sg);
1009 size_t len = sg_dma_len(sg);
1010
1011 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1012 __func__, &dest, len);
1013
1014 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1015 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1016 __func__);
1017 goto err_put_desc;
1018 }
1019
1020 desc = atc_create_memset_desc(chan, paddr, dest, len);
1021 if (!desc)
1022 goto err_put_desc;
1023
1024 atc_desc_chain(&first, &prev, desc);
1025
1026 total_len += len;
1027 }
1028
1029 /*
1030 * Only set the buffer pointers on the last descriptor to
1031 * avoid free'ing while we have our transfer still going
1032 */
1033 desc->memset_paddr = paddr;
1034 desc->memset_vaddr = vaddr;
1035 desc->memset_buffer = true;
1036
1037 first->txd.cookie = -EBUSY;
1038 first->total_len = total_len;
1039
1040 /* set end-of-link on the descriptor */
1041 set_desc_eol(desc);
1042
1043 first->txd.flags = flags;
1044
1045 return &first->txd;
1046
1047 err_put_desc:
1048 atc_desc_put(atchan, first);
1049 return NULL;
1050 }
1051
1052 /**
1053 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1054 * @chan: DMA channel
1055 * @sgl: scatterlist to transfer to/from
1056 * @sg_len: number of entries in @scatterlist
1057 * @direction: DMA direction
1058 * @flags: tx descriptor status flags
1059 * @context: transaction context (ignored)
1060 */
1061 static struct dma_async_tx_descriptor *
atc_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1062 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1063 unsigned int sg_len, enum dma_transfer_direction direction,
1064 unsigned long flags, void *context)
1065 {
1066 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1067 struct at_dma_slave *atslave = chan->private;
1068 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1069 struct at_desc *first = NULL;
1070 struct at_desc *prev = NULL;
1071 u32 ctrla;
1072 u32 ctrlb;
1073 dma_addr_t reg;
1074 unsigned int reg_width;
1075 unsigned int mem_width;
1076 unsigned int i;
1077 struct scatterlist *sg;
1078 size_t total_len = 0;
1079
1080 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1081 sg_len,
1082 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1083 flags);
1084
1085 if (unlikely(!atslave || !sg_len)) {
1086 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1087 return NULL;
1088 }
1089
1090 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1091 | ATC_DCSIZE(sconfig->dst_maxburst);
1092 ctrlb = ATC_IEN;
1093
1094 switch (direction) {
1095 case DMA_MEM_TO_DEV:
1096 reg_width = convert_buswidth(sconfig->dst_addr_width);
1097 ctrla |= ATC_DST_WIDTH(reg_width);
1098 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1099 | ATC_SRC_ADDR_MODE_INCR
1100 | ATC_FC_MEM2PER
1101 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1102 reg = sconfig->dst_addr;
1103 for_each_sg(sgl, sg, sg_len, i) {
1104 struct at_desc *desc;
1105 u32 len;
1106 u32 mem;
1107
1108 desc = atc_desc_get(atchan);
1109 if (!desc)
1110 goto err_desc_get;
1111
1112 mem = sg_dma_address(sg);
1113 len = sg_dma_len(sg);
1114 if (unlikely(!len)) {
1115 dev_dbg(chan2dev(chan),
1116 "prep_slave_sg: sg(%d) data length is zero\n", i);
1117 goto err;
1118 }
1119 mem_width = 2;
1120 if (unlikely(mem & 3 || len & 3))
1121 mem_width = 0;
1122
1123 desc->lli.saddr = mem;
1124 desc->lli.daddr = reg;
1125 desc->lli.ctrla = ctrla
1126 | ATC_SRC_WIDTH(mem_width)
1127 | len >> mem_width;
1128 desc->lli.ctrlb = ctrlb;
1129 desc->len = len;
1130
1131 atc_desc_chain(&first, &prev, desc);
1132 total_len += len;
1133 }
1134 break;
1135 case DMA_DEV_TO_MEM:
1136 reg_width = convert_buswidth(sconfig->src_addr_width);
1137 ctrla |= ATC_SRC_WIDTH(reg_width);
1138 ctrlb |= ATC_DST_ADDR_MODE_INCR
1139 | ATC_SRC_ADDR_MODE_FIXED
1140 | ATC_FC_PER2MEM
1141 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1142
1143 reg = sconfig->src_addr;
1144 for_each_sg(sgl, sg, sg_len, i) {
1145 struct at_desc *desc;
1146 u32 len;
1147 u32 mem;
1148
1149 desc = atc_desc_get(atchan);
1150 if (!desc)
1151 goto err_desc_get;
1152
1153 mem = sg_dma_address(sg);
1154 len = sg_dma_len(sg);
1155 if (unlikely(!len)) {
1156 dev_dbg(chan2dev(chan),
1157 "prep_slave_sg: sg(%d) data length is zero\n", i);
1158 goto err;
1159 }
1160 mem_width = 2;
1161 if (unlikely(mem & 3 || len & 3))
