1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43
44 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
47
48 #define DESCRIPTOR_OUTPUT_MORE 0
49 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST (3 << 12)
52 #define DESCRIPTOR_STATUS (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
54 #define DESCRIPTOR_PING (1 << 7)
55 #define DESCRIPTOR_YY (1 << 6)
56 #define DESCRIPTOR_NO_IRQ (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
60 #define DESCRIPTOR_WAIT (3 << 0)
61
62 #define DESCRIPTOR_CMD (0xf << 12)
63
64 struct descriptor {
65 __le16 req_count;
66 __le16 control;
67 __le32 data_address;
68 __le32 branch_address;
69 __le16 res_count;
70 __le16 transfer_status;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs) (regs)
74 #define CONTROL_CLEAR(regs) ((regs) + 4)
75 #define COMMAND_PTR(regs) ((regs) + 12)
76 #define CONTEXT_MATCH(regs) ((regs) + 16)
77
78 #define AR_BUFFER_SIZE (32*1024)
79 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83 #define MAX_ASYNC_PAYLOAD 4096
84 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87 struct ar_context {
88 struct fw_ohci *ohci;
89 struct page *pages[AR_BUFFERS];
90 void *buffer;
91 struct descriptor *descriptors;
92 dma_addr_t descriptors_bus;
93 void *pointer;
94 unsigned int last_buffer_index;
95 u32 regs;
96 struct tasklet_struct tasklet;
97 };
98
99 struct context;
100
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102 struct descriptor *d,
103 struct descriptor *last);
104
105 /*
106 * A buffer that contains a block of DMA-able coherent memory used for
107 * storing a portion of a DMA descriptor program.
108 */
109 struct descriptor_buffer {
110 struct list_head list;
111 dma_addr_t buffer_bus;
112 size_t buffer_size;
113 size_t used;
114 struct descriptor buffer[];
115 };
116
117 struct context {
118 struct fw_ohci *ohci;
119 u32 regs;
120 int total_allocation;
121 u32 current_bus;
122 bool running;
123 bool flushing;
124
125 /*
126 * List of page-sized buffers for storing DMA descriptors.
127 * Head of list contains buffers in use and tail of list contains
128 * free buffers.
129 */
130 struct list_head buffer_list;
131
132 /*
133 * Pointer to a buffer inside buffer_list that contains the tail
134 * end of the current DMA program.
135 */
136 struct descriptor_buffer *buffer_tail;
137
138 /*
139 * The descriptor containing the branch address of the first
140 * descriptor that has not yet been filled by the device.
141 */
142 struct descriptor *last;
143
144 /*
145 * The last descriptor block in the DMA program. It contains the branch
146 * address that must be updated upon appending a new descriptor.
147 */
148 struct descriptor *prev;
149 int prev_z;
150
151 descriptor_callback_t callback;
152
153 struct tasklet_struct tasklet;
154 };
155
156 #define IT_HEADER_SY(v) ((v) << 0)
157 #define IT_HEADER_TCODE(v) ((v) << 4)
158 #define IT_HEADER_CHANNEL(v) ((v) << 8)
159 #define IT_HEADER_TAG(v) ((v) << 14)
160 #define IT_HEADER_SPEED(v) ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163 struct iso_context {
164 struct fw_iso_context base;
165 struct context context;
166 void *header;
167 size_t header_length;
168 unsigned long flushing_completions;
169 u32 mc_buffer_bus;
170 u16 mc_completed;
171 u16 last_timestamp;
172 u8 sync;
173 u8 tags;
174 };
175
176 #define CONFIG_ROM_SIZE 1024
177
178 struct fw_ohci {
179 struct fw_card card;
180
181 __iomem char *registers;
182 int node_id;
183 int generation;
184 int request_generation; /* for timestamping incoming requests */
185 unsigned quirks;
186 unsigned int pri_req_max;
187 u32 bus_time;
188 bool bus_time_running;
189 bool is_root;
190 bool csr_state_setclear_abdicate;
191 int n_ir;
192 int n_it;
193 /*
194 * Spinlock for accessing fw_ohci data. Never call out of
195 * this driver with this lock held.
196 */
197 spinlock_t lock;
198
199 struct mutex phy_reg_mutex;
200
201 void *misc_buffer;
202 dma_addr_t misc_buffer_bus;
203
204 struct ar_context ar_request_ctx;
205 struct ar_context ar_response_ctx;
206 struct context at_request_ctx;
207 struct context at_response_ctx;
208
209 u32 it_context_support;
210 u32 it_context_mask; /* unoccupied IT contexts */
211 struct iso_context *it_context_list;
212 u64 ir_context_channels; /* unoccupied channels */
213 u32 ir_context_support;
214 u32 ir_context_mask; /* unoccupied IR contexts */
215 struct iso_context *ir_context_list;
216 u64 mc_channels; /* channels in use by the multichannel IR context */
217 bool mc_allocated;
218
219 __be32 *config_rom;
220 dma_addr_t config_rom_bus;
221 __be32 *next_config_rom;
222 dma_addr_t next_config_rom_bus;
223 __be32 next_header;
224
225 __le32 *self_id;
226 dma_addr_t self_id_bus;
227 struct work_struct bus_reset_work;
228
229 u32 self_id_buffer[512];
230 };
231
232 static struct workqueue_struct *selfid_workqueue;
233
fw_ohci(struct fw_card * card)234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
245
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
254
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
271 #define PCI_REV_ID_VIA_VT6306 0x46
272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274 #define QUIRK_CYCLE_TIMER 0x1
275 #define QUIRK_RESET_PACKET 0x2
276 #define QUIRK_BE_HEADERS 0x4
277 #define QUIRK_NO_1394A 0x8
278 #define QUIRK_NO_MSI 0x10
279 #define QUIRK_TI_SLLZ059 0x20
280 #define QUIRK_IR_WAKE 0x40
281
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284 unsigned short vendor, device, revision, flags;
285 } ohci_quirks[] = {
286 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287 QUIRK_CYCLE_TIMER},
288
289 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290 QUIRK_BE_HEADERS},
291
292 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293 QUIRK_NO_MSI},
294
295 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296 QUIRK_RESET_PACKET},
297
298 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299 QUIRK_NO_MSI},
300
301 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302 QUIRK_CYCLE_TIMER},
303
304 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305 QUIRK_NO_MSI},
306
307 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
309
310 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
312
313 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
315
316 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
318
319 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320 QUIRK_RESET_PACKET},
321
322 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
323 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
324
325 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
326 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
327
328 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
329 QUIRK_NO_MSI},
330
331 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
332 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
333 };
334
335 /* This overrides anything that was found in ohci_quirks[]. */
336 static int param_quirks;
337 module_param_named(quirks, param_quirks, int, 0644);
338 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
339 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
340 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
341 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
342 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
343 ", disable MSI = " __stringify(QUIRK_NO_MSI)
344 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
345 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
346 ")");
347
348 #define OHCI_PARAM_DEBUG_AT_AR 1
349 #define OHCI_PARAM_DEBUG_SELFIDS 2
350 #define OHCI_PARAM_DEBUG_IRQS 4
351 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
352
353 static int param_debug;
354 module_param_named(debug, param_debug, int, 0644);
355 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
356 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
357 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
358 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
359 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
360 ", or a combination, or all = -1)");
361
362 static bool param_remote_dma;
363 module_param_named(remote_dma, param_remote_dma, bool, 0444);
364 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
365
log_irqs(struct fw_ohci * ohci,u32 evt)366 static void log_irqs(struct fw_ohci *ohci, u32 evt)
367 {
368 if (likely(!(param_debug &
369 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
370 return;
371
372 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
373 !(evt & OHCI1394_busReset))
374 return;
375
376 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
377 evt & OHCI1394_selfIDComplete ? " selfID" : "",
378 evt & OHCI1394_RQPkt ? " AR_req" : "",
379 evt & OHCI1394_RSPkt ? " AR_resp" : "",
380 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
381 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
382 evt & OHCI1394_isochRx ? " IR" : "",
383 evt & OHCI1394_isochTx ? " IT" : "",
384 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
385 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
386 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
387 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
388 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
389 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
390 evt & OHCI1394_busReset ? " busReset" : "",
391 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
392 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
393 OHCI1394_respTxComplete | OHCI1394_isochRx |
394 OHCI1394_isochTx | OHCI1394_postedWriteErr |
395 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
396 OHCI1394_cycleInconsistent |
397 OHCI1394_regAccessFail | OHCI1394_busReset)
398 ? " ?" : "");
399 }
400
401 static const char *speed[] = {
402 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
403 };
404 static const char *power[] = {
405 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
406 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
407 };
408 static const char port[] = { '.', '-', 'p', 'c', };
409
_p(u32 * s,int shift)410 static char _p(u32 *s, int shift)
411 {
412 return port[*s >> shift & 3];
413 }
414
log_selfids(struct fw_ohci * ohci,int generation,int self_id_count)415 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
416 {
417 u32 *s;
418
419 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
420 return;
421
422 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
423 self_id_count, generation, ohci->node_id);
424
425 for (s = ohci->self_id_buffer; self_id_count--; ++s)
426 if ((*s & 1 << 23) == 0)
427 ohci_notice(ohci,
428 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
430 speed[*s >> 14 & 3], *s >> 16 & 63,
431 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
432 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
433 else
434 ohci_notice(ohci,
435 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
436 *s, *s >> 24 & 63,
437 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
438 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
439 }
440
441 static const char *evts[] = {
442 [0x00] = "evt_no_status", [0x01] = "-reserved-",
443 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
444 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
445 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
447 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
448 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
449 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
450 [0x10] = "-reserved-", [0x11] = "ack_complete",
451 [0x12] = "ack_pending ", [0x13] = "-reserved-",
452 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
453 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
454 [0x18] = "-reserved-", [0x19] = "-reserved-",
455 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
456 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
457 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
458 [0x20] = "pending/cancelled",
459 };
460 static const char *tcodes[] = {
461 [0x0] = "QW req", [0x1] = "BW req",
462 [0x2] = "W resp", [0x3] = "-reserved-",
463 [0x4] = "QR req", [0x5] = "BR req",
464 [0x6] = "QR resp", [0x7] = "BR resp",
465 [0x8] = "cycle start", [0x9] = "Lk req",
466 [0xa] = "async stream packet", [0xb] = "Lk resp",
467 [0xc] = "-reserved-", [0xd] = "-reserved-",
468 [0xe] = "link internal", [0xf] = "-reserved-",
469 };
470
log_ar_at_event(struct fw_ohci * ohci,char dir,int speed,u32 * header,int evt)471 static void log_ar_at_event(struct fw_ohci *ohci,
472 char dir, int speed, u32 *header, int evt)
473 {
474 int tcode = header[0] >> 4 & 0xf;
475 char specific[12];
476
477 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
478 return;
479
480 if (unlikely(evt >= ARRAY_SIZE(evts)))
481 evt = 0x1f;
482
483 if (evt == OHCI1394_evt_bus_reset) {
484 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
485 dir, (header[2] >> 16) & 0xff);
486 return;
487 }
488
489 switch (tcode) {
490 case 0x0: case 0x6: case 0x8:
491 snprintf(specific, sizeof(specific), " = %08x",
492 be32_to_cpu((__force __be32)header[3]));
493 break;
494 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495 snprintf(specific, sizeof(specific), " %x,%x",
496 header[3] >> 16, header[3] & 0xffff);
497 break;
498 default:
499 specific[0] = '\0';
500 }
501
502 switch (tcode) {
503 case 0xa:
504 ohci_notice(ohci, "A%c %s, %s\n",
505 dir, evts[evt], tcodes[tcode]);
506 break;
507 case 0xe:
508 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
509 dir, evts[evt], header[1], header[2]);
510 break;
511 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
512 ohci_notice(ohci,
513 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514 dir, speed, header[0] >> 10 & 0x3f,
515 header[1] >> 16, header[0] >> 16, evts[evt],
516 tcodes[tcode], header[1] & 0xffff, header[2], specific);
517 break;
518 default:
519 ohci_notice(ohci,
520 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521 dir, speed, header[0] >> 10 & 0x3f,
522 header[1] >> 16, header[0] >> 16, evts[evt],
523 tcodes[tcode], specific);
524 }
525 }
526
reg_write(const struct fw_ohci * ohci,int offset,u32 data)527 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
528 {
529 writel(data, ohci->registers + offset);
530 }
531
reg_read(const struct fw_ohci * ohci,int offset)532 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
533 {
534 return readl(ohci->registers + offset);
535 }
536
flush_writes(const struct fw_ohci * ohci)537 static inline void flush_writes(const struct fw_ohci *ohci)
538 {
539 /* Do a dummy read to flush writes. */
540 reg_read(ohci, OHCI1394_Version);
541 }
542
543 /*
544 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
548 */
read_phy_reg(struct fw_ohci * ohci,int addr)549 static int read_phy_reg(struct fw_ohci *ohci, int addr)
550 {
551 u32 val;
552 int i;
553
554 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
555 for (i = 0; i < 3 + 100; i++) {
556 val = reg_read(ohci, OHCI1394_PhyControl);
557 if (!~val)
558 return -ENODEV; /* Card was ejected. */
559
560 if (val & OHCI1394_PhyControl_ReadDone)
561 return OHCI1394_PhyControl_ReadData(val);
562
563 /*
564 * Try a few times without waiting. Sleeping is necessary
565 * only when the link/PHY interface is busy.
566 */
567 if (i >= 3)
568 msleep(1);
569 }
570 ohci_err(ohci, "failed to read phy reg %d\n", addr);
571 dump_stack();
572
573 return -EBUSY;
574 }
575
write_phy_reg(const struct fw_ohci * ohci,int addr,u32 val)576 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
577 {
578 int i;
579
580 reg_write(ohci, OHCI1394_PhyControl,
581 OHCI1394_PhyControl_Write(addr, val));
582 for (i = 0; i < 3 + 100; i++) {
583 val = reg_read(ohci, OHCI1394_PhyControl);
584 if (!~val)
585 return -ENODEV; /* Card was ejected. */
586
587 if (!(val & OHCI1394_PhyControl_WritePending))
588 return 0;
589
590 if (i >= 3)
591 msleep(1);
592 }
593 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
594 dump_stack();
595
596 return -EBUSY;
597 }
598
update_phy_reg(struct fw_ohci * ohci,int addr,int clear_bits,int set_bits)599 static int update_phy_reg(struct fw_ohci *ohci, int addr,
600 int clear_bits, int set_bits)
601 {
602 int ret = read_phy_reg(ohci, addr);
603 if (ret < 0)
604 return ret;
605
606 /*
607 * The interrupt status bits are cleared by writing a one bit.
608 * Avoid clearing them unless explicitly requested in set_bits.
