• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_trace.h"
28 #include "i915_user_extensions.h"
29 
30 struct eb_vma {
31 	struct i915_vma *vma;
32 	unsigned int flags;
33 
34 	/** This vma's place in the execbuf reservation list */
35 	struct drm_i915_gem_exec_object2 *exec;
36 	struct list_head bind_link;
37 	struct list_head reloc_link;
38 
39 	struct hlist_node node;
40 	u32 handle;
41 };
42 
43 enum {
44 	FORCE_CPU_RELOC = 1,
45 	FORCE_GTT_RELOC,
46 	FORCE_GPU_RELOC,
47 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
48 };
49 
50 #define __EXEC_OBJECT_HAS_PIN		BIT(31)
51 #define __EXEC_OBJECT_HAS_FENCE		BIT(30)
52 #define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
53 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
54 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
55 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
56 
57 #define __EXEC_HAS_RELOC	BIT(31)
58 #define __EXEC_ENGINE_PINNED	BIT(30)
59 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
60 #define UPDATE			PIN_OFFSET_FIXED
61 
62 #define BATCH_OFFSET_BIAS (256*1024)
63 
64 #define __I915_EXEC_ILLEGAL_FLAGS \
65 	(__I915_EXEC_UNKNOWN_FLAGS | \
66 	 I915_EXEC_CONSTANTS_MASK  | \
67 	 I915_EXEC_RESOURCE_STREAMER)
68 
69 /* Catch emission of unexpected errors for CI! */
70 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
71 #undef EINVAL
72 #define EINVAL ({ \
73 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
74 	22; \
75 })
76 #endif
77 
78 /**
79  * DOC: User command execution
80  *
81  * Userspace submits commands to be executed on the GPU as an instruction
82  * stream within a GEM object we call a batchbuffer. This instructions may
83  * refer to other GEM objects containing auxiliary state such as kernels,
84  * samplers, render targets and even secondary batchbuffers. Userspace does
85  * not know where in the GPU memory these objects reside and so before the
86  * batchbuffer is passed to the GPU for execution, those addresses in the
87  * batchbuffer and auxiliary objects are updated. This is known as relocation,
88  * or patching. To try and avoid having to relocate each object on the next
89  * execution, userspace is told the location of those objects in this pass,
90  * but this remains just a hint as the kernel may choose a new location for
91  * any object in the future.
92  *
93  * At the level of talking to the hardware, submitting a batchbuffer for the
94  * GPU to execute is to add content to a buffer from which the HW
95  * command streamer is reading.
96  *
97  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
98  *    Execlists, this command is not placed on the same buffer as the
99  *    remaining items.
100  *
101  * 2. Add a command to invalidate caches to the buffer.
102  *
103  * 3. Add a batchbuffer start command to the buffer; the start command is
104  *    essentially a token together with the GPU address of the batchbuffer
105  *    to be executed.
106  *
107  * 4. Add a pipeline flush to the buffer.
108  *
109  * 5. Add a memory write command to the buffer to record when the GPU
110  *    is done executing the batchbuffer. The memory write writes the
111  *    global sequence number of the request, ``i915_request::global_seqno``;
112  *    the i915 driver uses the current value in the register to determine
113  *    if the GPU has completed the batchbuffer.
114  *
115  * 6. Add a user interrupt command to the buffer. This command instructs
116  *    the GPU to issue an interrupt when the command, pipeline flush and
117  *    memory write are completed.
118  *
119  * 7. Inform the hardware of the additional commands added to the buffer
120  *    (by updating the tail pointer).
121  *
122  * Processing an execbuf ioctl is conceptually split up into a few phases.
123  *
124  * 1. Validation - Ensure all the pointers, handles and flags are valid.
125  * 2. Reservation - Assign GPU address space for every object
126  * 3. Relocation - Update any addresses to point to the final locations
127  * 4. Serialisation - Order the request with respect to its dependencies
128  * 5. Construction - Construct a request to execute the batchbuffer
129  * 6. Submission (at some point in the future execution)
130  *
131  * Reserving resources for the execbuf is the most complicated phase. We
132  * neither want to have to migrate the object in the address space, nor do
133  * we want to have to update any relocations pointing to this object. Ideally,
134  * we want to leave the object where it is and for all the existing relocations
135  * to match. If the object is given a new address, or if userspace thinks the
136  * object is elsewhere, we have to parse all the relocation entries and update
137  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
138  * all the target addresses in all of its objects match the value in the
139  * relocation entries and that they all match the presumed offsets given by the
140  * list of execbuffer objects. Using this knowledge, we know that if we haven't
141  * moved any buffers, all the relocation entries are valid and we can skip
142  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
143  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
144  *
145  *      The addresses written in the objects must match the corresponding
146  *      reloc.presumed_offset which in turn must match the corresponding
147  *      execobject.offset.
148  *
149  *      Any render targets written to in the batch must be flagged with
150  *      EXEC_OBJECT_WRITE.
151  *
152  *      To avoid stalling, execobject.offset should match the current
153  *      address of that object within the active context.
154  *
155  * The reservation is done is multiple phases. First we try and keep any
156  * object already bound in its current location - so as long as meets the
157  * constraints imposed by the new execbuffer. Any object left unbound after the
158  * first pass is then fitted into any available idle space. If an object does
159  * not fit, all objects are removed from the reservation and the process rerun
160  * after sorting the objects into a priority order (more difficult to fit
161  * objects are tried first). Failing that, the entire VM is cleared and we try
162  * to fit the execbuf once last time before concluding that it simply will not
163  * fit.
164  *
165  * A small complication to all of this is that we allow userspace not only to
166  * specify an alignment and a size for the object in the address space, but
167  * we also allow userspace to specify the exact offset. This objects are
168  * simpler to place (the location is known a priori) all we have to do is make
169  * sure the space is available.
170  *
171  * Once all the objects are in place, patching up the buried pointers to point
172  * to the final locations is a fairly simple job of walking over the relocation
173  * entry arrays, looking up the right address and rewriting the value into
174  * the object. Simple! ... The relocation entries are stored in user memory
175  * and so to access them we have to copy them into a local buffer. That copy
176  * has to avoid taking any pagefaults as they may lead back to a GEM object
177  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
178  * the relocation into multiple passes. First we try to do everything within an
179  * atomic context (avoid the pagefaults) which requires that we never wait. If
180  * we detect that we may wait, or if we need to fault, then we have to fallback
181  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
182  * bells yet?) Dropping the mutex means that we lose all the state we have
183  * built up so far for the execbuf and we must reset any global data. However,
184  * we do leave the objects pinned in their final locations - which is a
185  * potential issue for concurrent execbufs. Once we have left the mutex, we can
186  * allocate and copy all the relocation entries into a large array at our
187  * leisure, reacquire the mutex, reclaim all the objects and other state and
188  * then proceed to update any incorrect addresses with the objects.
189  *
190  * As we process the relocation entries, we maintain a record of whether the
191  * object is being written to. Using NORELOC, we expect userspace to provide
192  * this information instead. We also check whether we can skip the relocation
193  * by comparing the expected value inside the relocation entry with the target's
194  * final address. If they differ, we have to map the current object and rewrite
195  * the 4 or 8 byte pointer within.
196  *
197  * Serialising an execbuf is quite simple according to the rules of the GEM
198  * ABI. Execution within each context is ordered by the order of submission.
199  * Writes to any GEM object are in order of submission and are exclusive. Reads
200  * from a GEM object are unordered with respect to other reads, but ordered by
201  * writes. A write submitted after a read cannot occur before the read, and
202  * similarly any read submitted after a write cannot occur before the write.
203  * Writes are ordered between engines such that only one write occurs at any
204  * time (completing any reads beforehand) - using semaphores where available
205  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
206  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
207  * reads before starting, and any read (either using set-domain or pread) must
208  * flush all GPU writes before starting. (Note we only employ a barrier before,
209  * we currently rely on userspace not concurrently starting a new execution
210  * whilst reading or writing to an object. This may be an advantage or not
211  * depending on how much you trust userspace not to shoot themselves in the
212  * foot.) Serialisation may just result in the request being inserted into
213  * a DAG awaiting its turn, but most simple is to wait on the CPU until
214  * all dependencies are resolved.