1162 mem_width = 0;
1163
1164 desc->lli.saddr = reg;
1165 desc->lli.daddr = mem;
1166 desc->lli.ctrla = ctrla
1167 | ATC_DST_WIDTH(mem_width)
1168 | len >> reg_width;
1169 desc->lli.ctrlb = ctrlb;
1170 desc->len = len;
1171
1172 atc_desc_chain(&first, &prev, desc);
1173 total_len += len;
1174 }
1175 break;
1176 default:
1177 return NULL;
1178 }
1179
1180 /* set end-of-link to the last link descriptor of list*/
1181 set_desc_eol(prev);
1182
1183 /* First descriptor of the chain embedds additional information */
1184 first->txd.cookie = -EBUSY;
1185 first->total_len = total_len;
1186
1187 /* first link descriptor of list is responsible of flags */
1188 first->txd.flags = flags; /* client is in control of this ack */
1189
1190 return &first->txd;
1191
1192 err_desc_get:
1193 dev_err(chan2dev(chan), "not enough descriptors available\n");
1194 err:
1195 atc_desc_put(atchan, first);
1196 return NULL;
1197 }
1198
1199 /*
1200 * atc_dma_cyclic_check_values
1201 * Check for too big/unaligned periods and unaligned DMA buffer
1202 */
1203 static int
atc_dma_cyclic_check_values(unsigned int reg_width,dma_addr_t buf_addr,size_t period_len)1204 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1205 size_t period_len)
1206 {
1207 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1208 goto err_out;
1209 if (unlikely(period_len & ((1 << reg_width) - 1)))
1210 goto err_out;
1211 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1212 goto err_out;
1213
1214 return 0;
1215
1216 err_out:
1217 return -EINVAL;
1218 }
1219
1220 /*
1221 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1222 */
1223 static int
atc_dma_cyclic_fill_desc(struct dma_chan * chan,struct at_desc * desc,unsigned int period_index,dma_addr_t buf_addr,unsigned int reg_width,size_t period_len,enum dma_transfer_direction direction)1224 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1225 unsigned int period_index, dma_addr_t buf_addr,
1226 unsigned int reg_width, size_t period_len,
1227 enum dma_transfer_direction direction)
1228 {
1229 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1230 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1231 u32 ctrla;
1232
1233 /* prepare common CRTLA value */
1234 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1235 | ATC_DCSIZE(sconfig->dst_maxburst)
1236 | ATC_DST_WIDTH(reg_width)
1237 | ATC_SRC_WIDTH(reg_width)
1238 | period_len >> reg_width;
1239
1240 switch (direction) {
1241 case DMA_MEM_TO_DEV:
1242 desc->lli.saddr = buf_addr + (period_len * period_index);
1243 desc->lli.daddr = sconfig->dst_addr;
1244 desc->lli.ctrla = ctrla;
1245 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1246 | ATC_SRC_ADDR_MODE_INCR
1247 | ATC_FC_MEM2PER
1248 | ATC_SIF(atchan->mem_if)
1249 | ATC_DIF(atchan->per_if);
1250 desc->len = period_len;
1251 break;
1252
1253 case DMA_DEV_TO_MEM:
1254 desc->lli.saddr = sconfig->src_addr;
1255 desc->lli.daddr = buf_addr + (period_len * period_index);
1256 desc->lli.ctrla = ctrla;
1257 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1258 | ATC_SRC_ADDR_MODE_FIXED
1259 | ATC_FC_PER2MEM
1260 | ATC_SIF(atchan->per_if)
1261 | ATC_DIF(atchan->mem_if);
1262 desc->len = period_len;
1263 break;
1264
1265 default:
1266 return -EINVAL;
1267 }
1268
1269 return 0;
1270 }
1271
1272 /**
1273 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1274 * @chan: the DMA channel to prepare
1275 * @buf_addr: physical DMA address where the buffer starts
1276 * @buf_len: total number of bytes for the entire buffer
1277 * @period_len: number of bytes for each period
1278 * @direction: transfer direction, to or from device
1279 * @flags: tx descriptor status flags
1280 */
1281 static struct dma_async_tx_descriptor *
atc_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1282 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1283 size_t period_len, enum dma_transfer_direction direction,
1284 unsigned long flags)
1285 {
1286 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1287 struct at_dma_slave *atslave = chan->private;
1288 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1289 struct at_desc *first = NULL;
1290 struct at_desc *prev = NULL;
1291 unsigned long was_cyclic;
1292 unsigned int reg_width;
1293 unsigned int periods = buf_len / period_len;