609 */
610 if (addr == 5)
611 clear_bits |= PHY_INT_STATUS_BITS;
612
613 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
614 }
615
read_paged_phy_reg(struct fw_ohci * ohci,int page,int addr)616 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
617 {
618 int ret;
619
620 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
621 if (ret < 0)
622 return ret;
623
624 return read_phy_reg(ohci, addr);
625 }
626
ohci_read_phy_reg(struct fw_card * card,int addr)627 static int ohci_read_phy_reg(struct fw_card *card, int addr)
628 {
629 struct fw_ohci *ohci = fw_ohci(card);
630 int ret;
631
632 mutex_lock(&ohci->phy_reg_mutex);
633 ret = read_phy_reg(ohci, addr);
634 mutex_unlock(&ohci->phy_reg_mutex);
635
636 return ret;
637 }
638
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)639 static int ohci_update_phy_reg(struct fw_card *card, int addr,
640 int clear_bits, int set_bits)
641 {
642 struct fw_ohci *ohci = fw_ohci(card);
643 int ret;
644
645 mutex_lock(&ohci->phy_reg_mutex);
646 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
647 mutex_unlock(&ohci->phy_reg_mutex);
648
649 return ret;
650 }
651
ar_buffer_bus(struct ar_context * ctx,unsigned int i)652 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
653 {
654 return page_private(ctx->pages[i]);
655 }
656
ar_context_link_page(struct ar_context * ctx,unsigned int index)657 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
658 {
659 struct descriptor *d;
660
661 d = &ctx->descriptors[index];
662 d->branch_address &= cpu_to_le32(~0xf);
663 d->res_count = cpu_to_le16(PAGE_SIZE);
664 d->transfer_status = 0;
665
666 wmb(); /* finish init of new descriptors before branch_address update */
667 d = &ctx->descriptors[ctx->last_buffer_index];
668 d->branch_address |= cpu_to_le32(1);
669
670 ctx->last_buffer_index = index;
671
672 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
673 }
674
ar_context_release(struct ar_context * ctx)675 static void ar_context_release(struct ar_context *ctx)
676 {
677 struct device *dev = ctx->ohci->card.device;
678 unsigned int i;
679
680 vunmap(ctx->buffer);
681
682 for (i = 0; i < AR_BUFFERS; i++) {
683 if (ctx->pages[i])
684 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
685 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
686 }
687 }
688
ar_context_abort(struct ar_context * ctx,const char * error_msg)689 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
690 {
691 struct fw_ohci *ohci = ctx->ohci;
692
693 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
694 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
695 flush_writes(ohci);
696
697 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
698 }
699 /* FIXME: restart? */
700 }
701
ar_next_buffer_index(unsigned int index)702 static inline unsigned int ar_next_buffer_index(unsigned int index)
703 {
704 return (index + 1) % AR_BUFFERS;
705 }
706
ar_first_buffer_index(struct ar_context * ctx)707 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
708 {
709 return ar_next_buffer_index(ctx->last_buffer_index);
710 }
711
712 /*
713 * We search for the buffer that contains the last AR packet DMA data written
714 * by the controller.
715 */
ar_search_last_active_buffer(struct ar_context * ctx,unsigned int * buffer_offset)716 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
717 unsigned int *buffer_offset)
718 {
719 unsigned int i, next_i, last = ctx->last_buffer_index;
720 __le16 res_count, next_res_count;
721
722 i = ar_first_buffer_index(ctx);
723 res_count = READ_ONCE(ctx->descriptors[i].res_count);
724
725 /* A buffer that is not yet completely filled must be the last one. */
726 while (i != last && res_count == 0) {
727
728 /* Peek at the next descriptor. */
729 next_i = ar_next_buffer_index(i);
730 rmb(); /* read descriptors in order */
731 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
732 /*
733 * If the next descriptor is still empty, we must stop at this
734 * descriptor.
735 */
736 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
737 /*
738 * The exception is when the DMA data for one packet is
739 * split over three buffers; in this case, the middle
740 * buffer's descriptor might be never updated by the
741 * controller and look still empty, and we have to peek
742 * at the third one.
743 */
744 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
745 next_i = ar_next_buffer_index(next_i);
746 rmb();
747 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
748 if (next_res_count != cpu_to_le16(PAGE_SIZE))
749 goto next_buffer_is_active;
750 }
751
752 break;
753 }
754
755 next_buffer_is_active:
756 i = next_i;
757 res_count = next_res_count;
758 }
759
760 rmb(); /* read res_count before the DMA data */
761
762 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
763 if (*buffer_offset > PAGE_SIZE) {
764 *buffer_offset = 0;
765 ar_context_abort(ctx, "corrupted descriptor");
766 }
767
768 return i;
769 }
770
ar_sync_buffers_for_cpu(struct ar_context * ctx,unsigned int end_buffer_index,unsigned int end_buffer_offset)771 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
772 unsigned int end_buffer_index,
773 unsigned int end_buffer_offset)
774 {
775 unsigned int i;
776
777 i = ar_first_buffer_index(ctx);
778 while (i != end_buffer_index) {
779 dma_sync_single_for_cpu(ctx->ohci->card.device,
780 ar_buffer_bus(ctx, i),
781 PAGE_SIZE, DMA_FROM_DEVICE);
782 i = ar_next_buffer_index(i);
783 }
784 if (end_buffer_offset > 0)
785 dma_sync_single_for_cpu(ctx->ohci->card.device,
786 ar_buffer_bus(ctx, i),
787 end_buffer_offset, DMA_FROM_DEVICE);
788 }
789
790 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
791 #define cond_le32_to_cpu(v) \
792 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
793 #else
794 #define cond_le32_to_cpu(v) le32_to_cpu(v)
795 #endif
796
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)797 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
798 {
799 struct fw_ohci *ohci = ctx->ohci;
800 struct fw_packet p;
801 u32 status, length, tcode;
802 int evt;
803
804 p.header[0] = cond_le32_to_cpu(buffer[0]);
805 p.header[1] = cond_le32_to_cpu(buffer[1]);
806 p.header[2] = cond_le32_to_cpu(buffer[2]);
807
808 tcode = (p.header[0] >> 4) & 0x0f;
809 switch (tcode) {
810 case TCODE_WRITE_QUADLET_REQUEST:
811 case TCODE_READ_QUADLET_RESPONSE:
812 p.header[3] = (__force __u32) buffer[3];
813 p.header_length = 16;
814 p.payload_length = 0;
815 break;
816
817 case TCODE_READ_BLOCK_REQUEST :
818 p.header[3] = cond_le32_to_cpu(buffer[3]);
819 p.header_length = 16;
820 p.payload_length = 0;
821 break;
822
823 case TCODE_WRITE_BLOCK_REQUEST:
824 case TCODE_READ_BLOCK_RESPONSE:
825 case TCODE_LOCK_REQUEST:
826 case TCODE_LOCK_RESPONSE:
827 p.header[3] = cond_le32_to_cpu(buffer[3]);
828 p.header_length = 16;
829 p.payload_length = p.header[3] >> 16;
830 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
831 ar_context_abort(ctx, "invalid packet length");
832 return NULL;
833 }
834 break;
835
836 case TCODE_WRITE_RESPONSE:
837 case TCODE_READ_QUADLET_REQUEST:
838 case OHCI_TCODE_PHY_PACKET:
839 p.header_length = 12;
840 p.payload_length = 0;
841 break;
842
843 default:
844 ar_context_abort(ctx, "invalid tcode");
845 return NULL;
846 }
847
848 p.payload = (void *) buffer + p.header_length;
849
850 /* FIXME: What to do about evt_* errors? */
851 length = (p.header_length + p.payload_length + 3) / 4;
852 status = cond_le32_to_cpu(buffer[length]);
853 evt = (status >> 16) & 0x1f;
854
855 p.ack = evt - 16;
856 p.speed = (status >> 21) & 0x7;
857 p.timestamp = status & 0xffff;
858 p.generation = ohci->request_generation;
859
860 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
861
862 /*
863 * Several controllers, notably from NEC and VIA, forget to
864 * write ack_complete status at PHY packet reception.
865 */
866 if (evt == OHCI1394_evt_no_status &&
867 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
868 p.ack = ACK_COMPLETE;
869
870 /*
871 * The OHCI bus reset handler synthesizes a PHY packet with
872 * the new generation number when a bus reset happens (see
873 * section 8.4.2.3). This helps us determine when a request
874 * was received and make sure we send the response in the same
875 * generation. We only need this for requests; for responses
876 * we use the unique tlabel for finding the matching
877 * request.
878 *
879 * Alas some chips sometimes emit bus reset packets with a
880 * wrong generation. We set the correct generation for these
881 * at a slightly incorrect time (in bus_reset_work).
882 */
883 if (evt == OHCI1394_evt_bus_reset) {
884 if (!(ohci->quirks & QUIRK_RESET_PACKET))
885 ohci->request_generation = (p.header[2] >> 16) & 0xff;
886 } else if (ctx == &ohci->ar_request_ctx) {
887 fw_core_handle_request(&ohci->card, &p);
888 } else {
889 fw_core_handle_response(&ohci->card, &p);
890 }
891
892 return buffer + length + 1;
893 }
894
handle_ar_packets(struct ar_context * ctx,void * p,void * end)895 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
896 {
897 void *next;
898
899 while (p < end) {
900 next = handle_ar_packet(ctx, p);
901 if (!next)
902 return p;
903 p = next;
904 }
905
906 return p;
907 }
908
ar_recycle_buffers(struct ar_context * ctx,unsigned int end_buffer)909 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
910 {
911 unsigned int i;
912
913 i = ar_first_buffer_index(ctx);
914 while (i != end_buffer) {
915 dma_sync_single_for_device(ctx->ohci->card.device,
916 ar_buffer_bus(ctx, i),
917 PAGE_SIZE, DMA_FROM_DEVICE);
918 ar_context_link_page(ctx, i);
919 i = ar_next_buffer_index(i);
920 }
921 }
922
ar_context_tasklet(unsigned long data)923 static void ar_context_tasklet(unsigned long data)
924 {
925 struct ar_context *ctx = (struct ar_context *)data;
926 unsigned int end_buffer_index, end_buffer_offset;
927 void *p, *end;
928
929 p = ctx->pointer;
930 if (!p)
931 return;
932
933 end_buffer_index = ar_search_last_active_buffer(ctx,
934 &end_buffer_offset);
935 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
936 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
937
938 if (end_buffer_index < ar_first_buffer_index(ctx)) {
939 /*
940 * The filled part of the overall buffer wraps around; handle
941 * all packets up to the buffer end here. If the last packet
942 * wraps around, its tail will be visible after the buffer end
943 * because the buffer start pages are mapped there again.
944 */
945 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
946 p = handle_ar_packets(ctx, p, buffer_end);
947 if (p < buffer_end)
948 goto error;
949 /* adjust p to point back into the actual buffer */
950 p -= AR_BUFFERS * PAGE_SIZE;
951 }
952
953 p = handle_ar_packets(ctx, p, end);
954 if (p != end) {
955 if (p > end)
956 ar_context_abort(ctx, "inconsistent descriptor");
957 goto error;
958 }
959
960 ctx->pointer = p;
961 ar_recycle_buffers(ctx, end_buffer_index);
962
963 return;
964
965 error:
966 ctx->pointer = NULL;
967 }
968
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,unsigned int descriptors_offset,u32 regs)969 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
970 unsigned int descriptors_offset, u32 regs)
971 {
972 struct device *dev = ohci->card.device;
973 unsigned int i;
974 dma_addr_t dma_addr;
975 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
976 struct descriptor *d;
977
978 ctx->regs = regs;
979 ctx->ohci = ohci;
980 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
981
982 for (i = 0; i < AR_BUFFERS; i++) {
983 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
984 DMA_FROM_DEVICE, GFP_KERNEL);
985 if (!ctx->pages[i])
986 goto out_of_memory;
987 set_page_private(ctx->pages[i], dma_addr);
988 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
989 DMA_FROM_DEVICE);
990 }
991
992 for (i = 0; i < AR_BUFFERS; i++)
993 pages[i] = ctx->pages[i];
994 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
995 pages[AR_BUFFERS + i] = ctx->pages[i];
996 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
997 if (!ctx->buffer)
998 goto out_of_memory;
999
1000 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1001 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1002
1003 for (i = 0; i < AR_BUFFERS; i++) {
1004 d = &ctx->descriptors[i];
1005 d->req_count = cpu_to_le16(PAGE_SIZE);
1006 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1007 DESCRIPTOR_STATUS |
1008 DESCRIPTOR_BRANCH_ALWAYS);
1009 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1010 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1011 ar_next_buffer_index(i) * sizeof(struct descriptor));
1012 }
1013
1014 return 0;
1015
1016 out_of_memory:
1017 ar_context_release(ctx);
1018
1019 return -ENOMEM;
1020 }
1021
ar_context_run(struct ar_context * ctx)1022 static void ar_context_run(struct ar_context *ctx)
1023 {
1024 unsigned int i;
1025
1026 for (i = 0; i < AR_BUFFERS; i++)
1027 ar_context_link_page(ctx, i);
1028
1029 ctx->pointer = ctx->buffer;
1030
1031 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1032 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1033 }
1034
find_branch_descriptor(struct descriptor * d,int z)1035 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1036 {
1037 __le16 branch;
1038
1039 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1040
1041 /* figure out which descriptor the branch address goes in */
1042 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1043 return d;
1044 else
1045 return d + z - 1;
1046 }
1047
context_tasklet(unsigned long data)1048 static void context_tasklet(unsigned long data)
1049 {
1050 struct context *ctx = (struct context *) data;
1051 struct descriptor *d, *last;
1052 u32 address;
1053 int z;
1054 struct descriptor_buffer *desc;
1055
1056 desc = list_entry(ctx->buffer_list.next,
1057 struct descriptor_buffer, list);
1058 last = ctx->last;
1059 while (last->branch_address != 0) {
1060 struct descriptor_buffer *old_desc = desc;
1061 address = le32_to_cpu(last->branch_address);
1062 z = address & 0xf;
1063 address &= ~0xf;
1064 ctx->current_bus = address;
1065
1066 /* If the branch address points to a buffer outside of the
1067 * current buffer, advance to the next buffer. */
1068 if (address < desc->buffer_bus ||
1069 address >= desc->buffer_bus + desc->used)
1070 desc = list_entry(desc->list.next,
1071 struct descriptor_buffer, list);
1072 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1073 last = find_branch_descriptor(d, z);
1074
1075 if (!ctx->callback(ctx, d, last))
1076 break;
1077
1078 if (old_desc != desc) {
1079 /* If we've advanced to the next buffer, move the
1080 * previous buffer to the free list. */
1081 unsigned long flags;
1082 old_desc->used = 0;
1083 spin_lock_irqsave(&ctx->ohci->lock, flags);
1084 list_move_tail(&old_desc->list, &ctx->buffer_list);
1085 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1086 }
1087 ctx->last = last;
1088 }
1089 }
1090
1091 /*
1092 * Allocate a new buffer and add it to the list of free buffers for this
1093 * context. Must be called with ohci->lock held.