215  *
216  * After all of that, is just a matter of closing the request and handing it to
217  * the hardware (well, leaving it in a queue to be executed). However, we also
218  * offer the ability for batchbuffers to be run with elevated privileges so
219  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
220  * Before any batch is given extra privileges we first must check that it
221  * contains no nefarious instructions, we check that each instruction is from
222  * our whitelist and all registers are also from an allowed list. We first
223  * copy the user's batchbuffer to a shadow (so that the user doesn't have
224  * access to it, either by the CPU or GPU as we scan it) and then parse each
225  * instruction. If everything is ok, we set a flag telling the hardware to run
226  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
227  */
228 
229 struct eb_fence {
230 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
231 	struct dma_fence *dma_fence;
232 	u64 value;
233 	struct dma_fence_chain *chain_fence;
234 };
235 
236 struct i915_execbuffer {
237 	struct drm_i915_private *i915; /** i915 backpointer */
238 	struct drm_file *file; /** per-file lookup tables and limits */
239 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
240 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
241 	struct eb_vma *vma;
242 
243 	struct intel_engine_cs *engine; /** engine to queue the request to */
244 	struct intel_context *context; /* logical state for the request */
245 	struct i915_gem_context *gem_context; /** caller's context */
246 
247 	struct i915_request *request; /** our request to build */
248 	struct eb_vma *batch; /** identity of the batch obj/vma */
249 	struct i915_vma *trampoline; /** trampoline used for chaining */
250 
251 	/** actual size of execobj[] as we may extend it for the cmdparser */
252 	unsigned int buffer_count;
253 
254 	/** list of vma not yet bound during reservation phase */
255 	struct list_head unbound;
256 
257 	/** list of vma that have execobj.relocation_count */
258 	struct list_head relocs;
259 
260 	struct i915_gem_ww_ctx ww;
261 
262 	/**
263 	 * Track the most recently used object for relocations, as we
264 	 * frequently have to perform multiple relocations within the same
265 	 * obj/page
266 	 */
267 	struct reloc_cache {
268 		struct drm_mm_node node; /** temporary GTT binding */
269 		unsigned long vaddr; /** Current kmap address */
270 		unsigned long page; /** Currently mapped page index */
271 		unsigned int gen; /** Cached value of INTEL_GEN */
272 		bool use_64bit_reloc : 1;
273 		bool has_llc : 1;
274 		bool has_fence : 1;
275 		bool needs_unfenced : 1;
276 
277 		struct i915_request *rq;
278 		u32 *rq_cmd;
279 		unsigned int rq_size;
280 		struct intel_gt_buffer_pool_node *pool;
281 	} reloc_cache;
282 
283 	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
284 	struct intel_context *reloc_context;
285 
286 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
287 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
288 
289 	u64 batch_len; /** Length of batch within object */
290 	u32 batch_start_offset; /** Location within object of batch */
291 	u32 batch_flags; /** Flags composed for emit_bb_start() */
292 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
293 
294 	/**
295 	 * Indicate either the size of the hastable used to resolve
296 	 * relocation handles, or if negative that we are using a direct
297 	 * index into the execobj[].
298 	 */
299 	int lut_size;
300 	struct hlist_head *buckets; /** ht for relocation handles */
301 
302 	struct eb_fence *fences;
303 	unsigned long num_fences;
304 };
305 
306 static int eb_parse(struct i915_execbuffer *eb);
307 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
308 					  bool throttle);
309 static void eb_unpin_engine(struct i915_execbuffer *eb);
310 
eb_use_cmdparser(const struct i915_execbuffer * eb)311 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
312 {
313 	return intel_engine_requires_cmd_parser(eb->engine) ||
314 		(intel_engine_using_cmd_parser(eb->engine) &&
315 		 eb->args->batch_len);
316 }
317 
eb_create(struct i915_execbuffer * eb)318 static int eb_create(struct i915_execbuffer *eb)
319 {
320 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
321 		unsigned int size = 1 + ilog2(eb->buffer_count);
322 
323 		/*
324 		 * Without a 1:1 association between relocation handles and
325 		 * the execobject[] index, we instead create a hashtable.
326 		 * We size it dynamically based on available memory, starting
327 		 * first with 1:1 assocative hash and scaling back until
328 		 * the allocation succeeds.
329 		 *
330 		 * Later on we use a positive lut_size to indicate we are
331 		 * using this hashtable, and a negative value to indicate a
332 		 * direct lookup.
333 		 */
334 		do {
335 			gfp_t flags;
336 
337 			/* While we can still reduce the allocation size, don't
338 			 * raise a warning and allow the allocation to fail.
339 			 * On the last pass though, we want to try as hard
340 			 * as possible to perform the allocation and warn
341 			 * if it fails.
342 			 */
343 			flags = GFP_KERNEL;
344 			if (size > 1)
345 				flags |= __GFP_NORETRY | __GFP_NOWARN;
346 
347 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
348 					      flags);
349 			if (eb->buckets)
350 				break;
351 		} while (--size);
352 
353 		if (unlikely(!size))
354 			return -ENOMEM;
355 
356 		eb->lut_size = size;
357 	} else {
358 		eb->lut_size = -eb->buffer_count;
359 	}
360 
361 	return 0;
362 }
363 
364 static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 * entry,const struct i915_vma * vma,unsigned int flags)365 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
366 		 const struct i915_vma *vma,
367 		 unsigned int flags)
368 {
369 	if (vma->node.size < entry->pad_to_size)
370 		return true;
371 
372 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
373 		return true;
374 
375 	if (flags & EXEC_OBJECT_PINNED &&
376 	    vma->node.start != entry->offset)
377 		return true;
378 
379 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
380 	    vma->node.start < BATCH_OFFSET_BIAS)
381 		return true;
382 
383 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
384 	    (vma->node.start + vma->node.size + 4095) >> 32)
385 		return true;
386 
387 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
388 	    !i915_vma_is_map_and_fenceable(vma))
389 		return true;
390 
391 	return false;
392 }
393 
eb_pin_flags(const struct drm_i915_gem_exec_object2 * entry,unsigned int exec_flags)394 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
395 			unsigned int exec_flags)
396 {
397 	u64 pin_flags = 0;
398 
399 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
400 		pin_flags |= PIN_GLOBAL;
401 
402 	/*
403 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
404 	 * limit address to the first 4GBs for unflagged objects.
405 	 */
406 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
407 		pin_flags |= PIN_ZONE_4G;
408 
409 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
410 		pin_flags |= PIN_MAPPABLE;
411 
412 	if (exec_flags & EXEC_OBJECT_PINNED)
413 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
414 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
415 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
416 
417 	return pin_flags;
418 }
419 
420 static inline bool
eb_pin_vma(struct i915_execbuffer * eb,const struct drm_i915_gem_exec_object2 * entry,struct eb_vma * ev)421 eb_pin_vma(struct i915_execbuffer *eb,
422 	   const struct drm_i915_gem_exec_object2 *entry,
423 	   struct eb_vma *ev)
424 {
425 	struct i915_vma *vma = ev->vma;
426 	u64 pin_flags;
427 
428 	if (vma->node.size)
429 		pin_flags = vma->node.start;
430 	else
431 		pin_flags = entry->offset & PIN_OFFSET_MASK;
432 
433 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
434 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
435 		pin_flags |= PIN_GLOBAL;
436 
437 	/* Attempt to reuse the current location if available */
438 	/* TODO: Add -EDEADLK handling here */
439 	if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
440 		if (entry->flags & EXEC_OBJECT_PINNED)
441 			return false;
442 
443 		/* Failing that pick any _free_ space if suitable */
444 		if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
445 					     entry->pad_to_size,
446 					     entry->alignment,
447 					     eb_pin_flags(entry, ev->flags) |
448 					     PIN_USER | PIN_NOEVICT)))
449 			return false;
450 	}
451 
452 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
453 		if (unlikely(i915_vma_pin_fence(vma))) {
454 			i915_vma_unpin(vma);
455 			return false;
456 		}
457 
458 		if (vma->fence)
459 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
460 	}
461 
462 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
463 	return !eb_vma_misplaced(entry, vma, ev->flags);
464 }
465 
466 static inline void
eb_unreserve_vma(struct eb_vma * ev)467 eb_unreserve_vma(struct eb_vma *ev)
468 {
469 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
470 		return;
471 
472 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
473 		__i915_vma_unpin_fence(ev->vma);
474 
475 	__i915_vma_unpin(ev->vma);
476 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
477 }
478 
479 static int
eb_validate_vma(struct i915_execbuffer * eb,struct drm_i915_gem_exec_object2 * entry,struct i915_vma * vma)480 eb_validate_vma(struct i915_execbuffer *eb,
481 		struct drm_i915_gem_exec_object2 *entry,
482 		struct i915_vma *vma)
483 {
484 	if (unlikely(entry->flags & eb->invalid_flags))
485 		return -EINVAL;
486 
487 	if (unlikely(entry->alignment &&
488 		     !is_power_of_2_u64(entry->alignment)))
489 		return -EINVAL;
490 
491 	/*
492 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
493 	 * any non-page-aligned or non-canonical addresses.
