1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MediaTek UART APDMA driver.
4 *
5 * Copyright (c) 2019 MediaTek Inc.
6 * Author: Long Cheng <long.cheng@mediatek.com>
7 */
8
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25
26 #include "../virt-dma.h"
27
28 /* The default number of virtual channel */
29 #define MTK_UART_APDMA_NR_VCHANS 8
30
31 #define VFF_EN_B BIT(0)
32 #define VFF_STOP_B BIT(0)
33 #define VFF_FLUSH_B BIT(0)
34 #define VFF_4G_EN_B BIT(0)
35 /* rx valid size >= vff thre */
36 #define VFF_RX_INT_EN_B (BIT(0) | BIT(1))
37 /* tx left size >= vff thre */
38 #define VFF_TX_INT_EN_B BIT(0)
39 #define VFF_WARM_RST_B BIT(0)
40 #define VFF_RX_INT_CLR_B (BIT(0) | BIT(1))
41 #define VFF_TX_INT_CLR_B 0
42 #define VFF_STOP_CLR_B 0
43 #define VFF_EN_CLR_B 0
44 #define VFF_INT_EN_CLR_B 0
45 #define VFF_4G_SUPPORT_CLR_B 0
46
47 /*
48 * interrupt trigger level for tx
49 * if threshold is n, no polling is required to start tx.
50 * otherwise need polling VFF_FLUSH.
51 */
52 #define VFF_TX_THRE(n) (n)
53 /* interrupt trigger level for rx */
54 #define VFF_RX_THRE(n) ((n) * 3 / 4)
55
56 #define VFF_RING_SIZE 0xffff
57 /* invert this bit when wrap ring head again */
58 #define VFF_RING_WRAP 0x10000
59
60 #define VFF_INT_FLAG 0x00
61 #define VFF_INT_EN 0x04
62 #define VFF_EN 0x08
63 #define VFF_RST 0x0c
64 #define VFF_STOP 0x10
65 #define VFF_FLUSH 0x14
66 #define VFF_ADDR 0x1c
67 #define VFF_LEN 0x24
68 #define VFF_THRE 0x28
69 #define VFF_WPT 0x2c
70 #define VFF_RPT 0x30
71 /* TX: the buffer size HW can read. RX: the buffer size SW can read. */
72 #define VFF_VALID_SIZE 0x3c
73 /* TX: the buffer size SW can write. RX: the buffer size HW can write. */
74 #define VFF_LEFT_SIZE 0x40
75 #define VFF_DEBUG_STATUS 0x50
76 #define VFF_4G_SUPPORT 0x54
77
78 struct mtk_uart_apdmadev {
79 struct dma_device ddev;
80 struct clk *clk;
81 bool support_33bits;
82 unsigned int dma_requests;
83 };
84
85 struct mtk_uart_apdma_desc {
86 struct virt_dma_desc vd;
87
88 dma_addr_t addr;
89 unsigned int avail_len;
90 };
91
92 struct mtk_chan {
93 struct virt_dma_chan vc;
94 struct dma_slave_config cfg;
95 struct mtk_uart_apdma_desc *desc;
96 enum dma_transfer_direction dir;
97
98 void __iomem *base;
99 unsigned int irq;
100
101 unsigned int rx_status;
102 };
103
104 static inline struct mtk_uart_apdmadev *
to_mtk_uart_apdma_dev(struct dma_device * d)105 to_mtk_uart_apdma_dev(struct dma_device *d)
106 {
107 return container_of(d, struct mtk_uart_apdmadev, ddev);
108 }
109
to_mtk_uart_apdma_chan(struct dma_chan * c)110 static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c)
111 {
112 return container_of(c, struct mtk_chan, vc.chan);
113 }
114
to_mtk_uart_apdma_desc(struct dma_async_tx_descriptor * t)115 static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc
116 (struct dma_async_tx_descriptor *t)
117 {
118 return container_of(t, struct mtk_uart_apdma_desc, vd.tx);
119 }
120
mtk_uart_apdma_write(struct mtk_chan * c,unsigned int reg,unsigned int val)121 static void mtk_uart_apdma_write(struct mtk_chan *c,
122 unsigned int reg, unsigned int val)
123 {
124 writel(val, c->base + reg);
125 }
126
mtk_uart_apdma_read(struct mtk_chan * c,unsigned int reg)127 static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg)
128 {
129 return readl(c->base + reg);
130 }
131
mtk_uart_apdma_desc_free(struct virt_dma_desc * vd)132 static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd)
133 {
134 kfree(container_of(vd, struct mtk_uart_apdma_desc, vd));
135 }
136
mtk_uart_apdma_start_tx(struct mtk_chan * c)137 static void mtk_uart_apdma_start_tx(struct mtk_chan *c)
138 {
139 struct mtk_uart_apdmadev *mtkd =
140 to_mtk_uart_apdma_dev(c->vc.chan.device);
141 struct mtk_uart_apdma_desc *d = c->desc;
142 unsigned int wpt, vff_sz;
143
144 vff_sz = c->cfg.dst_port_window_size;
145 if (!mtk_uart_apdma_read(c, VFF_LEN)) {
146 mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
147 mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
148 mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz));
149 mtk_uart_apdma_write(c, VFF_WPT, 0);
150 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
151
152 if (mtkd->support_33bits)