1094 */
context_add_buffer(struct context * ctx)1095 static int context_add_buffer(struct context *ctx)
1096 {
1097 struct descriptor_buffer *desc;
1098 dma_addr_t bus_addr;
1099 int offset;
1100
1101 /*
1102 * 16MB of descriptors should be far more than enough for any DMA
1103 * program. This will catch run-away userspace or DoS attacks.
1104 */
1105 if (ctx->total_allocation >= 16*1024*1024)
1106 return -ENOMEM;
1107
1108 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1109 &bus_addr, GFP_ATOMIC);
1110 if (!desc)
1111 return -ENOMEM;
1112
1113 offset = (void *)&desc->buffer - (void *)desc;
1114 /*
1115 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1116 * for descriptors, even 0x10-byte ones. This can cause page faults when
1117 * an IOMMU is in use and the oversized read crosses a page boundary.
1118 * Work around this by always leaving at least 0x10 bytes of padding.
1119 */
1120 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1121 desc->buffer_bus = bus_addr + offset;
1122 desc->used = 0;
1123
1124 list_add_tail(&desc->list, &ctx->buffer_list);
1125 ctx->total_allocation += PAGE_SIZE;
1126
1127 return 0;
1128 }
1129
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)1130 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1131 u32 regs, descriptor_callback_t callback)
1132 {
1133 ctx->ohci = ohci;
1134 ctx->regs = regs;
1135 ctx->total_allocation = 0;
1136
1137 INIT_LIST_HEAD(&ctx->buffer_list);
1138 if (context_add_buffer(ctx) < 0)
1139 return -ENOMEM;
1140
1141 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1142 struct descriptor_buffer, list);
1143
1144 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1145 ctx->callback = callback;
1146
1147 /*
1148 * We put a dummy descriptor in the buffer that has a NULL
1149 * branch address and looks like it's been sent. That way we
1150 * have a descriptor to append DMA programs to.
1151 */
1152 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1153 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1154 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1155 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1156 ctx->last = ctx->buffer_tail->buffer;
1157 ctx->prev = ctx->buffer_tail->buffer;
1158 ctx->prev_z = 1;
1159
1160 return 0;
1161 }
1162
context_release(struct context * ctx)1163 static void context_release(struct context *ctx)
1164 {
1165 struct fw_card *card = &ctx->ohci->card;
1166 struct descriptor_buffer *desc, *tmp;
1167
1168 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169 dma_free_coherent(card->device, PAGE_SIZE, desc,
1170 desc->buffer_bus -
1171 ((void *)&desc->buffer - (void *)desc));
1172 }
1173
1174 /* Must be called with ohci->lock held */
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)1175 static struct descriptor *context_get_descriptors(struct context *ctx,
1176 int z, dma_addr_t *d_bus)
1177 {
1178 struct descriptor *d = NULL;
1179 struct descriptor_buffer *desc = ctx->buffer_tail;
1180
1181 if (z * sizeof(*d) > desc->buffer_size)
1182 return NULL;
1183
1184 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185 /* No room for the descriptor in this buffer, so advance to the
1186 * next one. */
1187
1188 if (desc->list.next == &ctx->buffer_list) {
1189 /* If there is no free buffer next in the list,
1190 * allocate one. */
1191 if (context_add_buffer(ctx) < 0)
1192 return NULL;
1193 }
1194 desc = list_entry(desc->list.next,
1195 struct descriptor_buffer, list);
1196 ctx->buffer_tail = desc;
1197 }
1198
1199 d = desc->buffer + desc->used / sizeof(*d);
1200 memset(d, 0, z * sizeof(*d));
1201 *d_bus = desc->buffer_bus + desc->used;
1202
1203 return d;
1204 }
1205
context_run(struct context * ctx,u32 extra)1206 static void context_run(struct context *ctx, u32 extra)
1207 {
1208 struct fw_ohci *ohci = ctx->ohci;
1209
1210 reg_write(ohci, COMMAND_PTR(ctx->regs),
1211 le32_to_cpu(ctx->last->branch_address));
1212 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214 ctx->running = true;
1215 flush_writes(ohci);
1216 }
1217
context_append(struct context * ctx,struct descriptor * d,int z,int extra)1218 static void context_append(struct context *ctx,
1219 struct descriptor *d, int z, int extra)
1220 {
1221 dma_addr_t d_bus;
1222 struct descriptor_buffer *desc = ctx->buffer_tail;
1223 struct descriptor *d_branch;
1224
1225 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1226
1227 desc->used += (z + extra) * sizeof(*d);
1228
1229 wmb(); /* finish init of new descriptors before branch_address update */
1230
1231 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1232 d_branch->branch_address = cpu_to_le32(d_bus | z);
1233
1234 /*
1235 * VT6306 incorrectly checks only the single descriptor at the
1236 * CommandPtr when the wake bit is written, so if it's a
1237 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1238 * the branch address in the first descriptor.
1239 *
1240 * Not doing this for transmit contexts since not sure how it interacts
1241 * with skip addresses.
1242 */
1243 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1244 d_branch != ctx->prev &&
1245 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1246 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1247 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1248 }
1249
1250 ctx->prev = d;
1251 ctx->prev_z = z;
1252 }
1253
context_stop(struct context * ctx)1254 static void context_stop(struct context *ctx)
1255 {
1256 struct fw_ohci *ohci = ctx->ohci;
1257 u32 reg;
1258 int i;
1259
1260 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1261 ctx->running = false;
1262
1263 for (i = 0; i < 1000; i++) {
1264 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1265 if ((reg & CONTEXT_ACTIVE) == 0)
1266 return;
1267
1268 if (i)
1269 udelay(10);
1270 }
1271 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1272 }
1273
1274 struct driver_data {
1275 u8 inline_data[8];
1276 struct fw_packet *packet;
1277 };
1278
1279 /*
1280 * This function apppends a packet to the DMA queue for transmission.
1281 * Must always be called with the ochi->lock held to ensure proper
1282 * generation handling and locking around packet queue manipulation.
1283 */
at_context_queue_packet(struct context * ctx,struct fw_packet * packet)1284 static int at_context_queue_packet(struct context *ctx,
1285 struct fw_packet *packet)
1286 {
1287 struct fw_ohci *ohci = ctx->ohci;
1288 dma_addr_t d_bus, payload_bus;
1289 struct driver_data *driver_data;
1290 struct descriptor *d, *last;
1291 __le32 *header;
1292 int z, tcode;
1293
1294 d = context_get_descriptors(ctx, 4, &d_bus);
1295 if (d == NULL) {
1296 packet->ack = RCODE_SEND_ERROR;
1297 return -1;
1298 }
1299
1300 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1301 d[0].res_count = cpu_to_le16(packet->timestamp);
1302
1303 /*
1304 * The DMA format for asynchronous link packets is different
1305 * from the IEEE1394 layout, so shift the fields around
1306 * accordingly.
1307 */
1308
1309 tcode = (packet->header[0] >> 4) & 0x0f;
1310 header = (__le32 *) &d[1];
1311 switch (tcode) {
1312 case TCODE_WRITE_QUADLET_REQUEST:
1313 case TCODE_WRITE_BLOCK_REQUEST:
1314 case TCODE_WRITE_RESPONSE:
1315 case TCODE_READ_QUADLET_REQUEST:
1316 case TCODE_READ_BLOCK_REQUEST:
1317 case TCODE_READ_QUADLET_RESPONSE:
1318 case TCODE_READ_BLOCK_RESPONSE:
1319 case TCODE_LOCK_REQUEST:
1320 case TCODE_LOCK_RESPONSE:
1321 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1322 (packet->speed << 16));
1323 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1324 (packet->header[0] & 0xffff0000));
1325 header[2] = cpu_to_le32(packet->header[2]);
1326
1327 if (TCODE_IS_BLOCK_PACKET(tcode))
1328 header[3] = cpu_to_le32(packet->header[3]);
1329 else
1330 header[3] = (__force __le32) packet->header[3];
1331
1332 d[0].req_count = cpu_to_le16(packet->header_length);
1333 break;
1334
1335 case TCODE_LINK_INTERNAL:
1336 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1337 (packet->speed << 16));
1338 header[1] = cpu_to_le32(packet->header[1]);
1339 header[2] = cpu_to_le32(packet->header[2]);
1340 d[0].req_count = cpu_to_le16(12);
1341
1342 if (is_ping_packet(&packet->header[1]))
1343 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1344 break;
1345
1346 case TCODE_STREAM_DATA:
1347 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1348 (packet->speed << 16));
1349 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1350 d[0].req_count = cpu_to_le16(8);
1351 break;
1352
1353 default:
1354 /* BUG(); */
1355 packet->ack = RCODE_SEND_ERROR;
1356 return -1;
1357 }
1358
1359 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1360 driver_data = (struct driver_data *) &d[3];
1361 driver_data->packet = packet;
1362 packet->driver_data = driver_data;
1363
1364 if (packet->payload_length > 0) {
1365 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1366 payload_bus = dma_map_single(ohci->card.device,
1367 packet->payload,
1368 packet->payload_length,
1369 DMA_TO_DEVICE);
1370 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1371 packet->ack = RCODE_SEND_ERROR;
1372 return -1;
1373 }
1374 packet->payload_bus = payload_bus;
1375 packet->payload_mapped = true;
1376 } else {
1377 memcpy(driver_data->inline_data, packet->payload,
1378 packet->payload_length);
1379 payload_bus = d_bus + 3 * sizeof(*d);
1380 }
1381
1382 d[2].req_count = cpu_to_le16(packet->payload_length);
1383 d[2].data_address = cpu_to_le32(payload_bus);
1384 last = &d[2];
1385 z = 3;
1386 } else {
1387 last = &d[0];
1388 z = 2;
1389 }
1390
1391 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1392 DESCRIPTOR_IRQ_ALWAYS |
1393 DESCRIPTOR_BRANCH_ALWAYS);
1394
1395 /* FIXME: Document how the locking works. */
1396 if (ohci->generation != packet->generation) {
1397 if (packet->payload_mapped)
1398 dma_unmap_single(ohci->card.device, payload_bus,
1399 packet->payload_length, DMA_TO_DEVICE);
1400 packet->ack = RCODE_GENERATION;
1401 return -1;
1402 }
1403
1404 context_append(ctx, d, z, 4 - z);
1405
1406 if (ctx->running)
1407 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1408 else
1409 context_run(ctx, 0);
1410
1411 return 0;
1412 }
1413
at_context_flush(struct context * ctx)1414 static void at_context_flush(struct context *ctx)
1415 {
1416 tasklet_disable(&ctx->tasklet);
1417
1418 ctx->flushing = true;
1419 context_tasklet((unsigned long)ctx);
1420 ctx->flushing = false;
1421
1422 tasklet_enable(&ctx->tasklet);
1423 }
1424
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1425 static int handle_at_packet(struct context *context,
1426 struct descriptor *d,
1427 struct descriptor *last)
1428 {
1429 struct driver_data *driver_data;
1430 struct fw_packet *packet;
1431 struct fw_ohci *ohci = context->ohci;
1432 int evt;
1433
1434 if (last->transfer_status == 0 && !context->flushing)
1435 /* This descriptor isn't done yet, stop iteration. */
1436 return 0;
1437
1438 driver_data = (struct driver_data *) &d[3];
1439 packet = driver_data->packet;
1440 if (packet == NULL)
1441 /* This packet was cancelled, just continue. */
1442 return 1;
1443
1444 if (packet->payload_mapped)
1445 dma_unmap_single(ohci->card.device, packet->payload_bus,
1446 packet->payload_length, DMA_TO_DEVICE);
1447
1448 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1449 packet->timestamp = le16_to_cpu(last->res_count);
1450
1451 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1452
1453 switch (evt) {
1454 case OHCI1394_evt_timeout:
1455 /* Async response transmit timed out. */
1456 packet->ack = RCODE_CANCELLED;
1457 break;
1458
1459 case OHCI1394_evt_flushed:
1460 /*
1461 * The packet was flushed should give same error as
1462 * when we try to use a stale generation count.
1463 */
1464 packet->ack = RCODE_GENERATION;
1465 break;
1466
1467 case OHCI1394_evt_missing_ack:
1468 if (context->flushing)
1469 packet->ack = RCODE_GENERATION;
1470 else {
1471 /*
1472 * Using a valid (current) generation count, but the
1473 * node is not on the bus or not sending acks.