494 	 */
495 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
496 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
497 		return -EINVAL;
498 
499 	/* pad_to_size was once a reserved field, so sanitize it */
500 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
501 		if (unlikely(offset_in_page(entry->pad_to_size)))
502 			return -EINVAL;
503 	} else {
504 		entry->pad_to_size = 0;
505 	}
506 	/*
507 	 * From drm_mm perspective address space is continuous,
508 	 * so from this point we're always using non-canonical
509 	 * form internally.
510 	 */
511 	entry->offset = gen8_noncanonical_addr(entry->offset);
512 
513 	if (!eb->reloc_cache.has_fence) {
514 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
515 	} else {
516 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
517 		     eb->reloc_cache.needs_unfenced) &&
518 		    i915_gem_object_is_tiled(vma->obj))
519 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
520 	}
521 
522 	if (!(entry->flags & EXEC_OBJECT_PINNED))
523 		entry->flags |= eb->context_flags;
524 
525 	return 0;
526 }
527 
528 static void
eb_add_vma(struct i915_execbuffer * eb,unsigned int i,unsigned batch_idx,struct i915_vma * vma)529 eb_add_vma(struct i915_execbuffer *eb,
530 	   unsigned int i, unsigned batch_idx,
531 	   struct i915_vma *vma)
532 {
533 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
534 	struct eb_vma *ev = &eb->vma[i];
535 
536 	GEM_BUG_ON(i915_vma_is_closed(vma));
537 
538 	ev->vma = vma;
539 	ev->exec = entry;
540 	ev->flags = entry->flags;
541 
542 	if (eb->lut_size > 0) {
543 		ev->handle = entry->handle;
544 		hlist_add_head(&ev->node,
545 			       &eb->buckets[hash_32(entry->handle,
546 						    eb->lut_size)]);
547 	}
548 
549 	if (entry->relocation_count)
550 		list_add_tail(&ev->reloc_link, &eb->relocs);
551 
552 	/*
553 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
554 	 * to negative relocation deltas. Usually that works out ok since the
555 	 * relocate address is still positive, except when the batch is placed
556 	 * very low in the GTT. Ensure this doesn't happen.
557 	 *
558 	 * Note that actual hangs have only been observed on gen7, but for
559 	 * paranoia do it everywhere.
560 	 */
561 	if (i == batch_idx) {
562 		if (entry->relocation_count &&
563 		    !(ev->flags & EXEC_OBJECT_PINNED))
564 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
565 		if (eb->reloc_cache.has_fence)
566 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
567 
568 		eb->batch = ev;
569 	}
570 }
571 
use_cpu_reloc(const struct reloc_cache * cache,const struct drm_i915_gem_object * obj)572 static inline int use_cpu_reloc(const struct reloc_cache *cache,
573 				const struct drm_i915_gem_object *obj)
574 {
575 	if (!i915_gem_object_has_struct_page(obj))
576 		return false;
577 
578 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
579 		return true;
580 
581 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
582 		return false;
583 
584 	return (cache->has_llc ||
585 		obj->cache_dirty ||
586 		obj->cache_level != I915_CACHE_NONE);
587 }
588 
eb_reserve_vma(struct i915_execbuffer * eb,struct eb_vma * ev,u64 pin_flags)589 static int eb_reserve_vma(struct i915_execbuffer *eb,
590 			  struct eb_vma *ev,
591 			  u64 pin_flags)
592 {
593 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
594 	struct i915_vma *vma = ev->vma;
595 	int err;
596 
597 	if (drm_mm_node_allocated(&vma->node) &&
598 	    eb_vma_misplaced(entry, vma, ev->flags)) {
599 		err = i915_vma_unbind(vma);
600 		if (err)
601 			return err;
602 	}
603 
604 	err = i915_vma_pin_ww(vma, &eb->ww,
605 			   entry->pad_to_size, entry->alignment,
606 			   eb_pin_flags(entry, ev->flags) | pin_flags);
607 	if (err)
608 		return err;
609 
610 	if (entry->offset != vma->node.start) {
611 		entry->offset = vma->node.start | UPDATE;
612 		eb->args->flags |= __EXEC_HAS_RELOC;
613 	}
614 
615 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
616 		err = i915_vma_pin_fence(vma);
617 		if (unlikely(err)) {
618 			i915_vma_unpin(vma);
619 			return err;
620 		}
621 
622 		if (vma->fence)
623 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
624 	}
625 
626 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
627 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
628 
629 	return 0;
630 }
631 
eb_reserve(struct i915_execbuffer * eb)632 static int eb_reserve(struct i915_execbuffer *eb)
633 {
634 	const unsigned int count = eb->buffer_count;
635 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
636 	struct list_head last;
637 	struct eb_vma *ev;
638 	unsigned int i, pass;
639 	int err = 0;
640 
641 	/*
642 	 * Attempt to pin all of the buffers into the GTT.
643 	 * This is done in 3 phases:
644 	 *
645 	 * 1a. Unbind all objects that do not match the GTT constraints for
646 	 *     the execbuffer (fenceable, mappable, alignment etc).
647 	 * 1b. Increment pin count for already bound objects.
648 	 * 2.  Bind new objects.
649 	 * 3.  Decrement pin count.
650 	 *
651 	 * This avoid unnecessary unbinding of later objects in order to make
652 	 * room for the earlier objects *unless* we need to defragment.