153 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
154 }
155
156 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
157 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
158 dev_err(c->vc.chan.device->dev, "Enable TX fail\n");
159
160 if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) {
161 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
162 return;
163 }
164
165 wpt = mtk_uart_apdma_read(c, VFF_WPT);
166
167 wpt += c->desc->avail_len;
168 if ((wpt & VFF_RING_SIZE) == vff_sz)
169 wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP;
170
171 /* Let DMA start moving data */
172 mtk_uart_apdma_write(c, VFF_WPT, wpt);
173
174 /* HW auto set to 0 when left size >= threshold */
175 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
176 if (!mtk_uart_apdma_read(c, VFF_FLUSH))
177 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
178 }
179
mtk_uart_apdma_start_rx(struct mtk_chan * c)180 static void mtk_uart_apdma_start_rx(struct mtk_chan *c)
181 {
182 struct mtk_uart_apdmadev *mtkd =
183 to_mtk_uart_apdma_dev(c->vc.chan.device);
184 struct mtk_uart_apdma_desc *d = c->desc;
185 unsigned int vff_sz;
186
187 vff_sz = c->cfg.src_port_window_size;
188 if (!mtk_uart_apdma_read(c, VFF_LEN)) {
189 mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
190 mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
191 mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz));
192 mtk_uart_apdma_write(c, VFF_RPT, 0);
193 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
194
195 if (mtkd->support_33bits)
196 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
197 }
198
199 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B);
200 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
201 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
202 dev_err(c->vc.chan.device->dev, "Enable RX fail\n");
203 }
204
mtk_uart_apdma_tx_handler(struct mtk_chan * c)205 static void mtk_uart_apdma_tx_handler(struct mtk_chan *c)
206 {
207 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
208 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
209 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
210 }
211
mtk_uart_apdma_rx_handler(struct mtk_chan * c)212 static void mtk_uart_apdma_rx_handler(struct mtk_chan *c)
213 {
214 struct mtk_uart_apdma_desc *d = c->desc;
215 unsigned int len, wg, rg;
216 int cnt;
217
218 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
219
220 if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE))
221 return;
222
223 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
224 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
225
226 len = c->cfg.src_port_window_size;
227 rg = mtk_uart_apdma_read(c, VFF_RPT);
228 wg = mtk_uart_apdma_read(c, VFF_WPT);
229 cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE);
230
231 /*
232 * The buffer is ring buffer. If wrap bit different,
233 * represents the start of the next cycle for WPT
234 */
235 if ((rg ^ wg) & VFF_RING_WRAP)
236 cnt += len;
237
238 c->rx_status = d->avail_len - cnt;
239 mtk_uart_apdma_write(c, VFF_RPT, wg);
240 }
241
mtk_uart_apdma_chan_complete_handler(struct mtk_chan * c)242 static void mtk_uart_apdma_chan_complete_handler(struct mtk_chan *c)
243 {
244 struct mtk_uart_apdma_desc *d = c->desc;
245
246 if (d) {
247 list_del(&d->vd.node);
248 vchan_cookie_complete(&d->vd);
249 c->desc = NULL;
250 }
251 }
252
mtk_uart_apdma_irq_handler(int irq,void * dev_id)253 static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id)
254 {
255 struct dma_chan *chan = (struct dma_chan *)dev_id;
256 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
257 unsigned long flags;
258
259 spin_lock_irqsave(&c->vc.lock, flags);
260 if (c->dir == DMA_DEV_TO_MEM)
261 mtk_uart_apdma_rx_handler(c);
262 else if (c->dir == DMA_MEM_TO_DEV)
263 mtk_uart_apdma_tx_handler(c);
264 mtk_uart_apdma_chan_complete_handler(c);
265 spin_unlock_irqrestore(&c->vc.lock, flags);
266
267 return IRQ_HANDLED;
268 }
269
mtk_uart_apdma_alloc_chan_resources(struct dma_chan * chan)270 static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan)
271 {
272 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
273 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
274 unsigned int status;