1294 unsigned int i;
1295
1296 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1297 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1298 &buf_addr,
1299 periods, buf_len, period_len);
1300
1301 if (unlikely(!atslave || !buf_len || !period_len)) {
1302 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1303 return NULL;
1304 }
1305
1306 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1307 if (was_cyclic) {
1308 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1309 return NULL;
1310 }
1311
1312 if (unlikely(!is_slave_direction(direction)))
1313 goto err_out;
1314
1315 if (direction == DMA_MEM_TO_DEV)
1316 reg_width = convert_buswidth(sconfig->dst_addr_width);
1317 else
1318 reg_width = convert_buswidth(sconfig->src_addr_width);
1319
1320 /* Check for too big/unaligned periods and unaligned DMA buffer */
1321 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1322 goto err_out;
1323
1324 /* build cyclic linked list */
1325 for (i = 0; i < periods; i++) {
1326 struct at_desc *desc;
1327
1328 desc = atc_desc_get(atchan);
1329 if (!desc)
1330 goto err_desc_get;
1331
1332 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1333 reg_width, period_len, direction))
1334 goto err_desc_get;
1335
1336 atc_desc_chain(&first, &prev, desc);
1337 }
1338
1339 /* lets make a cyclic list */
1340 prev->lli.dscr = first->txd.phys;
1341
1342 /* First descriptor of the chain embedds additional information */
1343 first->txd.cookie = -EBUSY;
1344 first->total_len = buf_len;
1345
1346 return &first->txd;
1347
1348 err_desc_get:
1349 dev_err(chan2dev(chan), "not enough descriptors available\n");
1350 atc_desc_put(atchan, first);
1351 err_out:
1352 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1353 return NULL;
1354 }
1355
atc_config(struct dma_chan * chan,struct dma_slave_config * sconfig)1356 static int atc_config(struct dma_chan *chan,
1357 struct dma_slave_config *sconfig)
1358 {
1359 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1360
1361 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1362
1363 /* Check if it is chan is configured for slave transfers */
1364 if (!chan->private)
1365 return -EINVAL;
1366
1367 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1368
1369 convert_burst(&atchan->dma_sconfig.src_maxburst);
1370 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1371
1372 return 0;
1373 }
1374
atc_pause(struct dma_chan * chan)1375 static int atc_pause(struct dma_chan *chan)
1376 {
1377 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1378 struct at_dma *atdma = to_at_dma(chan->device);
1379 int chan_id = atchan->chan_common.chan_id;
1380 unsigned long flags;
1381
1382 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1383
1384 spin_lock_irqsave(&atchan->lock, flags);
1385
1386 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1387 set_bit(ATC_IS_PAUSED, &atchan->status);
1388
1389 spin_unlock_irqrestore(&atchan->lock, flags);
1390
1391 return 0;
1392 }
1393
atc_resume(struct dma_chan * chan)1394 static int atc_resume(struct dma_chan *chan)
1395 {
1396 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1397 struct at_dma *atdma = to_at_dma(chan->device);
1398 int chan_id = atchan->chan_common.chan_id;
1399 unsigned long flags;
1400
1401 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1402
1403 if (!atc_chan_is_paused(atchan))
1404 return 0;
1405
1406 spin_lock_irqsave(&atchan->lock, flags);
1407
1408 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1409 clear_bit(ATC_IS_PAUSED, &atchan->status);
1410
1411 spin_unlock_irqrestore(&atchan->lock, flags);
1412
1413 return 0;
1414 }
1415
atc_terminate_all(struct dma_chan * chan)1416 static int atc_terminate_all(struct dma_chan *chan)
1417 {
1418 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1419 struct at_dma *atdma = to_at_dma(chan->device);
1420 int chan_id = atchan->chan_common.chan_id;
1421 struct at_desc *desc, *_desc;
1422 unsigned long flags;
1423
1424 LIST_HEAD(list);
1425
1426 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1427
1428 /*
1429 * This is only called when something went wrong elsewhere, so
1430 * we don't really care about the data. Just disable the
1431 * channel. We still have to poll the channel enable bit due
1432 * to AHB/HSB limitations.