653 	 */
654 	pass = 0;
655 	do {
656 		list_for_each_entry(ev, &eb->unbound, bind_link) {
657 			err = eb_reserve_vma(eb, ev, pin_flags);
658 			if (err)
659 				break;
660 		}
661 		if (err != -ENOSPC)
662 			return err;
663 
664 		/* Resort *all* the objects into priority order */
665 		INIT_LIST_HEAD(&eb->unbound);
666 		INIT_LIST_HEAD(&last);
667 		for (i = 0; i < count; i++) {
668 			unsigned int flags;
669 
670 			ev = &eb->vma[i];
671 			flags = ev->flags;
672 			if (flags & EXEC_OBJECT_PINNED &&
673 			    flags & __EXEC_OBJECT_HAS_PIN)
674 				continue;
675 
676 			eb_unreserve_vma(ev);
677 
678 			if (flags & EXEC_OBJECT_PINNED)
679 				/* Pinned must have their slot */
680 				list_add(&ev->bind_link, &eb->unbound);
681 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
682 				/* Map require the lowest 256MiB (aperture) */
683 				list_add_tail(&ev->bind_link, &eb->unbound);
684 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
685 				/* Prioritise 4GiB region for restricted bo */
686 				list_add(&ev->bind_link, &last);
687 			else
688 				list_add_tail(&ev->bind_link, &last);
689 		}
690 		list_splice_tail(&last, &eb->unbound);
691 
692 		switch (pass++) {
693 		case 0:
694 			break;
695 
696 		case 1:
697 			/* Too fragmented, unbind everything and retry */
698 			mutex_lock(&eb->context->vm->mutex);
699 			err = i915_gem_evict_vm(eb->context->vm);
700 			mutex_unlock(&eb->context->vm->mutex);
701 			if (err)
702 				return err;
703 			break;
704 
705 		default:
706 			return -ENOSPC;
707 		}
708 
709 		pin_flags = PIN_USER;
710 	} while (1);
711 }
712 
eb_batch_index(const struct i915_execbuffer * eb)713 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
714 {
715 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
716 		return 0;
717 	else
718 		return eb->buffer_count - 1;
719 }
720 
eb_select_context(struct i915_execbuffer * eb)721 static int eb_select_context(struct i915_execbuffer *eb)
722 {
723 	struct i915_gem_context *ctx;
724 
725 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
726 	if (unlikely(!ctx))
727 		return -ENOENT;
728 
729 	eb->gem_context = ctx;
730 	if (rcu_access_pointer(ctx->vm))
731 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
732 
733 	eb->context_flags = 0;
734 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
735 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
736 
737 	return 0;
738 }
739 
__eb_add_lut(struct i915_execbuffer * eb,u32 handle,struct i915_vma * vma)740 static int __eb_add_lut(struct i915_execbuffer *eb,
741 			u32 handle, struct i915_vma *vma)
742 {
743 	struct i915_gem_context *ctx = eb->gem_context;
744 	struct i915_lut_handle *lut;
745 	int err;
746 
747 	lut = i915_lut_handle_alloc();
748 	if (unlikely(!lut))
749 		return -ENOMEM;
750 
751 	i915_vma_get(vma);
752 	if (!atomic_fetch_inc(&vma->open_count))
753 		i915_vma_reopen(vma);
754 	lut->handle = handle;
755 	lut->ctx = ctx;
756 
757 	/* Check that the context hasn't been closed in the meantime */
758 	err = -EINTR;
759 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
760 		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
761 
762 		if (unlikely(vm && vma->vm != vm))
763 			err = -EAGAIN; /* user racing with ctx set-vm */
764 		else if (likely(!i915_gem_context_is_closed(ctx)))
765 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
766 		else
767 			err = -ENOENT;
768 		if (err == 0) { /* And nor has this handle */
769 			struct drm_i915_gem_object *obj = vma->obj;
770 
771 			spin_lock(&obj->lut_lock);
772 			if (idr_find(&eb->file->object_idr, handle) == obj) {
773 				list_add(&lut->obj_link, &obj->lut_list);
774 			} else {
775 				radix_tree_delete(&ctx->handles_vma, handle);
776 				err = -ENOENT;
777 			}
778 			spin_unlock(&obj->lut_lock);
779 		}
780 		mutex_unlock(&ctx->lut_mutex);
781 	}
782 	if (unlikely(err))
783 		goto err;
784 
785 	return 0;
786 
787 err:
788 	i915_vma_close(vma);
789 	i915_vma_put(vma);
790 	i915_lut_handle_free(lut);
791 	return err;
792 }
793 
eb_lookup_vma(struct i915_execbuffer * eb,u32 handle)794 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
795 {
796 	struct i915_address_space *vm = eb->context->vm;
797 
798 	do {
799 		struct drm_i915_gem_object *obj;
800 		struct i915_vma *vma;
801 		int err;
802 
803 		rcu_read_lock();
804 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
805 		if (likely(vma && vma->vm == vm))
806 			vma = i915_vma_tryget(vma);
807 		rcu_read_unlock();
808 		if (likely(vma))
809 			return vma;
810 
811 		obj = i915_gem_object_lookup(eb->file, handle);
812 		if (unlikely(!obj))
813 			return ERR_PTR(-ENOENT);
814 
815 		vma = i915_vma_instance(obj, vm, NULL);
816 		if (IS_ERR(vma)) {
817 			i915_gem_object_put(obj);
818 			return vma;
819 		}
820 
821 		err = __eb_add_lut(eb, handle, vma);
822 		if (likely(!err))
823 			return vma;
824 
825 		i915_gem_object_put(obj);
826 		if (err != -EEXIST)
827 			return ERR_PTR(err);
828 	} while (1);
829 }
830 
eb_lookup_vmas(struct i915_execbuffer * eb)831 static int eb_lookup_vmas(struct i915_execbuffer *eb)
832 {
833 	struct drm_i915_private *i915 = eb->i915;
834 	unsigned int batch = eb_batch_index(eb);
835 	unsigned int i;
836 	int err = 0;
837 
838 	INIT_LIST_HEAD(&eb->relocs);
839 
840 	for (i = 0; i < eb->buffer_count; i++) {
841 		struct i915_vma *vma;
842 
843 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
844 		if (IS_ERR(vma)) {
845 			err = PTR_ERR(vma);
846 			goto err;
847 		}
848 
849 		err = eb_validate_vma(eb, &eb->exec[i], vma);
850 		if (unlikely(err)) {
851 			i915_vma_put(vma);
852 			goto err;
853 		}
854 
855 		eb_add_vma(eb, i, batch, vma);
856 	}
857 
858 	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
859 		drm_dbg(&i915->drm,
860 			"Attempting to use self-modifying batch buffer\n");
861 		return -EINVAL;
862 	}
863 
864 	if (range_overflows_t(u64,
865 			      eb->batch_start_offset, eb->batch_len,
866 			      eb->batch->vma->size)) {
867 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
868 		return -EINVAL;
869 	}
870 
871 	if (eb->batch_len == 0)
872 		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
873 	if (unlikely(eb->batch_len == 0)) { /* impossible! */
874 		drm_dbg(&i915->drm, "Invalid batch length\n");
875 		return -EINVAL;
876 	}
877 
878 	return 0;
879 
880 err:
881 	eb->vma[i].vma = NULL;
882 	return err;
883 }
884 
eb_validate_vmas(struct i915_execbuffer * eb)885 static int eb_validate_vmas(struct i915_execbuffer *eb)
886 {
887 	unsigned int i;
888 	int err;
889 
890 	INIT_LIST_HEAD(&eb->unbound);
891 
892 	for (i = 0; i < eb->buffer_count; i++) {
893 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
894 		struct eb_vma *ev = &eb->vma[i];
895 		struct i915_vma *vma = ev->vma;
896 
897 		err = i915_gem_object_lock(vma->obj, &eb->ww);
898 		if (err)
899 			return err;
900 
901 		if (eb_pin_vma(eb, entry, ev)) {
902 			if (entry->offset != vma->node.start) {
903 				entry->offset = vma->node.start | UPDATE;
904 				eb->args->flags |= __EXEC_HAS_RELOC;
905 			}
906 		} else {
907 			eb_unreserve_vma(ev);
908 
909 			list_add_tail(&ev->bind_link, &eb->unbound);
910 			if (drm_mm_node_allocated(&vma->node)) {
911 				err = i915_vma_unbind(vma);
912 				if (err)
913 					return err;
914 			}
915 		}
916 
917 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
918 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
919 	}
920 
921 	if (!list_empty(&eb->unbound))
922 		return eb_reserve(eb);
923 
924 	return 0;
925 }
926 
927 static struct eb_vma *
eb_get_vma(const struct i915_execbuffer * eb,unsigned long handle)928 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
929 {
930 	if (eb->lut_size < 0) {
931 		if (handle >= -eb->lut_size)
932 			return NULL;
933 		return &eb->vma[handle];
934 	} else {
935 		struct hlist_head *head;
936 		struct eb_vma *ev;
937 
938 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
939 		hlist_for_each_entry(ev, head, node) {
940 			if (ev->handle == handle)
941 				return ev;
942 		}
943 		return NULL;
944 	}
945 }
946 
eb_release_vmas(struct i915_execbuffer * eb,bool final)947 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
948 {
949 	const unsigned int count = eb->buffer_count;
950 	unsigned int i;
951 
952 	for (i = 0; i < count; i++) {
953 		struct eb_vma *ev = &eb->vma[i];
954 		struct i915_vma *vma = ev->vma;
955 
956 		if (!vma)
957 			break;
958 
959 		eb_unreserve_vma(ev);
960 
961 		if (final)
962 			i915_vma_put(vma);
963 	}
964 
965 	eb_unpin_engine(eb);
966 }
967 
eb_destroy(const struct i915_execbuffer * eb)968 static void eb_destroy(const struct i915_execbuffer *eb)
969 {
970 	GEM_BUG_ON(eb->reloc_cache.rq);
971 
972 	if (eb->lut_size > 0)
973 		kfree(eb->buckets);
974 }
975 
976 static inline u64
relocation_target(const struct drm_i915_gem_relocation_entry * reloc,const struct i915_vma * target)977 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
978 		  const struct i915_vma *target)
979 {
980 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
981 }
982 
reloc_cache_clear(struct reloc_cache * cache)983 static void reloc_cache_clear(struct reloc_cache *cache)
984 {
985 	cache->rq = NULL;
986 	cache->rq_cmd = NULL;
987 	cache->pool = NULL;
988 	cache->rq_size = 0;
989 }
990 
reloc_cache_init(struct reloc_cache * cache,struct drm_i915_private * i915)991 static void reloc_cache_init(struct reloc_cache *cache,
992 			     struct drm_i915_private *i915)
993 {
994 	cache->page = -1;
995 	cache->vaddr = 0;
996 	/* Must be a variable in the struct to allow GCC to unroll. */
997 	cache->gen = INTEL_GEN(i915);
998 	cache->has_llc = HAS_LLC(i915);
999 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1000 	cache->has_fence = cache->gen < 4;
1001 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1002 	cache->node.flags = 0;
1003 	reloc_cache_clear(cache);
1004 }
1005 
unmask_page(unsigned long p)1006 static inline void *unmask_page(unsigned long p)
1007 {
1008 	return (void *)(uintptr_t)(p & PAGE_MASK);
1009 }
1010 
unmask_flags(unsigned long p)1011 static inline unsigned int unmask_flags(unsigned long p)
1012 {
1013 	return p & ~PAGE_MASK;
1014 }
1015 
1016 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1017 
cache_to_ggtt(struct reloc_cache * cache)1018 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1019 {
1020 	struct drm_i915_private *i915 =
1021 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1022 	return &i915->ggtt;
1023 }
1024 
reloc_cache_put_pool(struct i915_execbuffer * eb,struct reloc_cache * cache)1025 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1026 {
1027 	if (!cache->pool)
1028 		return;
1029 
1030 	/*
1031 	 * This is a bit nasty, normally we keep objects locked until the end
1032 	 * of execbuffer, but we already submit this, and have to unlock before
1033 	 * dropping the reference. Fortunately we can only hold 1 pool node at
1034 	 * a time, so this should be harmless.