1474 */
1475 packet->ack = RCODE_NO_ACK;
1476 }
1477 break;
1478
1479 case ACK_COMPLETE + 0x10:
1480 case ACK_PENDING + 0x10:
1481 case ACK_BUSY_X + 0x10:
1482 case ACK_BUSY_A + 0x10:
1483 case ACK_BUSY_B + 0x10:
1484 case ACK_DATA_ERROR + 0x10:
1485 case ACK_TYPE_ERROR + 0x10:
1486 packet->ack = evt - 0x10;
1487 break;
1488
1489 case OHCI1394_evt_no_status:
1490 if (context->flushing) {
1491 packet->ack = RCODE_GENERATION;
1492 break;
1493 }
1494 fallthrough;
1495
1496 default:
1497 packet->ack = RCODE_SEND_ERROR;
1498 break;
1499 }
1500
1501 packet->callback(packet, &ohci->card, packet->ack);
1502
1503 return 1;
1504 }
1505
1506 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1507 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1508 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1509 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1510 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1511
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1512 static void handle_local_rom(struct fw_ohci *ohci,
1513 struct fw_packet *packet, u32 csr)
1514 {
1515 struct fw_packet response;
1516 int tcode, length, i;
1517
1518 tcode = HEADER_GET_TCODE(packet->header[0]);
1519 if (TCODE_IS_BLOCK_PACKET(tcode))
1520 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1521 else
1522 length = 4;
1523
1524 i = csr - CSR_CONFIG_ROM;
1525 if (i + length > CONFIG_ROM_SIZE) {
1526 fw_fill_response(&response, packet->header,
1527 RCODE_ADDRESS_ERROR, NULL, 0);
1528 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1529 fw_fill_response(&response, packet->header,
1530 RCODE_TYPE_ERROR, NULL, 0);
1531 } else {
1532 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1533 (void *) ohci->config_rom + i, length);
1534 }
1535
1536 fw_core_handle_response(&ohci->card, &response);
1537 }
1538
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1539 static void handle_local_lock(struct fw_ohci *ohci,
1540 struct fw_packet *packet, u32 csr)
1541 {
1542 struct fw_packet response;
1543 int tcode, length, ext_tcode, sel, try;
1544 __be32 *payload, lock_old;
1545 u32 lock_arg, lock_data;
1546
1547 tcode = HEADER_GET_TCODE(packet->header[0]);
1548 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1549 payload = packet->payload;
1550 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1551
1552 if (tcode == TCODE_LOCK_REQUEST &&
1553 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1554 lock_arg = be32_to_cpu(payload[0]);
1555 lock_data = be32_to_cpu(payload[1]);
1556 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1557 lock_arg = 0;
1558 lock_data = 0;
1559 } else {
1560 fw_fill_response(&response, packet->header,
1561 RCODE_TYPE_ERROR, NULL, 0);
1562 goto out;
1563 }
1564
1565 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1566 reg_write(ohci, OHCI1394_CSRData, lock_data);
1567 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1568 reg_write(ohci, OHCI1394_CSRControl, sel);
1569
1570 for (try = 0; try < 20; try++)
1571 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1572 lock_old = cpu_to_be32(reg_read(ohci,
1573 OHCI1394_CSRData));
1574 fw_fill_response(&response, packet->header,
1575 RCODE_COMPLETE,
1576 &lock_old, sizeof(lock_old));
1577 goto out;
1578 }
1579
1580 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1581 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1582
1583 out:
1584 fw_core_handle_response(&ohci->card, &response);
1585 }
1586
handle_local_request(struct context * ctx,struct fw_packet * packet)1587 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1588 {
1589 u64 offset, csr;
1590
1591 if (ctx == &ctx->ohci->at_request_ctx) {
1592 packet->ack = ACK_PENDING;
1593 packet->callback(packet, &ctx->ohci->card, packet->ack);
1594 }
1595
1596 offset =
1597 ((unsigned long long)
1598 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1599 packet->header[2];
1600 csr = offset - CSR_REGISTER_BASE;
1601
1602 /* Handle config rom reads. */
1603 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1604 handle_local_rom(ctx->ohci, packet, csr);
1605 else switch (csr) {
1606 case CSR_BUS_MANAGER_ID:
1607 case CSR_BANDWIDTH_AVAILABLE:
1608 case CSR_CHANNELS_AVAILABLE_HI:
1609 case CSR_CHANNELS_AVAILABLE_LO:
1610 handle_local_lock(ctx->ohci, packet, csr);
1611 break;
1612 default:
1613 if (ctx == &ctx->ohci->at_request_ctx)
1614 fw_core_handle_request(&ctx->ohci->card, packet);
1615 else
1616 fw_core_handle_response(&ctx->ohci->card, packet);
1617 break;
1618 }
1619
1620 if (ctx == &ctx->ohci->at_response_ctx) {
1621 packet->ack = ACK_COMPLETE;
1622 packet->callback(packet, &ctx->ohci->card, packet->ack);
1623 }
1624 }
1625
at_context_transmit(struct context * ctx,struct fw_packet * packet)1626 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1627 {
1628 unsigned long flags;
1629 int ret;
1630
1631 spin_lock_irqsave(&ctx->ohci->lock, flags);
1632
1633 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1634 ctx->ohci->generation == packet->generation) {
1635 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1636 handle_local_request(ctx, packet);
1637 return;
1638 }
1639
1640 ret = at_context_queue_packet(ctx, packet);
1641 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1642
1643 if (ret < 0)
1644 packet->callback(packet, &ctx->ohci->card, packet->ack);
1645
1646 }
1647
detect_dead_context(struct fw_ohci * ohci,const char * name,unsigned int regs)1648 static void detect_dead_context(struct fw_ohci *ohci,
1649 const char *name, unsigned int regs)
1650 {
1651 u32 ctl;
1652
1653 ctl = reg_read(ohci, CONTROL_SET(regs));
1654 if (ctl & CONTEXT_DEAD)
1655 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1656 name, evts[ctl & 0x1f]);
1657 }
1658
handle_dead_contexts(struct fw_ohci * ohci)1659 static void handle_dead_contexts(struct fw_ohci *ohci)
1660 {
1661 unsigned int i;
1662 char name[8];
1663
1664 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1665 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1666 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1667 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1668 for (i = 0; i < 32; ++i) {
1669 if (!(ohci->it_context_support & (1 << i)))
1670 continue;
1671 sprintf(name, "IT%u", i);
1672 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1673 }
1674 for (i = 0; i < 32; ++i) {
1675 if (!(ohci->ir_context_support & (1 << i)))
1676 continue;
1677 sprintf(name, "IR%u", i);
1678 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1679 }
1680 /* TODO: maybe try to flush and restart the dead contexts */
1681 }
1682
cycle_timer_ticks(u32 cycle_timer)1683 static u32 cycle_timer_ticks(u32 cycle_timer)
1684 {
1685 u32 ticks;
1686
1687 ticks = cycle_timer & 0xfff;
1688 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1689 ticks += (3072 * 8000) * (cycle_timer >> 25);
1690
1691 return ticks;
1692 }
1693
1694 /*
1695 * Some controllers exhibit one or more of the following bugs when updating the
1696 * iso cycle timer register:
1697 * - When the lowest six bits are wrapping around to zero, a read that happens
1698 * at the same time will return garbage in the lowest ten bits.
1699 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1700 * not incremented for about 60 ns.
1701 * - Occasionally, the entire register reads zero.
1702 *
1703 * To catch these, we read the register three times and ensure that the
1704 * difference between each two consecutive reads is approximately the same, i.e.
1705 * less than twice the other. Furthermore, any negative difference indicates an
1706 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1707 * execute, so we have enough precision to compute the ratio of the differences.)
1708 */
get_cycle_time(struct fw_ohci * ohci)1709 static u32 get_cycle_time(struct fw_ohci *ohci)
1710 {
1711 u32 c0, c1, c2;
1712 u32 t0, t1, t2;
1713 s32 diff01, diff12;
1714 int i;
1715
1716 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1717
1718 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1719 i = 0;
1720 c1 = c2;
1721 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1722 do {
1723 c0 = c1;
1724 c1 = c2;
1725 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1726 t0 = cycle_timer_ticks(c0);
1727 t1 = cycle_timer_ticks(c1);
1728 t2 = cycle_timer_ticks(c2);
1729 diff01 = t1 - t0;
1730 diff12 = t2 - t1;
1731 } while ((diff01 <= 0 || diff12 <= 0 ||
1732 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1733 && i++ < 20);
1734 }
1735
1736 return c2;
1737 }
1738
1739 /*
1740 * This function has to be called at least every 64 seconds. The bus_time
1741 * field stores not only the upper 25 bits of the BUS_TIME register but also
1742 * the most significant bit of the cycle timer in bit 6 so that we can detect
1743 * changes in this bit.
1744 */
update_bus_time(struct fw_ohci * ohci)1745 static u32 update_bus_time(struct fw_ohci *ohci)
1746 {
1747 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1748
1749 if (unlikely(!ohci->bus_time_running)) {
1750 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1751 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1752 (cycle_time_seconds & 0x40);
1753 ohci->bus_time_running = true;
1754 }
1755
1756 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1757 ohci->bus_time += 0x40;
1758
1759 return ohci->bus_time | cycle_time_seconds;
1760 }
1761
get_status_for_port(struct fw_ohci * ohci,int port_index)1762 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1763 {
1764 int reg;
1765
1766 mutex_lock(&ohci->phy_reg_mutex);
1767 reg = write_phy_reg(ohci, 7, port_index);
1768 if (reg >= 0)
1769 reg = read_phy_reg(ohci, 8);
1770 mutex_unlock(&ohci->phy_reg_mutex);
1771 if (reg < 0)
1772 return reg;
1773
1774 switch (reg & 0x0f) {
1775 case 0x06:
1776 return 2; /* is child node (connected to parent node) */
1777 case 0x0e:
1778 return 3; /* is parent node (connected to child node) */
1779 }
1780 return 1; /* not connected */
1781 }
1782
get_self_id_pos(struct fw_ohci * ohci,u32 self_id,int self_id_count)1783 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1784 int self_id_count)
1785 {
1786 int i;
1787 u32 entry;
1788
1789 for (i = 0; i < self_id_count; i++) {
1790 entry = ohci->self_id_buffer[i];
1791 if ((self_id & 0xff000000) == (entry & 0xff000000))
1792 return -1;
1793 if ((self_id & 0xff000000) < (entry & 0xff000000))
1794 return i;
1795 }
1796 return i;
1797 }
1798
initiated_reset(struct fw_ohci * ohci)1799 static int initiated_reset(struct fw_ohci *ohci)
1800 {
1801 int reg;
1802 int ret = 0;
1803
1804 mutex_lock(&ohci->phy_reg_mutex);
1805 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1806 if (reg >= 0) {
1807 reg = read_phy_reg(ohci, 8);
1808 reg |= 0x40;
1809 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1810 if (reg >= 0) {
1811 reg = read_phy_reg(ohci, 12); /* read register 12 */
1812 if (reg >= 0) {
1813 if ((reg & 0x08) == 0x08) {
1814 /* bit 3 indicates "initiated reset" */
1815 ret = 0x2;
1816 }
1817 }
1818 }
1819 }
1820 mutex_unlock(&ohci->phy_reg_mutex);
1821 return ret;
1822 }
1823
1824 /*
1825 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1826 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1827 * Construct the selfID from phy register contents.
1828 */
find_and_insert_self_id(struct fw_ohci * ohci,int self_id_count)1829 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1830 {
1831 int reg, i, pos, status;
1832 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1833 u32 self_id = 0x8040c800;
1834
1835 reg = reg_read(ohci, OHCI1394_NodeID);
1836 if (!(reg & OHCI1394_NodeID_idValid)) {
1837 ohci_notice(ohci,
1838 "node ID not valid, new bus reset in progress\n");
1839 return -EBUSY;
1840 }
1841 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1842
1843 reg = ohci_read_phy_reg(&ohci->card, 4);
1844 if (reg < 0)
1845 return reg;
1846 self_id |= ((reg & 0x07) << 8); /* power class */
1847
1848 reg = ohci_read_phy_reg(&ohci->card, 1);
1849 if (reg < 0)
1850 return reg;
1851 self_id |= ((reg & 0x3f) << 16); /* gap count */
1852
1853 for (i = 0; i < 3; i++) {
1854 status = get_status_for_port(ohci, i);
1855 if (status < 0)
1856 return status;
1857 self_id |= ((status & 0x3) << (6 - (i * 2)));
1858 }
1859
1860 self_id |= initiated_reset(ohci);
1861
1862 pos = get_self_id_pos(ohci, self_id, self_id_count);
1863 if (pos >= 0) {
1864 memmove(&(ohci->self_id_buffer[pos+1]),
1865 &(ohci->self_id_buffer[pos]),
1866 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1867 ohci->self_id_buffer[pos] = self_id;
1868 self_id_count++;
1869 }
1870 return self_id_count;
1871 }
1872
bus_reset_work(struct work_struct * work)1873 static void bus_reset_work(struct work_struct *work)
1874 {
1875 struct fw_ohci *ohci =
1876 container_of(work, struct fw_ohci, bus_reset_work);
1877 int self_id_count, generation, new_generation, i, j;
1878 u32 reg;
1879 void *free_rom = NULL;
1880 dma_addr_t free_rom_bus = 0;
1881 bool is_new_root;
1882
1883 reg = reg_read(ohci, OHCI1394_NodeID);
1884 if (!(reg & OHCI1394_NodeID_idValid)) {
1885 ohci_notice(ohci,
1886 "node ID not valid, new bus reset in progress\n");
1887 return;
1888 }
1889 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1890 ohci_notice(ohci, "malconfigured bus\n");
1891 return;
1892 }
1893 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1894 OHCI1394_NodeID_nodeNumber);
1895
1896 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1897 if (!(ohci->is_root && is_new_root))
1898 reg_write(ohci, OHCI1394_LinkControlSet,
1899 OHCI1394_LinkControl_cycleMaster);
1900 ohci->is_root = is_new_root;
1901
1902 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1903 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1904 ohci_notice(ohci, "self ID receive error\n");
1905 return;
1906 }
1907 /*
1908 * The count in the SelfIDCount register is the number of
1909 * bytes in the self ID receive buffer. Since we also receive
1910 * the inverted quadlets and a header quadlet, we shift one
1911 * bit extra to get the actual number of self IDs.
1912 */
1913 self_id_count = (reg >> 3) & 0xff;
1914
1915 if (self_id_count > 252) {
1916 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1917 return;
1918 }
1919
1920 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1921 rmb();
1922
1923 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1924 u32 id = cond_le32_to_cpu(ohci->self_id[i]);
1925 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1926
1927 if (id != ~id2) {
1928 /*
1929 * If the invalid data looks like a cycle start packet,
1930 * it's likely to be the result of the cycle master
1931 * having a wrong gap count. In this case, the self IDs
1932 * so far are valid and should be processed so that the
1933 * bus manager can then correct the gap count.
1934 */
1935 if (id == 0xffff008f) {
1936 ohci_notice(ohci, "ignoring spurious self IDs\n");
1937 self_id_count = j;
1938 break;
1939 }
1940
1941 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1942 j, self_id_count, id, id2);
1943 return;
1944 }
1945 ohci->self_id_buffer[j] = id;
1946 }
1947
1948 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1949 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1950 if (self_id_count < 0) {
1951 ohci_notice(ohci,
1952 "could not construct local self ID\n");
1953 return;
1954 }
1955 }
1956
1957 if (self_id_count == 0) {
1958 ohci_notice(ohci, "no self IDs\n");
1959 return;
1960 }
1961 rmb();
1962
1963 /*
1964 * Check the consistency of the self IDs we just read. The
1965 * problem we face is that a new bus reset can start while we
1966 * read out the self IDs from the DMA buffer. If this happens,
1967 * the DMA buffer will be overwritten with new self IDs and we
1968 * will read out inconsistent data. The OHCI specification
1969 * (section 11.2) recommends a technique similar to
1970 * linux/seqlock.h, where we remember the generation of the
1971 * self IDs in the buffer before reading them out and compare
1972 * it to the current generation after reading them out. If
1973 * the two generations match we know we have a consistent set
1974 * of self IDs.
1975 */
1976
1977 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1978 if (new_generation != generation) {
1979 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1980 return;
1981 }
1982
1983 /* FIXME: Document how the locking works. */
1984 spin_lock_irq(&ohci->lock);
1985
1986 ohci->generation = -1; /* prevent AT packet queueing */
1987 context_stop(&ohci->at_request_ctx);
1988 context_stop(&ohci->at_response_ctx);
1989
1990 spin_unlock_irq(&ohci->lock);
1991
1992 /*
1993 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1994 * packets in the AT queues and software needs to drain them.
1995 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1996 */
1997 at_context_flush(&ohci->at_request_ctx);
1998 at_context_flush(&ohci->at_response_ctx);
1999
2000 spin_lock_irq(&ohci->lock);
2001
2002 ohci->generation = generation;
2003 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2004
2005 if (ohci->quirks & QUIRK_RESET_PACKET)
2006 ohci->request_generation = generation;
2007
2008 /*
2009 * This next bit is unrelated to the AT context stuff but we
2010 * have to do it under the spinlock also. If a new config rom
2011 * was set up before this reset, the old one is now no longer
2012 * in use and we can free it. Update the config rom pointers
2013 * to point to the current config rom and clear the
2014 * next_config_rom pointer so a new update can take place.