1433 */
1434 spin_lock_irqsave(&atchan->lock, flags);
1435
1436 /* disabling channel: must also remove suspend state */
1437 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1438
1439 /* confirm that this channel is disabled */
1440 while (dma_readl(atdma, CHSR) & atchan->mask)
1441 cpu_relax();
1442
1443 /* active_list entries will end up before queued entries */
1444 list_splice_init(&atchan->queue, &list);
1445 list_splice_init(&atchan->active_list, &list);
1446
1447 spin_unlock_irqrestore(&atchan->lock, flags);
1448
1449 /* Flush all pending and queued descriptors */
1450 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451 atc_chain_complete(atchan, desc);
1452
1453 clear_bit(ATC_IS_PAUSED, &atchan->status);
1454 /* if channel dedicated to cyclic operations, free it */
1455 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456
1457 return 0;
1458 }
1459
1460 /**
1461 * atc_tx_status - poll for transaction completion
1462 * @chan: DMA channel
1463 * @cookie: transaction identifier to check status of
1464 * @txstate: if not %NULL updated with transaction state
1465 *
1466 * If @txstate is passed in, upon return it reflect the driver
1467 * internal state and can be used with dma_async_is_complete() to check
1468 * the status of multiple cookies without re-checking hardware state.
1469 */
1470 static enum dma_status
atc_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1471 atc_tx_status(struct dma_chan *chan,
1472 dma_cookie_t cookie,
1473 struct dma_tx_state *txstate)
1474 {
1475 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1476 unsigned long flags;
1477 enum dma_status ret;
1478 int bytes = 0;
1479
1480 ret = dma_cookie_status(chan, cookie, txstate);
1481 if (ret == DMA_COMPLETE)
1482 return ret;
1483 /*
1484 * There's no point calculating the residue if there's
1485 * no txstate to store the value.
1486 */
1487 if (!txstate)
1488 return DMA_ERROR;
1489
1490 spin_lock_irqsave(&atchan->lock, flags);
1491
1492 /* Get number of bytes left in the active transactions */
1493 bytes = atc_get_bytes_left(chan, cookie);
1494
1495 spin_unlock_irqrestore(&atchan->lock, flags);
1496
1497 if (unlikely(bytes < 0)) {
1498 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1499 return DMA_ERROR;
1500 } else {
1501 dma_set_residue(txstate, bytes);
1502 }
1503
1504 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1505 ret, cookie, bytes);
1506
1507 return ret;
1508 }
1509
1510 /**
1511 * atc_issue_pending - try to finish work
1512 * @chan: target DMA channel
1513 */
atc_issue_pending(struct dma_chan * chan)1514 static void atc_issue_pending(struct dma_chan *chan)
1515 {
1516 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1517
1518 dev_vdbg(chan2dev(chan), "issue_pending\n");
1519
1520 /* Not needed for cyclic transfers */
1521 if (atc_chan_is_cyclic(atchan))
1522 return;
1523
1524 atc_advance_work(atchan);
1525 }
1526
1527 /**
1528 * atc_alloc_chan_resources - allocate resources for DMA channel
1529 * @chan: allocate descriptor resources for this channel
1530 *
1531 * return - the number of allocated descriptors
1532 */
atc_alloc_chan_resources(struct dma_chan * chan)1533 static int atc_alloc_chan_resources(struct dma_chan *chan)
1534 {
1535 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1536 struct at_dma *atdma = to_at_dma(chan->device);
1537 struct at_desc *desc;
1538 struct at_dma_slave *atslave;
1539 int i;
1540 u32 cfg;
1541
1542 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1543
1544 /* ASSERT: channel is idle */
1545 if (atc_chan_is_enabled(atchan)) {
1546 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1547 return -EIO;
1548 }
1549
1550 if (!list_empty(&atchan->free_list)) {
1551 dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1552 return -EIO;
1553 }
1554
1555 cfg = ATC_DEFAULT_CFG;
1556
1557 atslave = chan->private;
1558 if (atslave) {
1559 /*
1560 * We need controller-specific data to set up slave
1561 * transfers.