1035 	 */
1036 	i915_gem_ww_unlock_single(cache->pool->obj);
1037 	intel_gt_buffer_pool_put(cache->pool);
1038 	cache->pool = NULL;
1039 }
1040 
reloc_gpu_flush(struct i915_execbuffer * eb,struct reloc_cache * cache)1041 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1042 {
1043 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1044 
1045 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1046 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1047 
1048 	i915_gem_object_flush_map(obj);
1049 	i915_gem_object_unpin_map(obj);
1050 
1051 	intel_gt_chipset_flush(cache->rq->engine->gt);
1052 
1053 	i915_request_add(cache->rq);
1054 	reloc_cache_put_pool(eb, cache);
1055 	reloc_cache_clear(cache);
1056 
1057 	eb->reloc_pool = NULL;
1058 }
1059 
reloc_cache_reset(struct reloc_cache * cache,struct i915_execbuffer * eb)1060 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1061 {
1062 	void *vaddr;
1063 
1064 	if (cache->rq)
1065 		reloc_gpu_flush(eb, cache);
1066 
1067 	if (!cache->vaddr)
1068 		return;
1069 
1070 	vaddr = unmask_page(cache->vaddr);
1071 	if (cache->vaddr & KMAP) {
1072 		struct drm_i915_gem_object *obj =
1073 			(struct drm_i915_gem_object *)cache->node.mm;
1074 		if (cache->vaddr & CLFLUSH_AFTER)
1075 			mb();
1076 
1077 		kunmap_atomic(vaddr);
1078 		i915_gem_object_finish_access(obj);
1079 	} else {
1080 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1081 
1082 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1083 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1084 
1085 		if (drm_mm_node_allocated(&cache->node)) {
1086 			ggtt->vm.clear_range(&ggtt->vm,
1087 					     cache->node.start,
1088 					     cache->node.size);
1089 			mutex_lock(&ggtt->vm.mutex);
1090 			drm_mm_remove_node(&cache->node);
1091 			mutex_unlock(&ggtt->vm.mutex);
1092 		} else {
1093 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1094 		}
1095 	}
1096 
1097 	cache->vaddr = 0;
1098 	cache->page = -1;
1099 }
1100 
reloc_kmap(struct drm_i915_gem_object * obj,struct reloc_cache * cache,unsigned long pageno)1101 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1102 			struct reloc_cache *cache,
1103 			unsigned long pageno)
1104 {
1105 	void *vaddr;
1106 	struct page *page;
1107 
1108 	if (cache->vaddr) {
1109 		kunmap_atomic(unmask_page(cache->vaddr));
1110 	} else {
1111 		unsigned int flushes;
1112 		int err;
1113 
1114 		err = i915_gem_object_prepare_write(obj, &flushes);
1115 		if (err)
1116 			return ERR_PTR(err);
1117 
1118 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1119 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1120 
1121 		cache->vaddr = flushes | KMAP;
1122 		cache->node.mm = (void *)obj;
1123 		if (flushes)
1124 			mb();
1125 	}
1126 
1127 	page = i915_gem_object_get_page(obj, pageno);
1128 	if (!obj->mm.dirty)
1129 		set_page_dirty(page);
1130 
1131 	vaddr = kmap_atomic(page);
1132 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1133 	cache->page = pageno;
1134 
1135 	return vaddr;
1136 }
1137 
reloc_iomap(struct drm_i915_gem_object * obj,struct i915_execbuffer * eb,unsigned long page)1138 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1139 			 struct i915_execbuffer *eb,
1140 			 unsigned long page)
1141 {
1142 	struct reloc_cache *cache = &eb->reloc_cache;
1143 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1144 	unsigned long offset;
1145 	void *vaddr;
1146 
1147 	if (cache->vaddr) {
1148 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1149 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1150 	} else {
1151 		struct i915_vma *vma;
1152 		int err;
1153 
1154 		if (i915_gem_object_is_tiled(obj))
1155 			return ERR_PTR(-EINVAL);
1156 
1157 		if (use_cpu_reloc(cache, obj))
1158 			return NULL;
1159 
1160 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1161 		if (err)
1162 			return ERR_PTR(err);
1163 
1164 		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1165 						  PIN_MAPPABLE |
1166 						  PIN_NONBLOCK /* NOWARN */ |
1167 						  PIN_NOEVICT);
1168 		if (vma == ERR_PTR(-EDEADLK))
1169 			return vma;
1170 
1171 		if (IS_ERR(vma)) {
1172 			memset(&cache->node, 0, sizeof(cache->node));
1173 			mutex_lock(&ggtt->vm.mutex);
1174 			err = drm_mm_insert_node_in_range
1175 				(&ggtt->vm.mm, &cache->node,
1176 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1177 				 0, ggtt->mappable_end,
1178 				 DRM_MM_INSERT_LOW);
1179 			mutex_unlock(&ggtt->vm.mutex);
1180 			if (err) /* no inactive aperture space, use cpu reloc */
1181 				return NULL;
1182 		} else {
1183 			cache->node.start = vma->node.start;
1184 			cache->node.mm = (void *)vma;
1185 		}
1186 	}
1187 
1188 	offset = cache->node.start;
1189 	if (drm_mm_node_allocated(&cache->node)) {
1190 		ggtt->vm.insert_page(&ggtt->vm,
1191 				     i915_gem_object_get_dma_address(obj, page),
1192 				     offset, I915_CACHE_NONE, 0);
1193 	} else {
1194 		offset += page << PAGE_SHIFT;
1195 	}
1196 
1197 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1198 							 offset);
1199 	cache->page = page;
1200 	cache->vaddr = (unsigned long)vaddr;
1201 
1202 	return vaddr;
1203 }
1204 
reloc_vaddr(struct drm_i915_gem_object * obj,struct i915_execbuffer * eb,unsigned long page)1205 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1206 			 struct i915_execbuffer *eb,
1207 			 unsigned long page)
1208 {
1209 	struct reloc_cache *cache = &eb->reloc_cache;
1210 	void *vaddr;
1211 
1212 	if (cache->page == page) {
1213 		vaddr = unmask_page(cache->vaddr);
1214 	} else {
1215 		vaddr = NULL;
1216 		if ((cache->vaddr & KMAP) == 0)
1217 			vaddr = reloc_iomap(obj, eb, page);
1218 		if (!vaddr)
1219 			vaddr = reloc_kmap(obj, cache, page);
1220 	}
1221 
1222 	return vaddr;
1223 }
1224 
clflush_write32(u32 * addr,u32 value,unsigned int flushes)1225 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1226 {
1227 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1228 		if (flushes & CLFLUSH_BEFORE) {
1229 			clflushopt(addr);
1230 			mb();
1231 		}
1232 
1233 		*addr = value;
1234 
1235 		/*
1236 		 * Writes to the same cacheline are serialised by the CPU
1237 		 * (including clflush). On the write path, we only require
1238 		 * that it hits memory in an orderly fashion and place
1239 		 * mb barriers at the start and end of the relocation phase
1240 		 * to ensure ordering of clflush wrt to the system.