2015 */
2016
2017 if (ohci->next_config_rom != NULL) {
2018 if (ohci->next_config_rom != ohci->config_rom) {
2019 free_rom = ohci->config_rom;
2020 free_rom_bus = ohci->config_rom_bus;
2021 }
2022 ohci->config_rom = ohci->next_config_rom;
2023 ohci->config_rom_bus = ohci->next_config_rom_bus;
2024 ohci->next_config_rom = NULL;
2025
2026 /*
2027 * Restore config_rom image and manually update
2028 * config_rom registers. Writing the header quadlet
2029 * will indicate that the config rom is ready, so we
2030 * do that last.
2031 */
2032 reg_write(ohci, OHCI1394_BusOptions,
2033 be32_to_cpu(ohci->config_rom[2]));
2034 ohci->config_rom[0] = ohci->next_header;
2035 reg_write(ohci, OHCI1394_ConfigROMhdr,
2036 be32_to_cpu(ohci->next_header));
2037 }
2038
2039 if (param_remote_dma) {
2040 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2041 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2042 }
2043
2044 spin_unlock_irq(&ohci->lock);
2045
2046 if (free_rom)
2047 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2048 free_rom, free_rom_bus);
2049
2050 log_selfids(ohci, generation, self_id_count);
2051
2052 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2053 self_id_count, ohci->self_id_buffer,
2054 ohci->csr_state_setclear_abdicate);
2055 ohci->csr_state_setclear_abdicate = false;
2056 }
2057
irq_handler(int irq,void * data)2058 static irqreturn_t irq_handler(int irq, void *data)
2059 {
2060 struct fw_ohci *ohci = data;
2061 u32 event, iso_event;
2062 int i;
2063
2064 event = reg_read(ohci, OHCI1394_IntEventClear);
2065
2066 if (!event || !~event)
2067 return IRQ_NONE;
2068
2069 /*
2070 * busReset and postedWriteErr must not be cleared yet
2071 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2072 */
2073 reg_write(ohci, OHCI1394_IntEventClear,
2074 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2075 log_irqs(ohci, event);
2076
2077 if (event & OHCI1394_selfIDComplete)
2078 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2079
2080 if (event & OHCI1394_RQPkt)
2081 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2082
2083 if (event & OHCI1394_RSPkt)
2084 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2085
2086 if (event & OHCI1394_reqTxComplete)
2087 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2088
2089 if (event & OHCI1394_respTxComplete)
2090 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2091
2092 if (event & OHCI1394_isochRx) {
2093 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2094 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2095
2096 while (iso_event) {
2097 i = ffs(iso_event) - 1;
2098 tasklet_schedule(
2099 &ohci->ir_context_list[i].context.tasklet);
2100 iso_event &= ~(1 << i);
2101 }
2102 }
2103
2104 if (event & OHCI1394_isochTx) {
2105 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2106 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2107
2108 while (iso_event) {
2109 i = ffs(iso_event) - 1;
2110 tasklet_schedule(
2111 &ohci->it_context_list[i].context.tasklet);
2112 iso_event &= ~(1 << i);
2113 }
2114 }
2115
2116 if (unlikely(event & OHCI1394_regAccessFail))
2117 ohci_err(ohci, "register access failure\n");
2118
2119 if (unlikely(event & OHCI1394_postedWriteErr)) {
2120 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2121 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2122 reg_write(ohci, OHCI1394_IntEventClear,
2123 OHCI1394_postedWriteErr);
2124 if (printk_ratelimit())
2125 ohci_err(ohci, "PCI posted write error\n");
2126 }
2127
2128 if (unlikely(event & OHCI1394_cycleTooLong)) {
2129 if (printk_ratelimit())
2130 ohci_notice(ohci, "isochronous cycle too long\n");
2131 reg_write(ohci, OHCI1394_LinkControlSet,
2132 OHCI1394_LinkControl_cycleMaster);
2133 }
2134
2135 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2136 /*
2137 * We need to clear this event bit in order to make
2138 * cycleMatch isochronous I/O work. In theory we should
2139 * stop active cycleMatch iso contexts now and restart
2140 * them at least two cycles later. (FIXME?)
2141 */
2142 if (printk_ratelimit())
2143 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2144 }
2145
2146 if (unlikely(event & OHCI1394_unrecoverableError))
2147 handle_dead_contexts(ohci);
2148
2149 if (event & OHCI1394_cycle64Seconds) {
2150 spin_lock(&ohci->lock);
2151 update_bus_time(ohci);
2152 spin_unlock(&ohci->lock);
2153 } else
2154 flush_writes(ohci);
2155
2156 return IRQ_HANDLED;
2157 }
2158
software_reset(struct fw_ohci * ohci)2159 static int software_reset(struct fw_ohci *ohci)
2160 {
2161 u32 val;
2162 int i;
2163
2164 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2165 for (i = 0; i < 500; i++) {
2166 val = reg_read(ohci, OHCI1394_HCControlSet);
2167 if (!~val)
2168 return -ENODEV; /* Card was ejected. */
2169
2170 if (!(val & OHCI1394_HCControl_softReset))
2171 return 0;
2172
2173 msleep(1);
2174 }
2175
2176 return -EBUSY;
2177 }
2178
copy_config_rom(__be32 * dest,const __be32 * src,size_t length)2179 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2180 {
2181 size_t size = length * 4;
2182
2183 memcpy(dest, src, size);
2184 if (size < CONFIG_ROM_SIZE)
2185 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2186 }
2187
configure_1394a_enhancements(struct fw_ohci * ohci)2188 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2189 {
2190 bool enable_1394a;
2191 int ret, clear, set, offset;
2192
2193 /* Check if the driver should configure link and PHY. */
2194 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2195 OHCI1394_HCControl_programPhyEnable))
2196 return 0;
2197
2198 /* Paranoia: check whether the PHY supports 1394a, too. */
2199 enable_1394a = false;
2200 ret = read_phy_reg(ohci, 2);
2201 if (ret < 0)
2202 return ret;
2203 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2204 ret = read_paged_phy_reg(ohci, 1, 8);
2205 if (ret < 0)
2206 return ret;
2207 if (ret >= 1)
2208 enable_1394a = true;
2209 }
2210
2211 if (ohci->quirks & QUIRK_NO_1394A)
2212 enable_1394a = false;
2213
2214 /* Configure PHY and link consistently. */
2215 if (enable_1394a) {
2216 clear = 0;
2217 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2218 } else {
2219 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2220 set = 0;
2221 }
2222 ret = update_phy_reg(ohci, 5, clear, set);
2223 if (ret < 0)
2224 return ret;
2225
2226 if (enable_1394a)
2227 offset = OHCI1394_HCControlSet;
2228 else
2229 offset = OHCI1394_HCControlClear;
2230 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2231
2232 /* Clean up: configuration has been taken care of. */
2233 reg_write(ohci, OHCI1394_HCControlClear,
2234 OHCI1394_HCControl_programPhyEnable);
2235
2236 return 0;
2237 }
2238
probe_tsb41ba3d(struct fw_ohci * ohci)2239 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2240 {
2241 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2242 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2243 int reg, i;
2244
2245 reg = read_phy_reg(ohci, 2);
2246 if (reg < 0)
2247 return reg;
2248 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2249 return 0;
2250
2251 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2252 reg = read_paged_phy_reg(ohci, 1, i + 10);
2253 if (reg < 0)
2254 return reg;
2255 if (reg != id[i])
2256 return 0;
2257 }
2258 return 1;
2259 }
2260
ohci_enable(struct fw_card * card,const __be32 * config_rom,size_t length)2261 static int ohci_enable(struct fw_card *card,
2262 const __be32 *config_rom, size_t length)
2263 {
2264 struct fw_ohci *ohci = fw_ohci(card);
2265 u32 lps, version, irqs;
2266 int i, ret;
2267
2268 ret = software_reset(ohci);
2269 if (ret < 0) {
2270 ohci_err(ohci, "failed to reset ohci card\n");
2271 return ret;
2272 }
2273
2274 /*
2275 * Now enable LPS, which we need in order to start accessing
2276 * most of the registers. In fact, on some cards (ALI M5251),
2277 * accessing registers in the SClk domain without LPS enabled
2278 * will lock up the machine. Wait 50msec to make sure we have
2279 * full link enabled. However, with some cards (well, at least
2280 * a JMicron PCIe card), we have to try again sometimes.
2281 *
2282 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2283 * cannot actually use the phy at that time. These need tens of
2284 * millisecods pause between LPS write and first phy access too.
2285 */
2286
2287 reg_write(ohci, OHCI1394_HCControlSet,
2288 OHCI1394_HCControl_LPS |
2289 OHCI1394_HCControl_postedWriteEnable);
2290 flush_writes(ohci);
2291
2292 for (lps = 0, i = 0; !lps && i < 3; i++) {
2293 msleep(50);
2294 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2295 OHCI1394_HCControl_LPS;
2296 }
2297
2298 if (!lps) {
2299 ohci_err(ohci, "failed to set Link Power Status\n");
2300 return -EIO;
2301 }
2302
2303 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2304 ret = probe_tsb41ba3d(ohci);
2305 if (ret < 0)
2306 return ret;
2307 if (ret)
2308 ohci_notice(ohci, "local TSB41BA3D phy\n");
2309 else
2310 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2311 }
2312
2313 reg_write(ohci, OHCI1394_HCControlClear,
2314 OHCI1394_HCControl_noByteSwapData);
2315
2316 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2317 reg_write(ohci, OHCI1394_LinkControlSet,
2318 OHCI1394_LinkControl_cycleTimerEnable |
2319 OHCI1394_LinkControl_cycleMaster);
2320
2321 reg_write(ohci, OHCI1394_ATRetries,
2322 OHCI1394_MAX_AT_REQ_RETRIES |
2323 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2324 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2325 (200 << 16));
2326
2327 ohci->bus_time_running = false;
2328
2329 for (i = 0; i < 32; i++)
2330 if (ohci->ir_context_support & (1 << i))
2331 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2332 IR_CONTEXT_MULTI_CHANNEL_MODE);
2333
2334 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2335 if (version >= OHCI_VERSION_1_1) {
2336 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2337 0xfffffffe);
2338 card->broadcast_channel_auto_allocated = true;
2339 }
2340
2341 /* Get implemented bits of the priority arbitration request counter. */
2342 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2343 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2344 reg_write(ohci, OHCI1394_FairnessControl, 0);
2345 card->priority_budget_implemented = ohci->pri_req_max != 0;
2346
2347 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2348 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2349 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2350
2351 ret = configure_1394a_enhancements(ohci);
2352 if (ret < 0)
2353 return ret;
2354
2355 /* Activate link_on bit and contender bit in our self ID packets.*/
2356 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2357 if (ret < 0)
2358 return ret;
2359
2360 /*
2361 * When the link is not yet enabled, the atomic config rom
2362 * update mechanism described below in ohci_set_config_rom()
2363 * is not active. We have to update ConfigRomHeader and
2364 * BusOptions manually, and the write to ConfigROMmap takes
2365 * effect immediately. We tie this to the enabling of the
2366 * link, so we have a valid config rom before enabling - the
2367 * OHCI requires that ConfigROMhdr and BusOptions have valid
2368 * values before enabling.
2369 *
2370 * However, when the ConfigROMmap is written, some controllers
2371 * always read back quadlets 0 and 2 from the config rom to
2372 * the ConfigRomHeader and BusOptions registers on bus reset.
2373 * They shouldn't do that in this initial case where the link
2374 * isn't enabled. This means we have to use the same
2375 * workaround here, setting the bus header to 0 and then write
2376 * the right values in the bus reset tasklet.
2377 */
2378
2379 if (config_rom) {
2380 ohci->next_config_rom =
2381 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2382 &ohci->next_config_rom_bus,
2383 GFP_KERNEL);
2384 if (ohci->next_config_rom == NULL)
2385 return -ENOMEM;
2386
2387 copy_config_rom(ohci->next_config_rom, config_rom, length);
2388 } else {
2389 /*
2390 * In the suspend case, config_rom is NULL, which
2391 * means that we just reuse the old config rom.
2392 */
2393 ohci->next_config_rom = ohci->config_rom;
2394 ohci->next_config_rom_bus = ohci->config_rom_bus;
2395 }
2396
2397 ohci->next_header = ohci->next_config_rom[0];
2398 ohci->next_config_rom[0] = 0;
2399 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2400 reg_write(ohci, OHCI1394_BusOptions,
2401 be32_to_cpu(ohci->next_config_rom[2]));
2402 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2403
2404 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2405
2406 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2407 OHCI1394_RQPkt | OHCI1394_RSPkt |
2408 OHCI1394_isochTx | OHCI1394_isochRx |
2409 OHCI1394_postedWriteErr |
2410 OHCI1394_selfIDComplete |
2411 OHCI1394_regAccessFail |
2412 OHCI1394_cycleInconsistent |
2413 OHCI1394_unrecoverableError |
2414 OHCI1394_cycleTooLong |
2415 OHCI1394_masterIntEnable;
2416 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2417 irqs |= OHCI1394_busReset;
2418 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2419
2420 reg_write(ohci, OHCI1394_HCControlSet,
2421 OHCI1394_HCControl_linkEnable |
2422 OHCI1394_HCControl_BIBimageValid);
2423
2424 reg_write(ohci, OHCI1394_LinkControlSet,
2425 OHCI1394_LinkControl_rcvSelfID |
2426 OHCI1394_LinkControl_rcvPhyPkt);
2427
2428 ar_context_run(&ohci->ar_request_ctx);
2429 ar_context_run(&ohci->ar_response_ctx);
2430
2431 flush_writes(ohci);
2432
2433 /* We are ready to go, reset bus to finish initialization. */
2434 fw_schedule_bus_reset(&ohci->card, false, true);
2435
2436 return 0;
2437 }
2438
ohci_set_config_rom(struct fw_card * card,const __be32 * config_rom,size_t length)2439 static int ohci_set_config_rom(struct fw_card *card,
2440 const __be32 *config_rom, size_t length)
2441 {
2442 struct fw_ohci *ohci;
2443 __be32 *next_config_rom;
2444 dma_addr_t next_config_rom_bus;
2445
2446 ohci = fw_ohci(card);
2447
2448 /*
2449 * When the OHCI controller is enabled, the config rom update
2450 * mechanism is a bit tricky, but easy enough to use. See
2451 * section 5.5.6 in the OHCI specification.
2452 *
2453 * The OHCI controller caches the new config rom address in a
2454 * shadow register (ConfigROMmapNext) and needs a bus reset
2455 * for the changes to take place. When the bus reset is
2456 * detected, the controller loads the new values for the
2457 * ConfigRomHeader and BusOptions registers from the specified
2458 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2459 * shadow register. All automatically and atomically.