275 int ret;
276
277 ret = pm_runtime_get_sync(mtkd->ddev.dev);
278 if (ret < 0) {
279 pm_runtime_put_noidle(chan->device->dev);
280 return ret;
281 }
282
283 mtk_uart_apdma_write(c, VFF_ADDR, 0);
284 mtk_uart_apdma_write(c, VFF_THRE, 0);
285 mtk_uart_apdma_write(c, VFF_LEN, 0);
286 mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B);
287
288 ret = readx_poll_timeout(readl, c->base + VFF_EN,
289 status, !status, 10, 100);
290 if (ret)
291 return ret;
292
293 ret = request_irq(c->irq, mtk_uart_apdma_irq_handler,
294 IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan);
295 if (ret < 0) {
296 dev_err(chan->device->dev, "Can't request dma IRQ\n");
297 return -EINVAL;
298 }
299
300 if (mtkd->support_33bits)
301 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B);
302
303 return ret;
304 }
305
mtk_uart_apdma_free_chan_resources(struct dma_chan * chan)306 static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan)
307 {
308 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
309 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
310
311 free_irq(c->irq, chan);
312
313 tasklet_kill(&c->vc.task);
314
315 vchan_free_chan_resources(&c->vc);
316
317 pm_runtime_put_sync(mtkd->ddev.dev);
318 }
319
mtk_uart_apdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)320 static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan,
321 dma_cookie_t cookie,
322 struct dma_tx_state *txstate)
323 {
324 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
325 enum dma_status ret;
326
327 ret = dma_cookie_status(chan, cookie, txstate);
328 if (!txstate)
329 return ret;
330
331 dma_set_residue(txstate, c->rx_status);
332
333 return ret;
334 }
335
336 /*
337 * dmaengine_prep_slave_single will call the function. and sglen is 1.
338 * 8250 uart using one ring buffer, and deal with one sg.
339 */
mtk_uart_apdma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sglen,enum dma_transfer_direction dir,unsigned long tx_flags,void * context)340 static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg
341 (struct dma_chan *chan, struct scatterlist *sgl,
342 unsigned int sglen, enum dma_transfer_direction dir,
343 unsigned long tx_flags, void *context)
344 {
345 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
346 struct mtk_uart_apdma_desc *d;
347
348 if (!is_slave_direction(dir) || sglen != 1)
349 return NULL;
350
351 /* Now allocate and setup the descriptor */
352 d = kzalloc(sizeof(*d), GFP_NOWAIT);
353 if (!d)
354 return NULL;
355
356 d->avail_len = sg_dma_len(sgl);
357 d->addr = sg_dma_address(sgl);
358 c->dir = dir;
359
360 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
361 }
362
mtk_uart_apdma_issue_pending(struct dma_chan * chan)363 static void mtk_uart_apdma_issue_pending(struct dma_chan *chan)
364 {
365 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
366 struct virt_dma_desc *vd;
367 unsigned long flags;
368
369 spin_lock_irqsave(&c->vc.lock, flags);
370 if (vchan_issue_pending(&c->vc) && !c->desc) {
371 vd = vchan_next_desc(&c->vc);
372 c->desc = to_mtk_uart_apdma_desc(&vd->tx);
373
374 if (c->dir == DMA_DEV_TO_MEM)
375 mtk_uart_apdma_start_rx(c);
376 else if (c->dir == DMA_MEM_TO_DEV)
377 mtk_uart_apdma_start_tx(c);
378 }
379
380 spin_unlock_irqrestore(&c->vc.lock, flags);
381 }
382
mtk_uart_apdma_slave_config(struct dma_chan * chan,struct dma_slave_config * config)383 static int mtk_uart_apdma_slave_config(struct dma_chan *chan,
384 struct dma_slave_config *config)
385 {
386 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
387
388 memcpy(&c->cfg, config, sizeof(*config));
389
390 return 0;
391 }
392
mtk_uart_apdma_terminate_all(struct dma_chan * chan)393 static int mtk_uart_apdma_terminate_all(struct dma_chan *chan)
394 {
395 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
396 unsigned long flags;
397 unsigned int status;
398 LIST_HEAD(head);
399 int ret;
400
401 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
402
403 ret = readx_poll_timeout(readl, c->base + VFF_FLUSH,
404 status, status != VFF_FLUSH_B, 10, 100);
405 if (ret)
406 dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n",
407 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
408
409 /*
410 * Stop need 3 steps.