1241 		 */
1242 		if (flushes & CLFLUSH_AFTER)
1243 			clflushopt(addr);
1244 	} else
1245 		*addr = value;
1246 }
1247 
reloc_move_to_gpu(struct i915_request * rq,struct i915_vma * vma)1248 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1249 {
1250 	struct drm_i915_gem_object *obj = vma->obj;
1251 	int err;
1252 
1253 	assert_vma_held(vma);
1254 
1255 	if (obj->cache_dirty & ~obj->cache_coherent)
1256 		i915_gem_clflush_object(obj, 0);
1257 	obj->write_domain = 0;
1258 
1259 	err = i915_request_await_object(rq, vma->obj, true);
1260 	if (err == 0)
1261 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1262 
1263 	return err;
1264 }
1265 
__reloc_gpu_alloc(struct i915_execbuffer * eb,struct intel_engine_cs * engine,struct i915_vma * vma,unsigned int len)1266 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1267 			     struct intel_engine_cs *engine,
1268 			     struct i915_vma *vma,
1269 			     unsigned int len)
1270 {
1271 	struct reloc_cache *cache = &eb->reloc_cache;
1272 	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1273 	struct i915_request *rq;
1274 	struct i915_vma *batch;
1275 	u32 *cmd;
1276 	int err;
1277 
1278 	if (!pool) {
1279 		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1280 		if (IS_ERR(pool))
1281 			return PTR_ERR(pool);
1282 	}
1283 	eb->reloc_pool = NULL;
1284 
1285 	err = i915_gem_object_lock(pool->obj, &eb->ww);
1286 	if (err)
1287 		goto err_pool;
1288 
1289 	cmd = i915_gem_object_pin_map(pool->obj,
1290 				      cache->has_llc ?
1291 				      I915_MAP_FORCE_WB :
1292 				      I915_MAP_FORCE_WC);
1293 	if (IS_ERR(cmd)) {
1294 		err = PTR_ERR(cmd);
1295 		goto err_pool;
1296 	}
1297 
1298 	memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1299 
1300 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1301 	if (IS_ERR(batch)) {
1302 		err = PTR_ERR(batch);
1303 		goto err_unmap;
1304 	}
1305 
1306 	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1307 	if (err)
1308 		goto err_unmap;
1309 
1310 	if (engine == eb->context->engine) {
1311 		rq = i915_request_create(eb->context);
1312 	} else {
1313 		struct intel_context *ce = eb->reloc_context;
1314 
1315 		if (!ce) {
1316 			ce = intel_context_create(engine);
1317 			if (IS_ERR(ce)) {
1318 				err = PTR_ERR(ce);
1319 				goto err_unpin;
1320 			}
1321 
1322 			i915_vm_put(ce->vm);
1323 			ce->vm = i915_vm_get(eb->context->vm);
1324 			eb->reloc_context = ce;
1325 		}
1326 
1327 		err = intel_context_pin_ww(ce, &eb->ww);
1328 		if (err)
1329 			goto err_unpin;
1330 
1331 		rq = i915_request_create(ce);
1332 		intel_context_unpin(ce);
1333 	}
1334 	if (IS_ERR(rq)) {
1335 		err = PTR_ERR(rq);
1336 		goto err_unpin;
1337 	}
1338 
1339 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1340 	if (err)
1341 		goto err_request;
1342 
1343 	err = reloc_move_to_gpu(rq, vma);
1344 	if (err)
1345 		goto err_request;
1346 
1347 	err = eb->engine->emit_bb_start(rq,
1348 					batch->node.start, PAGE_SIZE,
1349 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1350 	if (err)
1351 		goto skip_request;
1352 
1353 	assert_vma_held(batch);
1354 	err = i915_request_await_object(rq, batch->obj, false);
1355 	if (err == 0)
1356 		err = i915_vma_move_to_active(batch, rq, 0);
1357 	if (err)
1358 		goto skip_request;
1359 
1360 	rq->batch = batch;
1361 	i915_vma_unpin(batch);
1362 
1363 	cache->rq = rq;
1364 	cache->rq_cmd = cmd;
1365 	cache->rq_size = 0;
1366 	cache->pool = pool;
1367 
1368 	/* Return with batch mapping (cmd) still pinned */
1369 	return 0;
1370 
1371 skip_request:
1372 	i915_request_set_error_once(rq, err);
1373 err_request:
1374 	i915_request_add(rq);
1375 err_unpin:
1376 	i915_vma_unpin(batch);
1377 err_unmap:
1378 	i915_gem_object_unpin_map(pool->obj);
1379 err_pool:
1380 	eb->reloc_pool = pool;
1381 	return err;
1382 }
1383 
reloc_can_use_engine(const struct intel_engine_cs * engine)1384 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1385 {
1386 	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1387 }
1388 
reloc_gpu(struct i915_execbuffer * eb,struct i915_vma * vma,unsigned int len)1389 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1390 		      struct i915_vma *vma,
1391 		      unsigned int len)
1392 {
1393 	struct reloc_cache *cache = &eb->reloc_cache;
1394 	u32 *cmd;
1395 
1396 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1397 		reloc_gpu_flush(eb, cache);
1398 
1399 	if (unlikely(!cache->rq)) {
1400 		int err;
1401 		struct intel_engine_cs *engine = eb->engine;
1402 
1403 		/* If we need to copy for the cmdparser, we will stall anyway */
1404 		if (eb_use_cmdparser(eb))
1405 			return ERR_PTR(-EWOULDBLOCK);
1406 
1407 		if (!reloc_can_use_engine(engine)) {
1408 			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1409 			if (!engine)
1410 				return ERR_PTR(-ENODEV);
1411 		}
1412 
1413 		err = __reloc_gpu_alloc(eb, engine, vma, len);
1414 		if (unlikely(err))
1415 			return ERR_PTR(err);
1416 	}
1417 
1418 	cmd = cache->rq_cmd + cache->rq_size;
1419 	cache->rq_size += len;
1420 
1421 	return cmd;
1422 }
1423 
use_reloc_gpu(struct i915_vma * vma)1424 static inline bool use_reloc_gpu(struct i915_vma *vma)
1425 {
1426 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1427 		return true;
1428 
1429 	if (DBG_FORCE_RELOC)
1430 		return false;
1431 
1432 	return !dma_resv_test_signaled_rcu(vma->resv, true);
1433 }
1434 
vma_phys_addr(struct i915_vma * vma,u32 offset)1435 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1436 {
1437 	struct page *page;
1438 	unsigned long addr;
1439 
1440 	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1441 
1442 	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1443 	addr = PFN_PHYS(page_to_pfn(page));
1444 	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1445 
1446 	return addr + offset_in_page(offset);
1447 }
1448 
__reloc_entry_gpu(struct i915_execbuffer * eb,struct i915_vma * vma,u64 offset,u64 target_addr)1449 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1450 			      struct i915_vma *vma,
1451 			      u64 offset,
1452 			      u64 target_addr)
1453 {
1454 	const unsigned int gen = eb->reloc_cache.gen;
1455 	unsigned int len;
1456 	u32 *batch;
1457 	u64 addr;
1458 
1459 	if (gen >= 8)
1460 		len = offset & 7 ? 8 : 5;
1461 	else if (gen >= 4)
1462 		len = 4;
1463 	else
1464 		len = 3;
1465 
1466 	batch = reloc_gpu(eb, vma, len);
1467 	if (batch == ERR_PTR(-EDEADLK))
1468 		return -EDEADLK;
1469 	else if (IS_ERR(batch))
1470 		return false;
1471 
1472 	addr = gen8_canonical_addr(vma->node.start + offset);
1473 	if (gen >= 8) {
1474 		if (offset & 7) {
1475 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1476 			*batch++ = lower_32_bits(addr);
1477 			*batch++ = upper_32_bits(addr);
1478 			*batch++ = lower_32_bits(target_addr);
1479 
1480 			addr = gen8_canonical_addr(addr + 4);
1481 
1482 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1483 			*batch++ = lower_32_bits(addr);
1484 			*batch++ = upper_32_bits(addr);
1485 			*batch++ = upper_32_bits(target_addr);
1486 		} else {
1487 			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1488 			*batch++ = lower_32_bits(addr);
1489 			*batch++ = upper_32_bits(addr);
1490 			*batch++ = lower_32_bits(target_addr);
1491 			*batch++ = upper_32_bits(target_addr);
1492 		}
1493 	} else if (gen >= 6) {
1494 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1495 		*batch++ = 0;
1496 		*batch++ = addr;
1497 		*batch++ = target_addr;
1498 	} else if (IS_I965G(eb->i915)) {
1499 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1500 		*batch++ = 0;
1501 		*batch++ = vma_phys_addr(vma, offset);
1502 		*batch++ = target_addr;
1503 	} else if (gen >= 4) {
1504 		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1505 		*batch++ = 0;
1506 		*batch++ = addr;
1507 		*batch++ = target_addr;
1508 	} else if (gen >= 3 &&