2460 *
2461 * Now, there's a twist to this story. The automatic load of
2462 * ConfigRomHeader and BusOptions doesn't honor the
2463 * noByteSwapData bit, so with a be32 config rom, the
2464 * controller will load be32 values in to these registers
2465 * during the atomic update, even on litte endian
2466 * architectures. The workaround we use is to put a 0 in the
2467 * header quadlet; 0 is endian agnostic and means that the
2468 * config rom isn't ready yet. In the bus reset tasklet we
2469 * then set up the real values for the two registers.
2470 *
2471 * We use ohci->lock to avoid racing with the code that sets
2472 * ohci->next_config_rom to NULL (see bus_reset_work).
2473 */
2474
2475 next_config_rom =
2476 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2477 &next_config_rom_bus, GFP_KERNEL);
2478 if (next_config_rom == NULL)
2479 return -ENOMEM;
2480
2481 spin_lock_irq(&ohci->lock);
2482
2483 /*
2484 * If there is not an already pending config_rom update,
2485 * push our new allocation into the ohci->next_config_rom
2486 * and then mark the local variable as null so that we
2487 * won't deallocate the new buffer.
2488 *
2489 * OTOH, if there is a pending config_rom update, just
2490 * use that buffer with the new config_rom data, and
2491 * let this routine free the unused DMA allocation.
2492 */
2493
2494 if (ohci->next_config_rom == NULL) {
2495 ohci->next_config_rom = next_config_rom;
2496 ohci->next_config_rom_bus = next_config_rom_bus;
2497 next_config_rom = NULL;
2498 }
2499
2500 copy_config_rom(ohci->next_config_rom, config_rom, length);
2501
2502 ohci->next_header = config_rom[0];
2503 ohci->next_config_rom[0] = 0;
2504
2505 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2506
2507 spin_unlock_irq(&ohci->lock);
2508
2509 /* If we didn't use the DMA allocation, delete it. */
2510 if (next_config_rom != NULL)
2511 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2512 next_config_rom, next_config_rom_bus);
2513
2514 /*
2515 * Now initiate a bus reset to have the changes take
2516 * effect. We clean up the old config rom memory and DMA
2517 * mappings in the bus reset tasklet, since the OHCI
2518 * controller could need to access it before the bus reset
2519 * takes effect.
2520 */
2521
2522 fw_schedule_bus_reset(&ohci->card, true, true);
2523
2524 return 0;
2525 }
2526
ohci_send_request(struct fw_card * card,struct fw_packet * packet)2527 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2528 {
2529 struct fw_ohci *ohci = fw_ohci(card);
2530
2531 at_context_transmit(&ohci->at_request_ctx, packet);
2532 }
2533
ohci_send_response(struct fw_card * card,struct fw_packet * packet)2534 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2535 {
2536 struct fw_ohci *ohci = fw_ohci(card);
2537
2538 at_context_transmit(&ohci->at_response_ctx, packet);
2539 }
2540
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)2541 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2542 {
2543 struct fw_ohci *ohci = fw_ohci(card);
2544 struct context *ctx = &ohci->at_request_ctx;
2545 struct driver_data *driver_data = packet->driver_data;
2546 int ret = -ENOENT;
2547
2548 tasklet_disable(&ctx->tasklet);
2549
2550 if (packet->ack != 0)
2551 goto out;
2552
2553 if (packet->payload_mapped)
2554 dma_unmap_single(ohci->card.device, packet->payload_bus,
2555 packet->payload_length, DMA_TO_DEVICE);
2556
2557 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2558 driver_data->packet = NULL;
2559 packet->ack = RCODE_CANCELLED;
2560 packet->callback(packet, &ohci->card, packet->ack);
2561 ret = 0;
2562 out:
2563 tasklet_enable(&ctx->tasklet);
2564
2565 return ret;
2566 }
2567
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)2568 static int ohci_enable_phys_dma(struct fw_card *card,
2569 int node_id, int generation)
2570 {
2571 struct fw_ohci *ohci = fw_ohci(card);
2572 unsigned long flags;
2573 int n, ret = 0;
2574
2575 if (param_remote_dma)
2576 return 0;
2577
2578 /*
2579 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2580 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2581 */
2582
2583 spin_lock_irqsave(&ohci->lock, flags);
2584
2585 if (ohci->generation != generation) {
2586 ret = -ESTALE;
2587 goto out;
2588 }
2589
2590 /*
2591 * Note, if the node ID contains a non-local bus ID, physical DMA is
2592 * enabled for _all_ nodes on remote buses.
2593 */
2594
2595 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2596 if (n < 32)
2597 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2598 else
2599 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2600
2601 flush_writes(ohci);
2602 out:
2603 spin_unlock_irqrestore(&ohci->lock, flags);
2604
2605 return ret;
2606 }
2607
ohci_read_csr(struct fw_card * card,int csr_offset)2608 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2609 {
2610 struct fw_ohci *ohci = fw_ohci(card);
2611 unsigned long flags;
2612 u32 value;
2613
2614 switch (csr_offset) {
2615 case CSR_STATE_CLEAR:
2616 case CSR_STATE_SET:
2617 if (ohci->is_root &&
2618 (reg_read(ohci, OHCI1394_LinkControlSet) &
2619 OHCI1394_LinkControl_cycleMaster))
2620 value = CSR_STATE_BIT_CMSTR;
2621 else
2622 value = 0;
2623 if (ohci->csr_state_setclear_abdicate)
2624 value |= CSR_STATE_BIT_ABDICATE;
2625
2626 return value;
2627
2628 case CSR_NODE_IDS:
2629 return reg_read(ohci, OHCI1394_NodeID) << 16;
2630
2631 case CSR_CYCLE_TIME:
2632 return get_cycle_time(ohci);
2633
2634 case CSR_BUS_TIME:
2635 /*
2636 * We might be called just after the cycle timer has wrapped
2637 * around but just before the cycle64Seconds handler, so we
2638 * better check here, too, if the bus time needs to be updated.
2639 */
2640 spin_lock_irqsave(&ohci->lock, flags);
2641 value = update_bus_time(ohci);
2642 spin_unlock_irqrestore(&ohci->lock, flags);
2643 return value;
2644
2645 case CSR_BUSY_TIMEOUT:
2646 value = reg_read(ohci, OHCI1394_ATRetries);
2647 return (value >> 4) & 0x0ffff00f;
2648
2649 case CSR_PRIORITY_BUDGET:
2650 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2651 (ohci->pri_req_max << 8);
2652
2653 default:
2654 WARN_ON(1);
2655 return 0;
2656 }
2657 }
2658
ohci_write_csr(struct fw_card * card,int csr_offset,u32 value)2659 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2660 {
2661 struct fw_ohci *ohci = fw_ohci(card);
2662 unsigned long flags;
2663
2664 switch (csr_offset) {
2665 case CSR_STATE_CLEAR:
2666 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2667 reg_write(ohci, OHCI1394_LinkControlClear,
2668 OHCI1394_LinkControl_cycleMaster);
2669 flush_writes(ohci);
2670 }
2671 if (value & CSR_STATE_BIT_ABDICATE)
2672 ohci->csr_state_setclear_abdicate = false;
2673 break;
2674
2675 case CSR_STATE_SET:
2676 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2677 reg_write(ohci, OHCI1394_LinkControlSet,
2678 OHCI1394_LinkControl_cycleMaster);
2679 flush_writes(ohci);
2680 }
2681 if (value & CSR_STATE_BIT_ABDICATE)
2682 ohci->csr_state_setclear_abdicate = true;
2683 break;
2684
2685 case CSR_NODE_IDS:
2686 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2687 flush_writes(ohci);
2688 break;
2689
2690 case CSR_CYCLE_TIME:
2691 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2692 reg_write(ohci, OHCI1394_IntEventSet,
2693 OHCI1394_cycleInconsistent);
2694 flush_writes(ohci);
2695 break;
2696
2697 case CSR_BUS_TIME:
2698 spin_lock_irqsave(&ohci->lock, flags);
2699 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2700 (value & ~0x7f);
2701 spin_unlock_irqrestore(&ohci->lock, flags);
2702 break;
2703
2704 case CSR_BUSY_TIMEOUT:
2705 value = (value & 0xf) | ((value & 0xf) << 4) |
2706 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2707 reg_write(ohci, OHCI1394_ATRetries, value);
2708 flush_writes(ohci);
2709 break;
2710
2711 case CSR_PRIORITY_BUDGET:
2712 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2713 flush_writes(ohci);
2714 break;
2715
2716 default:
2717 WARN_ON(1);
2718 break;
2719 }
2720 }
2721
flush_iso_completions(struct iso_context * ctx)2722 static void flush_iso_completions(struct iso_context *ctx)
2723 {
2724 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2725 ctx->header_length, ctx->header,
2726 ctx->base.callback_data);
2727 ctx->header_length = 0;
2728 }
2729
copy_iso_headers(struct iso_context * ctx,const u32 * dma_hdr)2730 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2731 {
2732 u32 *ctx_hdr;
2733
2734 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2735 if (ctx->base.drop_overflow_headers)
2736 return;
2737 flush_iso_completions(ctx);
2738 }
2739
2740 ctx_hdr = ctx->header + ctx->header_length;
2741 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2742
2743 /*
2744 * The two iso header quadlets are byteswapped to little
2745 * endian by the controller, but we want to present them
2746 * as big endian for consistency with the bus endianness.
2747 */
2748 if (ctx->base.header_size > 0)
2749 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2750 if (ctx->base.header_size > 4)
2751 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2752 if (ctx->base.header_size > 8)
2753 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2754 ctx->header_length += ctx->base.header_size;
2755 }
2756
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)2757 static int handle_ir_packet_per_buffer(struct context *context,
2758 struct descriptor *d,
2759 struct descriptor *last)
2760 {
2761 struct iso_context *ctx =
2762 container_of(context, struct iso_context, context);
2763 struct descriptor *pd;
2764 u32 buffer_dma;
2765
2766 for (pd = d; pd <= last; pd++)
2767 if (pd->transfer_status)
2768 break;
2769 if (pd > last)
2770 /* Descriptor(s) not done yet, stop iteration */
2771 return 0;
2772
2773 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2774 d++;
2775 buffer_dma = le32_to_cpu(d->data_address);
2776 dma_sync_single_range_for_cpu(context->ohci->card.device,
2777 buffer_dma & PAGE_MASK,
2778 buffer_dma & ~PAGE_MASK,
2779 le16_to_cpu(d->req_count),
2780 DMA_FROM_DEVICE);
2781 }
2782
2783 copy_iso_headers(ctx, (u32 *) (last + 1));
2784
2785 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2786 flush_iso_completions(ctx);
2787
2788 return 1;
2789 }
2790
2791 /* d == last because each descriptor block is only a single descriptor. */
handle_ir_buffer_fill(struct context * context,struct descriptor * d,struct descriptor * last)2792 static int handle_ir_buffer_fill(struct context *context,
2793 struct descriptor *d,
2794 struct descriptor *last)
2795 {
2796 struct iso_context *ctx =
2797 container_of(context, struct iso_context, context);
2798 unsigned int req_count, res_count, completed;
2799 u32 buffer_dma;
2800
2801 req_count = le16_to_cpu(last->req_count);
2802 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2803 completed = req_count - res_count;
2804 buffer_dma = le32_to_cpu(last->data_address);
2805
2806 if (completed > 0) {
2807 ctx->mc_buffer_bus = buffer_dma;
2808 ctx->mc_completed = completed;
2809 }
2810
2811 if (res_count != 0)
2812 /* Descriptor(s) not done yet, stop iteration */
2813 return 0;
2814
2815 dma_sync_single_range_for_cpu(context->ohci->card.device,
2816 buffer_dma & PAGE_MASK,
2817 buffer_dma & ~PAGE_MASK,
2818 completed, DMA_FROM_DEVICE);
2819
2820 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2821 ctx->base.callback.mc(&ctx->base,
2822 buffer_dma + completed,
2823 ctx->base.callback_data);
2824 ctx->mc_completed = 0;
2825 }
2826
2827 return 1;
2828 }
2829
flush_ir_buffer_fill(struct iso_context * ctx)2830 static void flush_ir_buffer_fill(struct iso_context *ctx)
2831 {
2832 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2833 ctx->mc_buffer_bus & PAGE_MASK,
2834 ctx->mc_buffer_bus & ~PAGE_MASK,
2835 ctx->mc_completed, DMA_FROM_DEVICE);
2836
2837 ctx->base.callback.mc(&ctx->base,
2838 ctx->mc_buffer_bus + ctx->mc_completed,
2839 ctx->base.callback_data);
2840 ctx->mc_completed = 0;
2841 }
2842
sync_it_packet_for_cpu(struct context * context,struct descriptor * pd)2843 static inline void sync_it_packet_for_cpu(struct context *context,
2844 struct descriptor *pd)
2845 {
2846 __le16 control;
2847 u32 buffer_dma;
2848
2849 /* only packets beginning with OUTPUT_MORE* have data buffers */
2850 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2851 return;
2852
2853 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2854 pd += 2;
2855
2856 /*
2857 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2858 * data buffer is in the context program's coherent page and must not
2859 * be synced.