1562 */
1563 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1564
1565 /* if cfg configuration specified take it instead of default */
1566 if (atslave->cfg)
1567 cfg = atslave->cfg;
1568 }
1569
1570 /* Allocate initial pool of descriptors */
1571 for (i = 0; i < init_nr_desc_per_channel; i++) {
1572 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1573 if (!desc) {
1574 dev_err(atdma->dma_common.dev,
1575 "Only %d initial descriptors\n", i);
1576 break;
1577 }
1578 list_add_tail(&desc->desc_node, &atchan->free_list);
1579 }
1580
1581 dma_cookie_init(chan);
1582
1583 /* channel parameters */
1584 channel_writel(atchan, CFG, cfg);
1585
1586 dev_dbg(chan2dev(chan),
1587 "alloc_chan_resources: allocated %d descriptors\n", i);
1588
1589 return i;
1590 }
1591
1592 /**
1593 * atc_free_chan_resources - free all channel resources
1594 * @chan: DMA channel
1595 */
atc_free_chan_resources(struct dma_chan * chan)1596 static void atc_free_chan_resources(struct dma_chan *chan)
1597 {
1598 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1599 struct at_dma *atdma = to_at_dma(chan->device);
1600 struct at_desc *desc, *_desc;
1601 LIST_HEAD(list);
1602
1603 /* ASSERT: channel is idle */
1604 BUG_ON(!list_empty(&atchan->active_list));
1605 BUG_ON(!list_empty(&atchan->queue));
1606 BUG_ON(atc_chan_is_enabled(atchan));
1607
1608 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1609 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1610 list_del(&desc->desc_node);
1611 /* free link descriptor */
1612 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1613 }
1614 list_splice_init(&atchan->free_list, &list);
1615 atchan->status = 0;
1616
1617 /*
1618 * Free atslave allocated in at_dma_xlate()
1619 */
1620 kfree(chan->private);
1621 chan->private = NULL;
1622
1623 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1624 }
1625
1626 #ifdef CONFIG_OF
at_dma_filter(struct dma_chan * chan,void * slave)1627 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1628 {
1629 struct at_dma_slave *atslave = slave;
1630
1631 if (atslave->dma_dev == chan->device->dev) {
1632 chan->private = atslave;
1633 return true;
1634 } else {
1635 return false;
1636 }
1637 }
1638
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1639 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1640 struct of_dma *of_dma)
1641 {
1642 struct dma_chan *chan;
1643 struct at_dma_chan *atchan;
1644 struct at_dma_slave *atslave;
1645 dma_cap_mask_t mask;
1646 unsigned int per_id;
1647 struct platform_device *dmac_pdev;
1648
1649 if (dma_spec->args_count != 2)
1650 return NULL;
1651
1652 dmac_pdev = of_find_device_by_node(dma_spec->np);
1653 if (!dmac_pdev)
1654 return NULL;
1655
1656 dma_cap_zero(mask);
1657 dma_cap_set(DMA_SLAVE, mask);
1658
1659 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1660 if (!atslave) {
1661 put_device(&dmac_pdev->dev);
1662 return NULL;
1663 }
1664
1665 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1666 /*
1667 * We can fill both SRC_PER and DST_PER, one of these fields will be
1668 * ignored depending on DMA transfer direction.
1669 */
1670 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1671 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1672 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1673 /*
1674 * We have to translate the value we get from the device tree since
1675 * the half FIFO configuration value had to be 0 to keep backward
1676 * compatibility.
1677 */
1678 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1679 case AT91_DMA_CFG_FIFOCFG_ALAP:
1680 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1681 break;
1682 case AT91_DMA_CFG_FIFOCFG_ASAP:
1683 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1684 break;
1685 case AT91_DMA_CFG_FIFOCFG_HALF:
1686 default:
1687 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1688 }
1689 atslave->dma_dev = &dmac_pdev->dev;
1690
1691 chan = dma_request_channel(mask, at_dma_filter, atslave);
1692 if (!chan) {
1693 put_device(&dmac_pdev->dev);
1694 kfree(atslave);
1695 return NULL;
1696 }
1697
1698 atchan = to_at_dma_chan(chan);
1699 atchan->per_if = dma_spec->args[0] & 0xff;
1700 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1701
1702 return chan;
1703 }
1704 #else
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1705 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1706 struct of_dma *of_dma)
1707 {
1708 return NULL;
1709 }
1710 #endif
1711
1712 /*-- Module Management -----------------------------------------------*/
1713
1714 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1715 static struct at_dma_platform_data at91sam9rl_config = {
1716 .nr_channels = 2,
1717 };
1718 static struct at_dma_platform_data at91sam9g45_config = {