1509 		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1510 		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1511 		*batch++ = addr;
1512 		*batch++ = target_addr;
1513 	} else {
1514 		*batch++ = MI_STORE_DWORD_IMM;
1515 		*batch++ = vma_phys_addr(vma, offset);
1516 		*batch++ = target_addr;
1517 	}
1518 
1519 	return true;
1520 }
1521 
reloc_entry_gpu(struct i915_execbuffer * eb,struct i915_vma * vma,u64 offset,u64 target_addr)1522 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1523 			    struct i915_vma *vma,
1524 			    u64 offset,
1525 			    u64 target_addr)
1526 {
1527 	if (eb->reloc_cache.vaddr)
1528 		return false;
1529 
1530 	if (!use_reloc_gpu(vma))
1531 		return false;
1532 
1533 	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1534 }
1535 
1536 static u64
relocate_entry(struct i915_vma * vma,const struct drm_i915_gem_relocation_entry * reloc,struct i915_execbuffer * eb,const struct i915_vma * target)1537 relocate_entry(struct i915_vma *vma,
1538 	       const struct drm_i915_gem_relocation_entry *reloc,
1539 	       struct i915_execbuffer *eb,
1540 	       const struct i915_vma *target)
1541 {
1542 	u64 target_addr = relocation_target(reloc, target);
1543 	u64 offset = reloc->offset;
1544 	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1545 
1546 	if (reloc_gpu < 0)
1547 		return reloc_gpu;
1548 
1549 	if (!reloc_gpu) {
1550 		bool wide = eb->reloc_cache.use_64bit_reloc;
1551 		void *vaddr;
1552 
1553 repeat:
1554 		vaddr = reloc_vaddr(vma->obj, eb,
1555 				    offset >> PAGE_SHIFT);
1556 		if (IS_ERR(vaddr))
1557 			return PTR_ERR(vaddr);
1558 
1559 		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1560 		clflush_write32(vaddr + offset_in_page(offset),
1561 				lower_32_bits(target_addr),
1562 				eb->reloc_cache.vaddr);
1563 
1564 		if (wide) {
1565 			offset += sizeof(u32);
1566 			target_addr >>= 32;
1567 			wide = false;
1568 			goto repeat;
1569 		}
1570 	}
1571 
1572 	return target->node.start | UPDATE;
1573 }
1574 
1575 static u64
eb_relocate_entry(struct i915_execbuffer * eb,struct eb_vma * ev,const struct drm_i915_gem_relocation_entry * reloc)1576 eb_relocate_entry(struct i915_execbuffer *eb,
1577 		  struct eb_vma *ev,
1578 		  const struct drm_i915_gem_relocation_entry *reloc)
1579 {
1580 	struct drm_i915_private *i915 = eb->i915;
1581 	struct eb_vma *target;
1582 	int err;
1583 
1584 	/* we've already hold a reference to all valid objects */
1585 	target = eb_get_vma(eb, reloc->target_handle);
1586 	if (unlikely(!target))
1587 		return -ENOENT;
1588 
1589 	/* Validate that the target is in a valid r/w GPU domain */
1590 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1591 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1592 			  "target %d offset %d "
1593 			  "read %08x write %08x",
1594 			  reloc->target_handle,
1595 			  (int) reloc->offset,
1596 			  reloc->read_domains,
1597 			  reloc->write_domain);
1598 		return -EINVAL;
1599 	}
1600 	if (unlikely((reloc->write_domain | reloc->read_domains)
1601 		     & ~I915_GEM_GPU_DOMAINS)) {
1602 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1603 			  "target %d offset %d "
1604 			  "read %08x write %08x",
1605 			  reloc->target_handle,
1606 			  (int) reloc->offset,
1607 			  reloc->read_domains,
1608 			  reloc->write_domain);
1609 		return -EINVAL;
1610 	}
1611 
1612 	if (reloc->write_domain) {
1613 		target->flags |= EXEC_OBJECT_WRITE;
1614 
1615 		/*
1616 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1617 		 * for MI and pipe_control writes because the gpu doesn't
1618 		 * properly redirect them through the ppgtt for non_secure
1619 		 * batchbuffers.
1620 		 */
1621 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1622 		    IS_GEN(eb->i915, 6)) {
1623 			err = i915_vma_bind(target->vma,
1624 					    target->vma->obj->cache_level,
1625 					    PIN_GLOBAL, NULL);
1626 			if (err)
1627 				return err;
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * If the relocation already has the right value in it, no
1633 	 * more work needs to be done.
1634 	 */
1635 	if (!DBG_FORCE_RELOC &&
1636 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1637 		return 0;
1638 
1639 	/* Check that the relocation address is valid... */
1640 	if (unlikely(reloc->offset >
1641 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1642 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1643 			  "target %d offset %d size %d.\n",
1644 			  reloc->target_handle,
1645 			  (int)reloc->offset,
1646 			  (int)ev->vma->size);
1647 		return -EINVAL;
1648 	}
1649 	if (unlikely(reloc->offset & 3)) {
1650 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1651 			  "target %d offset %d.\n",
1652 			  reloc->target_handle,
1653 			  (int)reloc->offset);
1654 		return -EINVAL;
1655 	}
1656 
1657 	/*
1658 	 * If we write into the object, we need to force the synchronisation
1659 	 * barrier, either with an asynchronous clflush or if we executed the
1660 	 * patching using the GPU (though that should be serialised by the
1661 	 * timeline). To be completely sure, and since we are required to
1662 	 * do relocations we are already stalling, disable the user's opt
1663 	 * out of our synchronisation.
1664 	 */
1665 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1666 
1667 	/* and update the user's relocation entry */
1668 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1669 }
1670 
eb_relocate_vma(struct i915_execbuffer * eb,struct eb_vma * ev)1671 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1672 {
1673 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1674 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1675 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1676 	struct drm_i915_gem_relocation_entry __user *urelocs =
1677 		u64_to_user_ptr(entry->relocs_ptr);
1678 	unsigned long remain = entry->relocation_count;
1679 
1680 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1681 		return -EINVAL;
1682 
1683 	/*
1684 	 * We must check that the entire relocation array is safe
1685 	 * to read. However, if the array is not writable the user loses
1686 	 * the updated relocation values.
1687 	 */
1688 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1689 		return -EFAULT;
1690 
1691 	do {
1692 		struct drm_i915_gem_relocation_entry *r = stack;
1693 		unsigned int count =
1694 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1695 		unsigned int copied;
1696 
1697 		/*
1698 		 * This is the fast path and we cannot handle a pagefault
1699 		 * whilst holding the struct mutex lest the user pass in the
1700 		 * relocations contained within a mmaped bo. For in such a case
1701 		 * we, the page fault handler would call i915_gem_fault() and
1702 		 * we would try to acquire the struct mutex again. Obviously
1703 		 * this is bad and so lockdep complains vehemently.
1704 		 */
1705 		pagefault_disable();
1706 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1707 		pagefault_enable();
1708 		if (unlikely(copied)) {
1709 			remain = -EFAULT;
1710 			goto out;
1711 		}
1712 
1713 		remain -= count;
1714 		do {
1715 			u64 offset = eb_relocate_entry(eb, ev, r);
1716 
1717 			if (likely(offset == 0)) {
1718 			} else if ((s64)offset < 0) {
1719 				remain = (int)offset;
1720 				goto out;
1721 			} else {
1722 				/*
1723 				 * Note that reporting an error now
1724 				 * leaves everything in an inconsistent
1725 				 * state as we have *already* changed
1726 				 * the relocation value inside the
1727 				 * object. As we have not changed the
1728 				 * reloc.presumed_offset or will not
1729 				 * change the execobject.offset, on the
1730 				 * call we may not rewrite the value
1731 				 * inside the object, leaving it
1732 				 * dangling and causing a GPU hang. Unless
1733 				 * userspace dynamically rebuilds the
1734 				 * relocations on each execbuf rather than
1735 				 * presume a static tree.