2860 */
2861 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2862 (context->current_bus & PAGE_MASK)) {
2863 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2864 return;
2865 pd++;
2866 }
2867
2868 do {
2869 buffer_dma = le32_to_cpu(pd->data_address);
2870 dma_sync_single_range_for_cpu(context->ohci->card.device,
2871 buffer_dma & PAGE_MASK,
2872 buffer_dma & ~PAGE_MASK,
2873 le16_to_cpu(pd->req_count),
2874 DMA_TO_DEVICE);
2875 control = pd->control;
2876 pd++;
2877 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2878 }
2879
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)2880 static int handle_it_packet(struct context *context,
2881 struct descriptor *d,
2882 struct descriptor *last)
2883 {
2884 struct iso_context *ctx =
2885 container_of(context, struct iso_context, context);
2886 struct descriptor *pd;
2887 __be32 *ctx_hdr;
2888
2889 for (pd = d; pd <= last; pd++)
2890 if (pd->transfer_status)
2891 break;
2892 if (pd > last)
2893 /* Descriptor(s) not done yet, stop iteration */
2894 return 0;
2895
2896 sync_it_packet_for_cpu(context, d);
2897
2898 if (ctx->header_length + 4 > PAGE_SIZE) {
2899 if (ctx->base.drop_overflow_headers)
2900 return 1;
2901 flush_iso_completions(ctx);
2902 }
2903
2904 ctx_hdr = ctx->header + ctx->header_length;
2905 ctx->last_timestamp = le16_to_cpu(last->res_count);
2906 /* Present this value as big-endian to match the receive code */
2907 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2908 le16_to_cpu(pd->res_count));
2909 ctx->header_length += 4;
2910
2911 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2912 flush_iso_completions(ctx);
2913
2914 return 1;
2915 }
2916
set_multichannel_mask(struct fw_ohci * ohci,u64 channels)2917 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2918 {
2919 u32 hi = channels >> 32, lo = channels;
2920
2921 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2922 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2923 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2924 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2925 ohci->mc_channels = channels;
2926 }
2927
ohci_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)2928 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2929 int type, int channel, size_t header_size)
2930 {
2931 struct fw_ohci *ohci = fw_ohci(card);
2932 struct iso_context *ctx;
2933 descriptor_callback_t callback;
2934 u64 *channels;
2935 u32 *mask, regs;
2936 int index, ret = -EBUSY;
2937
2938 spin_lock_irq(&ohci->lock);
2939
2940 switch (type) {
2941 case FW_ISO_CONTEXT_TRANSMIT:
2942 mask = &ohci->it_context_mask;
2943 callback = handle_it_packet;
2944 index = ffs(*mask) - 1;
2945 if (index >= 0) {
2946 *mask &= ~(1 << index);
2947 regs = OHCI1394_IsoXmitContextBase(index);
2948 ctx = &ohci->it_context_list[index];
2949 }
2950 break;
2951
2952 case FW_ISO_CONTEXT_RECEIVE:
2953 channels = &ohci->ir_context_channels;
2954 mask = &ohci->ir_context_mask;
2955 callback = handle_ir_packet_per_buffer;
2956 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2957 if (index >= 0) {
2958 *channels &= ~(1ULL << channel);
2959 *mask &= ~(1 << index);
2960 regs = OHCI1394_IsoRcvContextBase(index);
2961 ctx = &ohci->ir_context_list[index];
2962 }
2963 break;
2964
2965 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2966 mask = &ohci->ir_context_mask;
2967 callback = handle_ir_buffer_fill;
2968 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2969 if (index >= 0) {
2970 ohci->mc_allocated = true;
2971 *mask &= ~(1 << index);
2972 regs = OHCI1394_IsoRcvContextBase(index);
2973 ctx = &ohci->ir_context_list[index];
2974 }
2975 break;
2976
2977 default:
2978 index = -1;
2979 ret = -ENOSYS;
2980 }
2981
2982 spin_unlock_irq(&ohci->lock);
2983
2984 if (index < 0)
2985 return ERR_PTR(ret);
2986
2987 memset(ctx, 0, sizeof(*ctx));
2988 ctx->header_length = 0;
2989 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2990 if (ctx->header == NULL) {
2991 ret = -ENOMEM;
2992 goto out;
2993 }
2994 ret = context_init(&ctx->context, ohci, regs, callback);
2995 if (ret < 0)
2996 goto out_with_header;
2997
2998 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2999 set_multichannel_mask(ohci, 0);
3000 ctx->mc_completed = 0;
3001 }
3002
3003 return &ctx->base;
3004
3005 out_with_header:
3006 free_page((unsigned long)ctx->header);
3007 out:
3008 spin_lock_irq(&ohci->lock);
3009
3010 switch (type) {
3011 case FW_ISO_CONTEXT_RECEIVE:
3012 *channels |= 1ULL << channel;
3013 break;
3014
3015 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3016 ohci->mc_allocated = false;
3017 break;
3018 }
3019 *mask |= 1 << index;
3020
3021 spin_unlock_irq(&ohci->lock);
3022
3023 return ERR_PTR(ret);
3024 }
3025
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)3026 static int ohci_start_iso(struct fw_iso_context *base,
3027 s32 cycle, u32 sync, u32 tags)
3028 {
3029 struct iso_context *ctx = container_of(base, struct iso_context, base);
3030 struct fw_ohci *ohci = ctx->context.ohci;
3031 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3032 int index;
3033
3034 /* the controller cannot start without any queued packets */
3035 if (ctx->context.last->branch_address == 0)
3036 return -ENODATA;
3037
3038 switch (ctx->base.type) {
3039 case FW_ISO_CONTEXT_TRANSMIT:
3040 index = ctx - ohci->it_context_list;
3041 match = 0;
3042 if (cycle >= 0)
3043 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3044 (cycle & 0x7fff) << 16;
3045
3046 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3047 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3048 context_run(&ctx->context, match);
3049 break;
3050
3051 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3052 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3053 fallthrough;
3054 case FW_ISO_CONTEXT_RECEIVE:
3055 index = ctx - ohci->ir_context_list;
3056 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3057 if (cycle >= 0) {
3058 match |= (cycle & 0x07fff) << 12;
3059 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3060 }
3061
3062 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3063 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3064 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3065 context_run(&ctx->context, control);
3066
3067 ctx->sync = sync;
3068 ctx->tags = tags;
3069
3070 break;
3071 }
3072
3073 return 0;
3074 }
3075
ohci_stop_iso(struct fw_iso_context * base)3076 static int ohci_stop_iso(struct fw_iso_context *base)
3077 {
3078 struct fw_ohci *ohci = fw_ohci(base->card);
3079 struct iso_context *ctx = container_of(base, struct iso_context, base);
3080 int index;
3081
3082 switch (ctx->base.type) {
3083 case FW_ISO_CONTEXT_TRANSMIT:
3084 index = ctx - ohci->it_context_list;
3085 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3086 break;
3087
3088 case FW_ISO_CONTEXT_RECEIVE:
3089 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3090 index = ctx - ohci->ir_context_list;
3091 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3092 break;
3093 }
3094 flush_writes(ohci);
3095 context_stop(&ctx->context);
3096 tasklet_kill(&ctx->context.tasklet);
3097
3098 return 0;
3099 }
3100
ohci_free_iso_context(struct fw_iso_context * base)3101 static void ohci_free_iso_context(struct fw_iso_context *base)
3102 {
3103 struct fw_ohci *ohci = fw_ohci(base->card);
3104 struct iso_context *ctx = container_of(base, struct iso_context, base);
3105 unsigned long flags;
3106 int index;
3107
3108 ohci_stop_iso(base);
3109 context_release(&ctx->context);
3110 free_page((unsigned long)ctx->header);
3111
3112 spin_lock_irqsave(&ohci->lock, flags);
3113
3114 switch (base->type) {
3115 case FW_ISO_CONTEXT_TRANSMIT:
3116 index = ctx - ohci->it_context_list;
3117 ohci->it_context_mask |= 1 << index;
3118 break;
3119
3120 case FW_ISO_CONTEXT_RECEIVE:
3121 index = ctx - ohci->ir_context_list;
3122 ohci->ir_context_mask |= 1 << index;
3123 ohci->ir_context_channels |= 1ULL << base->channel;
3124 break;
3125
3126 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3127 index = ctx - ohci->ir_context_list;
3128 ohci->ir_context_mask |= 1 << index;
3129 ohci->ir_context_channels |= ohci->mc_channels;
3130 ohci->mc_channels = 0;
3131 ohci->mc_allocated = false;
3132 break;
3133 }
3134
3135 spin_unlock_irqrestore(&ohci->lock, flags);
3136 }
3137
ohci_set_iso_channels(struct fw_iso_context * base,u64 * channels)3138 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3139 {
3140 struct fw_ohci *ohci = fw_ohci(base->card);
3141 unsigned long flags;
3142 int ret;
3143
3144 switch (base->type) {
3145 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3146
3147 spin_lock_irqsave(&ohci->lock, flags);
3148
3149 /* Don't allow multichannel to grab other contexts' channels. */
3150 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3151 *channels = ohci->ir_context_channels;
3152 ret = -EBUSY;
3153 } else {
3154 set_multichannel_mask(ohci, *channels);
3155 ret = 0;
3156 }
3157
3158 spin_unlock_irqrestore(&ohci->lock, flags);
3159
3160 break;
3161 default:
3162 ret = -EINVAL;
3163 }
3164
3165 return ret;
3166 }
3167
3168 #ifdef CONFIG_PM
ohci_resume_iso_dma(struct fw_ohci * ohci)3169 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3170 {
3171 int i;
3172 struct iso_context *ctx;
3173
3174 for (i = 0 ; i < ohci->n_ir ; i++) {
3175 ctx = &ohci->ir_context_list[i];
3176 if (ctx->context.running)
3177 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3178 }
3179
3180 for (i = 0 ; i < ohci->n_it ; i++) {
3181 ctx = &ohci->it_context_list[i];
3182 if (ctx->context.running)
3183 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3184 }
3185 }
3186 #endif
3187
queue_iso_transmit(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3188 static int queue_iso_transmit(struct iso_context *ctx,
3189 struct fw_iso_packet *packet,
3190 struct fw_iso_buffer *buffer,
3191 unsigned long payload)
3192 {
3193 struct descriptor *d, *last, *pd;
3194 struct fw_iso_packet *p;
3195 __le32 *header;
3196 dma_addr_t d_bus, page_bus;
3197 u32 z, header_z, payload_z, irq;
3198 u32 payload_index, payload_end_index, next_page_index;
3199 int page, end_page, i, length, offset;
3200
3201 p = packet;
3202 payload_index = payload;
3203
3204 if (p->skip)
3205 z = 1;
3206 else
3207 z = 2;
3208 if (p->header_length > 0)
3209 z++;
3210
3211 /* Determine the first page the payload isn't contained in. */
3212 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3213 if (p->payload_length > 0)
3214 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3215 else
3216 payload_z = 0;
3217
3218 z += payload_z;
3219
3220 /* Get header size in number of descriptors. */
3221 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3222
3223 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3224 if (d == NULL)
3225 return -ENOMEM;
3226
3227 if (!p->skip) {
3228 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3229 d[0].req_count = cpu_to_le16(8);
3230 /*
3231 * Link the skip address to this descriptor itself. This causes
3232 * a context to skip a cycle whenever lost cycles or FIFO
3233 * overruns occur, without dropping the data. The application
3234 * should then decide whether this is an error condition or not.
3235 * FIXME: Make the context's cycle-lost behaviour configurable?
3236 */
3237 d[0].branch_address = cpu_to_le32(d_bus | z);
3238
3239 header = (__le32 *) &d[1];
3240 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3241 IT_HEADER_TAG(p->tag) |
3242 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3243 IT_HEADER_CHANNEL(ctx->base.channel) |
3244 IT_HEADER_SPEED(ctx->base.speed));
3245 header[1] =
3246 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3247 p->payload_length));
3248 }
3249
3250 if (p->header_length > 0) {
3251 d[2].req_count = cpu_to_le16(p->header_length);
3252 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3253 memcpy(&d[z], p->header, p->header_length);
3254 }
3255
3256 pd = d + z - payload_z;
3257 payload_end_index = payload_index + p->payload_length;
3258 for (i = 0; i < payload_z; i++) {
3259 page = payload_index >> PAGE_SHIFT;
3260 offset = payload_index & ~PAGE_MASK;
3261 next_page_index = (page + 1) << PAGE_SHIFT;
3262 length =
3263 min(next_page_index, payload_end_index) - payload_index;
3264 pd[i].req_count = cpu_to_le16(length);
3265
3266 page_bus = page_private(buffer->pages[page]);
3267 pd[i].data_address = cpu_to_le32(page_bus + offset);
3268
3269 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3270 page_bus, offset, length,
3271 DMA_TO_DEVICE);
3272
3273 payload_index += length;
3274 }
3275
3276 if (p->interrupt)
3277 irq = DESCRIPTOR_IRQ_ALWAYS;
3278 else
3279 irq = DESCRIPTOR_NO_IRQ;
3280
3281 last = z == 2 ? d : d + z - 1;
3282 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3283 DESCRIPTOR_STATUS |
3284 DESCRIPTOR_BRANCH_ALWAYS |
3285 irq);
3286
3287 context_append(&ctx->context, d, z, header_z);
3288
3289 return 0;
3290 }
3291
queue_iso_packet_per_buffer(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3292 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3293 struct fw_iso_packet *packet,
3294 struct fw_iso_buffer *buffer,
3295 unsigned long payload)
3296 {
3297 struct device *device = ctx->context.ohci->card.device;
3298 struct descriptor *d, *pd;
3299 dma_addr_t d_bus, page_bus;
3300 u32 z, header_z, rest;
3301 int i, j, length;
3302 int page, offset, packet_count, header_size, payload_per_buffer;
3303
3304 /*
3305 * The OHCI controller puts the isochronous header and trailer in the
3306 * buffer, so we need at least 8 bytes.