411 * 1. set stop to 1
412 * 2. wait en to 0
413 * 3. set stop as 0
414 */
415 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B);
416 ret = readx_poll_timeout(readl, c->base + VFF_EN,
417 status, !status, 10, 100);
418 if (ret)
419 dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n",
420 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
421
422 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B);
423 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
424
425 if (c->dir == DMA_DEV_TO_MEM)
426 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
427 else if (c->dir == DMA_MEM_TO_DEV)
428 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
429
430 synchronize_irq(c->irq);
431
432 spin_lock_irqsave(&c->vc.lock, flags);
433 vchan_get_all_descriptors(&c->vc, &head);
434 spin_unlock_irqrestore(&c->vc.lock, flags);
435
436 vchan_dma_desc_free_list(&c->vc, &head);
437
438 return 0;
439 }
440
mtk_uart_apdma_device_pause(struct dma_chan * chan)441 static int mtk_uart_apdma_device_pause(struct dma_chan *chan)
442 {
443 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
444 unsigned long flags;
445
446 spin_lock_irqsave(&c->vc.lock, flags);
447
448 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
449 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
450
451 synchronize_irq(c->irq);
452
453 spin_unlock_irqrestore(&c->vc.lock, flags);
454
455 return 0;
456 }
457
mtk_uart_apdma_free(struct mtk_uart_apdmadev * mtkd)458 static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd)
459 {
460 while (!list_empty(&mtkd->ddev.channels)) {
461 struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels,
462 struct mtk_chan, vc.chan.device_node);
463
464 list_del(&c->vc.chan.device_node);
465 tasklet_kill(&c->vc.task);
466 }
467 }
468
469 static const struct of_device_id mtk_uart_apdma_match[] = {
470 { .compatible = "mediatek,mt6577-uart-dma", },
471 { /* sentinel */ },
472 };
473 MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match);
474
mtk_uart_apdma_probe(struct platform_device * pdev)475 static int mtk_uart_apdma_probe(struct platform_device *pdev)
476 {
477 struct device_node *np = pdev->dev.of_node;
478 struct mtk_uart_apdmadev *mtkd;
479 int bit_mask = 32, rc;
480 struct mtk_chan *c;
481 unsigned int i;
482
483 mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL);
484 if (!mtkd)
485 return -ENOMEM;
486
487 mtkd->clk = devm_clk_get(&pdev->dev, NULL);
488 if (IS_ERR(mtkd->clk)) {
489 dev_err(&pdev->dev, "No clock specified\n");
490 rc = PTR_ERR(mtkd->clk);
491 return rc;
492 }
493
494 if (of_property_read_bool(np, "mediatek,dma-33bits"))
495 mtkd->support_33bits = true;
496
497 if (mtkd->support_33bits)
498 bit_mask = 33;
499
500 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(bit_mask));
501 if (rc)
502 return rc;
503
504 dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask);
505 mtkd->ddev.device_alloc_chan_resources =
506 mtk_uart_apdma_alloc_chan_resources;
507 mtkd->ddev.device_free_chan_resources =
508 mtk_uart_apdma_free_chan_resources;
509 mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status;
510 mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending;
511 mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg;
512 mtkd->ddev.device_config = mtk_uart_apdma_slave_config;
513 mtkd->ddev.device_pause = mtk_uart_apdma_device_pause;
514 mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all;
515 mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
516 mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
517 mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
518 mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
519 mtkd->ddev.dev = &pdev->dev;