1719 .nr_channels = 8,
1720 };
1721
1722 #if defined(CONFIG_OF)
1723 static const struct of_device_id atmel_dma_dt_ids[] = {
1724 {
1725 .compatible = "atmel,at91sam9rl-dma",
1726 .data = &at91sam9rl_config,
1727 }, {
1728 .compatible = "atmel,at91sam9g45-dma",
1729 .data = &at91sam9g45_config,
1730 }, {
1731 /* sentinel */
1732 }
1733 };
1734
1735 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1736 #endif
1737
1738 static const struct platform_device_id atdma_devtypes[] = {
1739 {
1740 .name = "at91sam9rl_dma",
1741 .driver_data = (unsigned long) &at91sam9rl_config,
1742 }, {
1743 .name = "at91sam9g45_dma",
1744 .driver_data = (unsigned long) &at91sam9g45_config,
1745 }, {
1746 /* sentinel */
1747 }
1748 };
1749
at_dma_get_driver_data(struct platform_device * pdev)1750 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1751 struct platform_device *pdev)
1752 {
1753 if (pdev->dev.of_node) {
1754 const struct of_device_id *match;
1755 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1756 if (match == NULL)
1757 return NULL;
1758 return match->data;
1759 }
1760 return (struct at_dma_platform_data *)
1761 platform_get_device_id(pdev)->driver_data;
1762 }
1763
1764 /**
1765 * at_dma_off - disable DMA controller
1766 * @atdma: the Atmel HDAMC device
1767 */
at_dma_off(struct at_dma * atdma)1768 static void at_dma_off(struct at_dma *atdma)
1769 {
1770 dma_writel(atdma, EN, 0);
1771
1772 /* disable all interrupts */
1773 dma_writel(atdma, EBCIDR, -1L);
1774
1775 /* confirm that all channels are disabled */
1776 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1777 cpu_relax();
1778 }
1779
at_dma_probe(struct platform_device * pdev)1780 static int __init at_dma_probe(struct platform_device *pdev)
1781 {
1782 struct resource *io;
1783 struct at_dma *atdma;
1784 size_t size;
1785 int irq;
1786 int err;
1787 int i;
1788 const struct at_dma_platform_data *plat_dat;
1789
1790 /* setup platform data for each SoC */
1791 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1792 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1793 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1794 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1795 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1796 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1797 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1798
1799 /* get DMA parameters from controller type */
1800 plat_dat = at_dma_get_driver_data(pdev);
1801 if (!plat_dat)
1802 return -ENODEV;
1803
1804 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1805 if (!io)
1806 return -EINVAL;
1807
1808 irq = platform_get_irq(pdev, 0);
1809 if (irq < 0)
1810 return irq;
1811
1812 size = sizeof(struct at_dma);
1813 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1814 atdma = kzalloc(size, GFP_KERNEL);
1815 if (!atdma)
1816 return -ENOMEM;
1817
1818 /* discover transaction capabilities */
1819 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1820 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1821
1822 size = resource_size(io);
1823 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1824 err = -EBUSY;
1825 goto err_kfree;
1826 }
1827
1828 atdma->regs = ioremap(io->start, size);
1829 if (!atdma->regs) {
1830 err = -ENOMEM;
1831 goto err_release_r;
1832 }
1833
1834 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1835 if (IS_ERR(atdma->clk)) {
1836 err = PTR_ERR(atdma->clk);
1837 goto err_clk;
1838 }
1839 err = clk_prepare_enable(atdma->clk);
1840 if (err)
1841 goto err_clk_prepare;
1842
1843 /* force dma off, just in case */
1844 at_dma_off(atdma);
1845
1846 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1847 if (err)
1848 goto err_irq;
1849
1850 platform_set_drvdata(pdev, atdma);
1851
1852 /* create a pool of consistent memory blocks for hardware descriptors */
1853 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1854 &pdev->dev, sizeof(struct at_desc),
1855 4 /* word alignment */, 0);
1856 if (!atdma->dma_desc_pool) {
1857 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1858 err = -ENOMEM;
1859 goto err_desc_pool_create;
1860 }
1861
1862 /* create a pool of consistent memory blocks for memset blocks */
1863 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1864 &pdev->dev, sizeof(int), 4, 0);
1865 if (!atdma->memset_pool) {
1866 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1867 err = -ENOMEM;
1868 goto err_memset_pool_create;
1869 }
1870
1871 /* clear any pending interrupt */
1872 while (dma_readl(atdma, EBCISR))
1873 cpu_relax();
1874
1875 /* initialize channels related values */
1876 INIT_LIST_HEAD(&atdma->dma_common.channels);
1877 for (i = 0; i < plat_dat->nr_channels; i++) {