3307 */
3308 packet_count = packet->header_length / ctx->base.header_size;
3309 header_size = max(ctx->base.header_size, (size_t)8);
3310
3311 /* Get header size in number of descriptors. */
3312 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3313 page = payload >> PAGE_SHIFT;
3314 offset = payload & ~PAGE_MASK;
3315 payload_per_buffer = packet->payload_length / packet_count;
3316
3317 for (i = 0; i < packet_count; i++) {
3318 /* d points to the header descriptor */
3319 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3320 d = context_get_descriptors(&ctx->context,
3321 z + header_z, &d_bus);
3322 if (d == NULL)
3323 return -ENOMEM;
3324
3325 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3326 DESCRIPTOR_INPUT_MORE);
3327 if (packet->skip && i == 0)
3328 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3329 d->req_count = cpu_to_le16(header_size);
3330 d->res_count = d->req_count;
3331 d->transfer_status = 0;
3332 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3333
3334 rest = payload_per_buffer;
3335 pd = d;
3336 for (j = 1; j < z; j++) {
3337 pd++;
3338 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3339 DESCRIPTOR_INPUT_MORE);
3340
3341 if (offset + rest < PAGE_SIZE)
3342 length = rest;
3343 else
3344 length = PAGE_SIZE - offset;
3345 pd->req_count = cpu_to_le16(length);
3346 pd->res_count = pd->req_count;
3347 pd->transfer_status = 0;
3348
3349 page_bus = page_private(buffer->pages[page]);
3350 pd->data_address = cpu_to_le32(page_bus + offset);
3351
3352 dma_sync_single_range_for_device(device, page_bus,
3353 offset, length,
3354 DMA_FROM_DEVICE);
3355
3356 offset = (offset + length) & ~PAGE_MASK;
3357 rest -= length;
3358 if (offset == 0)
3359 page++;
3360 }
3361 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3362 DESCRIPTOR_INPUT_LAST |
3363 DESCRIPTOR_BRANCH_ALWAYS);
3364 if (packet->interrupt && i == packet_count - 1)
3365 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3366
3367 context_append(&ctx->context, d, z, header_z);
3368 }
3369
3370 return 0;
3371 }
3372
queue_iso_buffer_fill(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3373 static int queue_iso_buffer_fill(struct iso_context *ctx,
3374 struct fw_iso_packet *packet,
3375 struct fw_iso_buffer *buffer,
3376 unsigned long payload)
3377 {
3378 struct descriptor *d;
3379 dma_addr_t d_bus, page_bus;
3380 int page, offset, rest, z, i, length;
3381
3382 page = payload >> PAGE_SHIFT;
3383 offset = payload & ~PAGE_MASK;
3384 rest = packet->payload_length;
3385
3386 /* We need one descriptor for each page in the buffer. */
3387 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3388
3389 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3390 return -EFAULT;
3391
3392 for (i = 0; i < z; i++) {
3393 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3394 if (d == NULL)
3395 return -ENOMEM;
3396
3397 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3398 DESCRIPTOR_BRANCH_ALWAYS);
3399 if (packet->skip && i == 0)
3400 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3401 if (packet->interrupt && i == z - 1)
3402 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3403
3404 if (offset + rest < PAGE_SIZE)
3405 length = rest;
3406 else
3407 length = PAGE_SIZE - offset;
3408 d->req_count = cpu_to_le16(length);
3409 d->res_count = d->req_count;
3410 d->transfer_status = 0;
3411
3412 page_bus = page_private(buffer->pages[page]);
3413 d->data_address = cpu_to_le32(page_bus + offset);
3414
3415 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3416 page_bus, offset, length,
3417 DMA_FROM_DEVICE);
3418
3419 rest -= length;
3420 offset = 0;
3421 page++;
3422
3423 context_append(&ctx->context, d, 1, 0);
3424 }
3425
3426 return 0;
3427 }
3428
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3429 static int ohci_queue_iso(struct fw_iso_context *base,
3430 struct fw_iso_packet *packet,
3431 struct fw_iso_buffer *buffer,
3432 unsigned long payload)
3433 {
3434 struct iso_context *ctx = container_of(base, struct iso_context, base);
3435 unsigned long flags;
3436 int ret = -ENOSYS;
3437
3438 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3439 switch (base->type) {
3440 case FW_ISO_CONTEXT_TRANSMIT:
3441 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3442 break;
3443 case FW_ISO_CONTEXT_RECEIVE:
3444 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3445 break;
3446 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3447 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3448 break;
3449 }
3450 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3451
3452 return ret;
3453 }
3454
ohci_flush_queue_iso(struct fw_iso_context * base)3455 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3456 {
3457 struct context *ctx =
3458 &container_of(base, struct iso_context, base)->context;
3459
3460 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3461 }
3462
ohci_flush_iso_completions(struct fw_iso_context * base)3463 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3464 {
3465 struct iso_context *ctx = container_of(base, struct iso_context, base);
3466 int ret = 0;
3467
3468 tasklet_disable(&ctx->context.tasklet);
3469
3470 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3471 context_tasklet((unsigned long)&ctx->context);
3472
3473 switch (base->type) {
3474 case FW_ISO_CONTEXT_TRANSMIT:
3475 case FW_ISO_CONTEXT_RECEIVE:
3476 if (ctx->header_length != 0)
3477 flush_iso_completions(ctx);
3478 break;
3479 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3480 if (ctx->mc_completed != 0)
3481 flush_ir_buffer_fill(ctx);
3482 break;
3483 default:
3484 ret = -ENOSYS;
3485 }
3486
3487 clear_bit_unlock(0, &ctx->flushing_completions);
3488 smp_mb__after_atomic();
3489 }
3490
3491 tasklet_enable(&ctx->context.tasklet);
3492
3493 return ret;
3494 }
3495
3496 static const struct fw_card_driver ohci_driver = {
3497 .enable = ohci_enable,
3498 .read_phy_reg = ohci_read_phy_reg,
3499 .update_phy_reg = ohci_update_phy_reg,
3500 .set_config_rom = ohci_set_config_rom,
3501 .send_request = ohci_send_request,
3502 .send_response = ohci_send_response,
3503 .cancel_packet = ohci_cancel_packet,
3504 .enable_phys_dma = ohci_enable_phys_dma,
3505 .read_csr = ohci_read_csr,
3506 .write_csr = ohci_write_csr,
3507
3508 .allocate_iso_context = ohci_allocate_iso_context,
3509 .free_iso_context = ohci_free_iso_context,
3510 .set_iso_channels = ohci_set_iso_channels,
3511 .queue_iso = ohci_queue_iso,
3512 .flush_queue_iso = ohci_flush_queue_iso,
3513 .flush_iso_completions = ohci_flush_iso_completions,
3514 .start_iso = ohci_start_iso,
3515 .stop_iso = ohci_stop_iso,
3516 };
3517
3518 #ifdef CONFIG_PPC_PMAC
pmac_ohci_on(struct pci_dev * dev)3519 static void pmac_ohci_on(struct pci_dev *dev)
3520 {
3521 if (machine_is(powermac)) {
3522 struct device_node *ofn = pci_device_to_OF_node(dev);
3523
3524 if (ofn) {
3525 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3526 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3527 }
3528 }
3529 }
3530
pmac_ohci_off(struct pci_dev * dev)3531 static void pmac_ohci_off(struct pci_dev *dev)
3532 {
3533 if (machine_is(powermac)) {
3534 struct device_node *ofn = pci_device_to_OF_node(dev);
3535
3536 if (ofn) {
3537 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3538 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3539 }
3540 }
3541 }
3542 #else
pmac_ohci_on(struct pci_dev * dev)3543 static inline void pmac_ohci_on(struct pci_dev *dev) {}
pmac_ohci_off(struct pci_dev * dev)3544 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3545 #endif /* CONFIG_PPC_PMAC */
3546
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)3547 static int pci_probe(struct pci_dev *dev,
3548 const struct pci_device_id *ent)
3549 {
3550 struct fw_ohci *ohci;
3551 u32 bus_options, max_receive, link_speed, version;
3552 u64 guid;
3553 int i, err;
3554 size_t size;
3555
3556 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3557 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3558 return -ENOSYS;
3559 }
3560
3561 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3562 if (ohci == NULL) {
3563 err = -ENOMEM;
3564 goto fail;
3565 }
3566
3567 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3568
3569 pmac_ohci_on(dev);
3570
3571 err = pci_enable_device(dev);
3572 if (err) {
3573 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3574 goto fail_free;
3575 }
3576
3577 pci_set_master(dev);
3578 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3579 pci_set_drvdata(dev, ohci);
3580
3581 spin_lock_init(&ohci->lock);
3582 mutex_init(&ohci->phy_reg_mutex);
3583
3584 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3585
3586 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3587 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3588 ohci_err(ohci, "invalid MMIO resource\n");
3589 err = -ENXIO;
3590 goto fail_disable;
3591 }
3592
3593 err = pci_request_region(dev, 0, ohci_driver_name);
3594 if (err) {
3595 ohci_err(ohci, "MMIO resource unavailable\n");
3596 goto fail_disable;
3597 }
3598
3599 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3600 if (ohci->registers == NULL) {
3601 ohci_err(ohci, "failed to remap registers\n");
3602 err = -ENXIO;
3603 goto fail_iomem;
3604 }
3605
3606 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3607 if ((ohci_quirks[i].vendor == dev->vendor) &&
3608 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3609 ohci_quirks[i].device == dev->device) &&
3610 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3611 ohci_quirks[i].revision >= dev->revision)) {
3612 ohci->quirks = ohci_quirks[i].flags;
3613 break;
3614 }
3615 if (param_quirks)
3616 ohci->quirks = param_quirks;
3617
3618 /*
3619 * Because dma_alloc_coherent() allocates at least one page,
3620 * we save space by using a common buffer for the AR request/
3621 * response descriptors and the self IDs buffer.
3622 */
3623 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3624 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3625 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3626 PAGE_SIZE,
3627 &ohci->misc_buffer_bus,
3628 GFP_KERNEL);
3629 if (!ohci->misc_buffer) {
3630 err = -ENOMEM;
3631 goto fail_iounmap;
3632 }
3633
3634 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3635 OHCI1394_AsReqRcvContextControlSet);
3636 if (err < 0)
3637 goto fail_misc_buf;
3638
3639 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3640 OHCI1394_AsRspRcvContextControlSet);
3641 if (err < 0)
3642 goto fail_arreq_ctx;
3643
3644 err = context_init(&ohci->at_request_ctx, ohci,
3645 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3646 if (err < 0)
3647 goto fail_arrsp_ctx;
3648
3649 err = context_init(&ohci->at_response_ctx, ohci,
3650 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3651 if (err < 0)
3652 goto fail_atreq_ctx;
3653
3654 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3655 ohci->ir_context_channels = ~0ULL;
3656 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3657 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3658 ohci->ir_context_mask = ohci->ir_context_support;
3659 ohci->n_ir = hweight32(ohci->ir_context_mask);
3660 size = sizeof(struct iso_context) * ohci->n_ir;
3661 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3662
3663 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3664 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3665 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3666 if (!ohci->it_context_support) {
3667 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3668 ohci->it_context_support = 0xf;
3669 }
3670 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3671 ohci->it_context_mask = ohci->it_context_support;
3672 ohci->n_it = hweight32(ohci->it_context_mask);
3673 size = sizeof(struct iso_context) * ohci->n_it;
3674 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3675
3676 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3677 err = -ENOMEM;
3678 goto fail_contexts;
3679 }
3680
3681 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3682 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3683
3684 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3685 max_receive = (bus_options >> 12) & 0xf;
3686 link_speed = bus_options & 0x7;
3687 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3688 reg_read(ohci, OHCI1394_GUIDLo);
3689
3690 if (!(ohci->quirks & QUIRK_NO_MSI))
3691 pci_enable_msi(dev);
3692 if (request_irq(dev->irq, irq_handler,
3693 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3694 ohci_driver_name, ohci)) {
3695 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3696 err = -EIO;
3697 goto fail_msi;
3698 }
3699
3700 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3701 if (err)
3702 goto fail_irq;
3703
3704 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3705 ohci_notice(ohci,
3706 "added OHCI v%x.%x device as card %d, "
3707 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3708 version >> 16, version & 0xff, ohci->card.index,
3709 ohci->n_ir, ohci->n_it, ohci->quirks,
3710 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3711 ", physUB" : "");
3712
3713 return 0;
3714
3715 fail_irq:
3716 free_irq(dev->irq, ohci);
3717 fail_msi:
3718 pci_disable_msi(dev);
3719 fail_contexts:
3720 kfree(ohci->ir_context_list);
3721 kfree(ohci->it_context_list);
3722 context_release(&ohci->at_response_ctx);
3723 fail_atreq_ctx:
3724 context_release(&ohci->at_request_ctx);
3725 fail_arrsp_ctx:
3726 ar_context_release(&ohci->ar_response_ctx);
3727 fail_arreq_ctx:
3728 ar_context_release(&ohci->ar_request_ctx);
3729 fail_misc_buf:
3730 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3731 ohci->misc_buffer, ohci->misc_buffer_bus);
3732 fail_iounmap:
3733 pci_iounmap(dev, ohci->registers);
3734 fail_iomem:
3735 pci_release_region(dev, 0);
3736 fail_disable:
3737 pci_disable_device(dev);
3738 fail_free:
3739 kfree(ohci);
3740 pmac_ohci_off(dev);
3741 fail:
3742 return err;
3743 }
3744
pci_remove(struct pci_dev * dev)3745 static void pci_remove(struct pci_dev *dev)
3746 {
3747 struct fw_ohci *ohci = pci_get_drvdata(dev);
3748
3749 /*
3750 * If the removal is happening from the suspend state, LPS won't be
3751 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3752 */
3753 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3754 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3755 flush_writes(ohci);
3756 }
3757 cancel_work_sync(&ohci->bus_reset_work);
3758 fw_core_remove_card(&ohci->card);
3759
3760 /*
3761 * FIXME: Fail all pending packets here, now that the upper
3762 * layers can't queue any more.
3763 */
3764
3765 software_reset(ohci);
3766 free_irq(dev->irq, ohci);
3767
3768 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3769 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3770 ohci->next_config_rom, ohci->next_config_rom_bus);
3771 if (ohci->config_rom)
3772 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3773 ohci->config_rom, ohci->config_rom_bus);
3774 ar_context_release(&ohci->ar_request_ctx);
3775 ar_context_release(&ohci->ar_response_ctx);
3776 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3777 ohci->misc_buffer, ohci->misc_buffer_bus);
3778 context_release(&ohci->at_request_ctx);
3779 context_release(&ohci->at_response_ctx);
3780 kfree(ohci->it_context_list);
3781 kfree(ohci->ir_context_list);
3782 pci_disable_msi(dev);
3783 pci_iounmap(dev, ohci->registers);
3784 pci_release_region(dev, 0);
3785 pci_disable_device(dev);
3786 kfree(ohci);
3787 pmac_ohci_off(dev);
3788
3789 dev_notice(&dev->dev, "removed fw-ohci device\n");
3790 }
3791
3792 #ifdef CONFIG_PM
pci_suspend(struct pci_dev * dev,pm_message_t state)3793 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3794 {
3795 struct fw_ohci *ohci = pci_get_drvdata(dev);
3796 int err;
3797
3798 software_reset(ohci);
3799 err = pci_save_state(dev);
3800 if (err) {
3801 ohci_err(ohci, "pci_save_state failed\n");
3802 return err;
3803 }
3804 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3805 if (err)
3806 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3807 pmac_ohci_off(dev);
3808
3809 return 0;
3810 }
3811
pci_resume(struct pci_dev * dev)3812 static int pci_resume(struct pci_dev *dev)
3813 {
3814 struct fw_ohci *ohci = pci_get_drvdata(dev);
3815 int err;
3816
3817 pmac_ohci_on(dev);
3818 pci_set_power_state(dev, PCI_D0);
3819 pci_restore_state(dev);
3820 err = pci_enable_device(dev);
3821 if (err) {
3822 ohci_err(ohci, "pci_enable_device failed\n");
3823 return err;
3824 }
3825
3826 /* Some systems don't setup GUID register on resume from ram */
3827 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3828 !reg_read(ohci, OHCI1394_GUIDHi)) {
3829 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3830 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3831 }
3832
3833 err = ohci_enable(&ohci->card, NULL, 0);
3834 if (err)
3835 return err;
3836
3837 ohci_resume_iso_dma(ohci);
3838
3839 return 0;
3840 }
3841 #endif
3842
3843 static const struct pci_device_id pci_table[] = {
3844 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3845 { }
3846 };
3847
3848 MODULE_DEVICE_TABLE(pci, pci_table);
3849
3850 static struct pci_driver fw_ohci_pci_driver = {
3851 .name = ohci_driver_name,
3852 .id_table = pci_table,
3853 .probe = pci_probe,
3854 .remove = pci_remove,
3855 #ifdef CONFIG_PM
3856 .resume = pci_resume,
3857 .suspend = pci_suspend,
3858 #endif
3859 };
3860
fw_ohci_init(void)3861 static int __init fw_ohci_init(void)
3862 {
3863 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3864 if (!selfid_workqueue)
3865 return -ENOMEM;
3866
3867 return pci_register_driver(&fw_ohci_pci_driver);
3868 }
3869
fw_ohci_cleanup(void)3870 static void __exit fw_ohci_cleanup(void)
3871 {
3872 pci_unregister_driver(&fw_ohci_pci_driver);
3873 destroy_workqueue(selfid_workqueue);
3874 }
3875
3876 module_init(fw_ohci_init);
3877 module_exit(fw_ohci_cleanup);
3878
3879 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3880 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3881 MODULE_LICENSE("GPL");
3882
3883 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3884 MODULE_ALIAS("ohci1394");
3885