520 INIT_LIST_HEAD(&mtkd->ddev.channels);
521
522 mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS;
523 if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) {
524 dev_info(&pdev->dev,
525 "Using %u as missing dma-requests property\n",
526 MTK_UART_APDMA_NR_VCHANS);
527 }
528
529 for (i = 0; i < mtkd->dma_requests; i++) {
530 c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL);
531 if (!c) {
532 rc = -ENODEV;
533 goto err_no_dma;
534 }
535
536 c->base = devm_platform_ioremap_resource(pdev, i);
537 if (IS_ERR(c->base)) {
538 rc = PTR_ERR(c->base);
539 goto err_no_dma;
540 }
541 c->vc.desc_free = mtk_uart_apdma_desc_free;
542 vchan_init(&c->vc, &mtkd->ddev);
543
544 rc = platform_get_irq(pdev, i);
545 if (rc < 0)
546 goto err_no_dma;
547 c->irq = rc;
548 }
549
550 pm_runtime_enable(&pdev->dev);
551 pm_runtime_set_active(&pdev->dev);
552
553 rc = dma_async_device_register(&mtkd->ddev);
554 if (rc)
555 goto rpm_disable;
556
557 platform_set_drvdata(pdev, mtkd);
558
559 /* Device-tree DMA controller registration */
560 rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd);
561 if (rc)
562 goto dma_remove;
563
564 return rc;
565
566 dma_remove:
567 dma_async_device_unregister(&mtkd->ddev);
568 rpm_disable:
569 pm_runtime_disable(&pdev->dev);
570 err_no_dma:
571 mtk_uart_apdma_free(mtkd);
572 return rc;
573 }
574
mtk_uart_apdma_remove(struct platform_device * pdev)575 static int mtk_uart_apdma_remove(struct platform_device *pdev)
576 {
577 struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev);
578
579 of_dma_controller_free(pdev->dev.of_node);
580
581 mtk_uart_apdma_free(mtkd);
582
583 dma_async_device_unregister(&mtkd->ddev);
584
585 pm_runtime_disable(&pdev->dev);
586
587 return 0;
588 }
589
590 #ifdef CONFIG_PM_SLEEP
mtk_uart_apdma_suspend(struct device * dev)591 static int mtk_uart_apdma_suspend(struct device *dev)
592 {
593 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
594
595 if (!pm_runtime_suspended(dev))
596 clk_disable_unprepare(mtkd->clk);
597
598 return 0;
599 }
600
mtk_uart_apdma_resume(struct device * dev)601 static int mtk_uart_apdma_resume(struct device *dev)
602 {
603 int ret;
604 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
605
606 if (!pm_runtime_suspended(dev)) {
607 ret = clk_prepare_enable(mtkd->clk);
608 if (ret)
609 return ret;
610 }
611
612 return 0;
613 }
614 #endif /* CONFIG_PM_SLEEP */
615
616 #ifdef CONFIG_PM
mtk_uart_apdma_runtime_suspend(struct device * dev)617 static int mtk_uart_apdma_runtime_suspend(struct device *dev)
618 {
619 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
620
621 clk_disable_unprepare(mtkd->clk);
622
623 return 0;
624 }
625
mtk_uart_apdma_runtime_resume(struct device * dev)626 static int mtk_uart_apdma_runtime_resume(struct device *dev)
627 {
628 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
629
630 return clk_prepare_enable(mtkd->clk);
631 }
632 #endif /* CONFIG_PM */
633
634 static const struct dev_pm_ops mtk_uart_apdma_pm_ops = {
635 SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume)
636 SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend,
637 mtk_uart_apdma_runtime_resume, NULL)
638 };
639
640 static struct platform_driver mtk_uart_apdma_driver = {
641 .probe = mtk_uart_apdma_probe,
642 .remove = mtk_uart_apdma_remove,
643 .driver = {
644 .name = KBUILD_MODNAME,
645 .pm = &mtk_uart_apdma_pm_ops,
646 .of_match_table = of_match_ptr(mtk_uart_apdma_match),
647 },
648 };
649
650 module_platform_driver(mtk_uart_apdma_driver);
651
652 MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver");
653 MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>");
654 MODULE_LICENSE("GPL v2");
655