1878 struct at_dma_chan *atchan = &atdma->chan[i];
1879
1880 atchan->mem_if = AT_DMA_MEM_IF;
1881 atchan->per_if = AT_DMA_PER_IF;
1882 atchan->chan_common.device = &atdma->dma_common;
1883 dma_cookie_init(&atchan->chan_common);
1884 list_add_tail(&atchan->chan_common.device_node,
1885 &atdma->dma_common.channels);
1886
1887 atchan->ch_regs = atdma->regs + ch_regs(i);
1888 spin_lock_init(&atchan->lock);
1889 atchan->mask = 1 << i;
1890
1891 INIT_LIST_HEAD(&atchan->active_list);
1892 INIT_LIST_HEAD(&atchan->queue);
1893 INIT_LIST_HEAD(&atchan->free_list);
1894
1895 tasklet_setup(&atchan->tasklet, atc_tasklet);
1896 atc_enable_chan_irq(atdma, i);
1897 }
1898
1899 /* set base routines */
1900 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1901 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1902 atdma->dma_common.device_tx_status = atc_tx_status;
1903 atdma->dma_common.device_issue_pending = atc_issue_pending;
1904 atdma->dma_common.dev = &pdev->dev;
1905
1906 /* set prep routines based on capability */
1907 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1908 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1909
1910 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1911 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1912
1913 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1914 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1915 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1916 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1917 }
1918
1919 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1920 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1921 /* controller can do slave DMA: can trigger cyclic transfers */
1922 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1923 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1924 atdma->dma_common.device_config = atc_config;
1925 atdma->dma_common.device_pause = atc_pause;
1926 atdma->dma_common.device_resume = atc_resume;
1927 atdma->dma_common.device_terminate_all = atc_terminate_all;
1928 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1929 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1930 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1931 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1932 }
1933
1934 dma_writel(atdma, EN, AT_DMA_ENABLE);
1935
1936 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1937 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1938 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1939 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1940 plat_dat->nr_channels);
1941
1942 dma_async_device_register(&atdma->dma_common);
1943
1944 /*
1945 * Do not return an error if the dmac node is not present in order to
1946 * not break the existing way of requesting channel with
1947 * dma_request_channel().
1948 */
1949 if (pdev->dev.of_node) {
1950 err = of_dma_controller_register(pdev->dev.of_node,
1951 at_dma_xlate, atdma);
1952 if (err) {
1953 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1954 goto err_of_dma_controller_register;
1955 }
1956 }
1957
1958 return 0;
1959
1960 err_of_dma_controller_register:
1961 dma_async_device_unregister(&atdma->dma_common);
1962 dma_pool_destroy(atdma->memset_pool);
1963 err_memset_pool_create:
1964 dma_pool_destroy(atdma->dma_desc_pool);
1965 err_desc_pool_create:
1966 free_irq(platform_get_irq(pdev, 0), atdma);
1967 err_irq:
1968 clk_disable_unprepare(atdma->clk);
1969 err_clk_prepare:
1970 clk_put(atdma->clk);
1971 err_clk:
1972 iounmap(atdma->regs);
1973 atdma->regs = NULL;
1974 err_release_r:
1975 release_mem_region(io->start, size);
1976 err_kfree:
1977 kfree(atdma);
1978 return err;
1979 }
1980
at_dma_remove(struct platform_device * pdev)1981 static int at_dma_remove(struct platform_device *pdev)
1982 {
1983 struct at_dma *atdma = platform_get_drvdata(pdev);
1984 struct dma_chan *chan, *_chan;
1985 struct resource *io;
1986
1987 at_dma_off(atdma);
1988 if (pdev->dev.of_node)
1989 of_dma_controller_free(pdev->dev.of_node);
1990 dma_async_device_unregister(&atdma->dma_common);
1991
1992 dma_pool_destroy(atdma->memset_pool);
1993 dma_pool_destroy(atdma->dma_desc_pool);
1994 free_irq(platform_get_irq(pdev, 0), atdma);
1995
1996 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1997 device_node) {
1998 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1999
2000 /* Disable interrupts */
2001 atc_disable_chan_irq(atdma, chan->chan_id);
2002
2003 tasklet_kill(&atchan->tasklet);
2004 list_del(&chan->device_node);
2005 }
2006
2007 clk_disable_unprepare(atdma->clk);
2008 clk_put(atdma->clk);
2009
2010 iounmap(atdma->regs);
2011 atdma->regs = NULL;
2012
2013 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2014 release_mem_region(io->start, resource_size(io));
2015
2016 kfree(atdma);
2017
2018 return 0;
2019 }
2020
at_dma_shutdown(struct platform_device * pdev)2021 static void at_dma_shutdown(struct platform_device *pdev)
2022 {
2023 struct at_dma *atdma = platform_get_drvdata(pdev);
2024
2025 at_dma_off(platform_get_drvdata(pdev));
2026 clk_disable_unprepare(atdma->clk);
2027 }
2028
at_dma_prepare(struct device * dev)2029 static int at_dma_prepare(struct device *dev)
2030 {
2031 struct at_dma *atdma = dev_get_drvdata(dev);
2032 struct dma_chan *chan, *_chan;
2033
2034 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2035 device_node) {
2036 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2037 /* wait for transaction completion (except in cyclic case) */
2038 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2039 return -EAGAIN;
2040 }
2041 return 0;
2042 }
2043
atc_suspend_cyclic(struct at_dma_chan * atchan)2044 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2045 {
2046 struct dma_chan *chan = &atchan->chan_common;
2047
2048 /* Channel should be paused by user
2049 * do it anyway even if it is not done already */
2050 if (!atc_chan_is_paused(atchan)) {
2051 dev_warn(chan2dev(chan),
2052 "cyclic channel not paused, should be done by channel user\n");
2053 atc_pause(chan);
2054 }
2055
2056 /* now preserve additional data for cyclic operations */
2057 /* next descriptor address in the cyclic list */
2058 atchan->save_dscr = channel_readl(atchan, DSCR);
2059
2060 vdbg_dump_regs(atchan);
2061 }
2062
at_dma_suspend_noirq(struct device * dev)2063 static int at_dma_suspend_noirq(struct device *dev)
2064 {
2065 struct at_dma *atdma = dev_get_drvdata(dev);
2066 struct dma_chan *chan, *_chan;
2067
2068 /* preserve data */
2069 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2070 device_node) {
2071 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2072
2073 if (atc_chan_is_cyclic(atchan))
2074 atc_suspend_cyclic(atchan);
2075 atchan->save_cfg = channel_readl(atchan, CFG);
2076 }
2077 atdma->save_imr = dma_readl(atdma, EBCIMR);
2078
2079 /* disable DMA controller */
2080 at_dma_off(atdma);
2081 clk_disable_unprepare(atdma->clk);
2082 return 0;
2083 }
2084
atc_resume_cyclic(struct at_dma_chan * atchan)2085 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2086 {
2087 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2088
2089 /* restore channel status for cyclic descriptors list:
2090 * next descriptor in the cyclic list at the time of suspend */
2091 channel_writel(atchan, SADDR, 0);
2092 channel_writel(atchan, DADDR, 0);
2093 channel_writel(atchan, CTRLA, 0);
2094 channel_writel(atchan, CTRLB, 0);
2095 channel_writel(atchan, DSCR, atchan->save_dscr);
2096 dma_writel(atdma, CHER, atchan->mask);
2097
2098 /* channel pause status should be removed by channel user
2099 * We cannot take the initiative to do it here */
2100
2101 vdbg_dump_regs(atchan);
2102 }
2103
at_dma_resume_noirq(struct device * dev)2104 static int at_dma_resume_noirq(struct device *dev)
2105 {
2106 struct at_dma *atdma = dev_get_drvdata(dev);
2107 struct dma_chan *chan, *_chan;
2108
2109 /* bring back DMA controller */
2110 clk_prepare_enable(atdma->clk);
2111 dma_writel(atdma, EN, AT_DMA_ENABLE);
2112
2113 /* clear any pending interrupt */
2114 while (dma_readl(atdma, EBCISR))
2115 cpu_relax();
2116
2117 /* restore saved data */
2118 dma_writel(atdma, EBCIER, atdma->save_imr);
2119 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2120 device_node) {
2121 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2122
2123 channel_writel(atchan, CFG, atchan->save_cfg);
2124 if (atc_chan_is_cyclic(atchan))
2125 atc_resume_cyclic(atchan);
2126 }
2127 return 0;
2128 }
2129
2130 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2131 .prepare = at_dma_prepare,
2132 .suspend_noirq = at_dma_suspend_noirq,
2133 .resume_noirq = at_dma_resume_noirq,
2134 };
2135
2136 static struct platform_driver at_dma_driver = {
2137 .remove = at_dma_remove,
2138 .shutdown = at_dma_shutdown,
2139 .id_table = atdma_devtypes,
2140 .driver = {
2141 .name = "at_hdmac",
2142 .pm = &at_dma_dev_pm_ops,
2143 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2144 },
2145 };
2146
at_dma_init(void)2147 static int __init at_dma_init(void)
2148 {
2149 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2150 }
2151 subsys_initcall(at_dma_init);
2152
at_dma_exit(void)2153 static void __exit at_dma_exit(void)
2154 {
2155 platform_driver_unregister(&at_dma_driver);
2156 }
2157 module_exit(at_dma_exit);
2158
2159 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2160 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2161 MODULE_LICENSE("GPL");
2162 MODULE_ALIAS("platform:at_hdmac");
2163