1736 				 *
1737 				 * We did previously check if the relocations
1738 				 * were writable (access_ok), an error now
1739 				 * would be a strange race with mprotect,
1740 				 * having already demonstrated that we
1741 				 * can read from this userspace address.
1742 				 */
1743 				offset = gen8_canonical_addr(offset & ~UPDATE);
1744 				__put_user(offset,
1745 					   &urelocs[r - stack].presumed_offset);
1746 			}
1747 		} while (r++, --count);
1748 		urelocs += ARRAY_SIZE(stack);
1749 	} while (remain);
1750 out:
1751 	reloc_cache_reset(&eb->reloc_cache, eb);
1752 	return remain;
1753 }
1754 
1755 static int
eb_relocate_vma_slow(struct i915_execbuffer * eb,struct eb_vma * ev)1756 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1757 {
1758 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1759 	struct drm_i915_gem_relocation_entry *relocs =
1760 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1761 	unsigned int i;
1762 	int err;
1763 
1764 	for (i = 0; i < entry->relocation_count; i++) {
1765 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1766 
1767 		if ((s64)offset < 0) {
1768 			err = (int)offset;
1769 			goto err;
1770 		}
1771 	}
1772 	err = 0;
1773 err:
1774 	reloc_cache_reset(&eb->reloc_cache, eb);
1775 	return err;
1776 }
1777 
check_relocations(const struct drm_i915_gem_exec_object2 * entry)1778 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1779 {
1780 	const char __user *addr, *end;
1781 	unsigned long size;
1782 	char __maybe_unused c;
1783 
1784 	size = entry->relocation_count;
1785 	if (size == 0)
1786 		return 0;
1787 
1788 	if (size > N_RELOC(ULONG_MAX))
1789 		return -EINVAL;
1790 
1791 	addr = u64_to_user_ptr(entry->relocs_ptr);
1792 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1793 	if (!access_ok(addr, size))
1794 		return -EFAULT;
1795 
1796 	end = addr + size;
1797 	for (; addr < end; addr += PAGE_SIZE) {
1798 		int err = __get_user(c, addr);
1799 		if (err)
1800 			return err;
1801 	}
1802 	return __get_user(c, end - 1);
1803 }
1804 
eb_copy_relocations(const struct i915_execbuffer * eb)1805 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1806 {
1807 	struct drm_i915_gem_relocation_entry *relocs;
1808 	const unsigned int count = eb->buffer_count;
1809 	unsigned int i;
1810 	int err;
1811 
1812 	for (i = 0; i < count; i++) {
1813 		const unsigned int nreloc = eb->exec[i].relocation_count;
1814 		struct drm_i915_gem_relocation_entry __user *urelocs;
1815 		unsigned long size;
1816 		unsigned long copied;
1817 
1818 		if (nreloc == 0)
1819 			continue;
1820 
1821 		err = check_relocations(&eb->exec[i]);
1822 		if (err)
1823 			goto err;
1824 
1825 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1826 		size = nreloc * sizeof(*relocs);
1827 
1828 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1829 		if (!relocs) {
1830 			err = -ENOMEM;
1831 			goto err;
1832 		}
1833 
1834 		/* copy_from_user is limited to < 4GiB */
1835 		copied = 0;
1836 		do {
1837 			unsigned int len =
1838 				min_t(u64, BIT_ULL(31), size - copied);
1839 
1840 			if (__copy_from_user((char *)relocs + copied,
1841 					     (char __user *)urelocs + copied,
1842 					     len))
1843 				goto end;
1844 
1845 			copied += len;
1846 		} while (copied < size);
1847 
1848 		/*
1849 		 * As we do not update the known relocation offsets after
1850 		 * relocating (due to the complexities in lock handling),
1851 		 * we need to mark them as invalid now so that we force the
1852 		 * relocation processing next time. Just in case the target
1853 		 * object is evicted and then rebound into its old
1854 		 * presumed_offset before the next execbuffer - if that
1855 		 * happened we would make the mistake of assuming that the
1856 		 * relocations were valid.
1857 		 */
1858 		if (!user_access_begin(urelocs, size))
1859 			goto end;
1860 
1861 		for (copied = 0; copied < nreloc; copied++)
1862 			unsafe_put_user(-1,
1863 					&urelocs[copied].presumed_offset,
1864 					end_user);
1865 		user_access_end();
1866 
1867 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1868 	}
1869 
1870 	return 0;
1871 
1872 end_user:
1873 	user_access_end();
1874 end:
1875 	kvfree(relocs);
1876 	err = -EFAULT;
1877 err:
1878 	while (i--) {
1879 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1880 		if (eb->exec[i].relocation_count)
1881 			kvfree(relocs);
1882 	}
1883 	return err;
1884 }
1885 
eb_prefault_relocations(const struct i915_execbuffer * eb)1886 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1887 {
1888 	const unsigned int count = eb->buffer_count;
1889 	unsigned int i;
1890 
1891 	for (i = 0; i < count; i++) {
1892 		int err;
1893 
1894 		err = check_relocations(&eb->exec[i]);
1895 		if (err)
1896 			return err;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
eb_relocate_parse_slow(struct i915_execbuffer * eb,struct i915_request * rq)1902 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1903 					   struct i915_request *rq)
1904 {
1905 	bool have_copy = false;
1906 	struct eb_vma *ev;
1907 	int err = 0;
1908 
1909 repeat:
1910 	if (signal_pending(current)) {
1911 		err = -ERESTARTSYS;
1912 		goto out;
1913 	}
1914 
1915 	/* We may process another execbuffer during the unlock... */
1916 	eb_release_vmas(eb, false);
1917 	i915_gem_ww_ctx_fini(&eb->ww);
1918 
1919 	if (rq) {
1920 		/* nonblocking is always false */
1921 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1922 				      MAX_SCHEDULE_TIMEOUT) < 0) {
1923 			i915_request_put(rq);
1924 			rq = NULL;
1925 
1926 			err = -EINTR;
1927 			goto err_relock;
1928 		}
1929 
1930 		i915_request_put(rq);
1931 		rq = NULL;
1932 	}
1933 
1934 	/*
1935 	 * We take 3 passes through the slowpatch.
1936 	 *
1937 	 * 1 - we try to just prefault all the user relocation entries and
1938 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1939 	 *
1940 	 * 2 - we copy the user entries to a local buffer here outside of the
1941 	 * local and allow ourselves to wait upon any rendering before
1942 	 * relocations
1943 	 *
1944 	 * 3 - we already have a local copy of the relocation entries, but
1945 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1946 	 */
1947 	if (!err) {
1948 		err = eb_prefault_relocations(eb);
1949 	} else if (!have_copy) {
1950 		err = eb_copy_relocations(eb);
1951 		have_copy = err == 0;
1952 	} else {
1953 		cond_resched();
1954 		err = 0;
1955 	}
1956 
1957 	if (!err)
1958 		flush_workqueue(eb->i915->mm.userptr_wq);
1959 
1960 err_relock:
1961 	i915_gem_ww_ctx_init(&eb->ww, true);
1962 	if (err)
1963 		goto out;
1964 
1965 	/* reacquire the objects */
1966 repeat_validate:
1967 	rq = eb_pin_engine(eb, false);
1968 	if (IS_ERR(rq)) {
1969 		err = PTR_ERR(rq);
1970 		rq = NULL;
1971 		goto err;
1972 	}
1973 
1974 	/* We didn't throttle, should be NULL */
1975 	GEM_WARN_ON(rq);
1976 
1977 	err = eb_validate_vmas(eb);
1978 	if (err)
1979 		goto err;
1980 
1981 	GEM_BUG_ON(!eb->batch);
1982 
1983 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1984 		if (!have_copy) {
1985 			pagefault_disable();
1986 			err = eb_relocate_vma(eb, ev);
1987 			pagefault_enable();
1988 			if (err)
1989 				break;
1990 		} else {
1991 			err = eb_relocate_vma_slow(eb, ev);
1992 			if (err)
1993 				break;
1994 		}
1995 	}
1996 
1997 	if (err == -EDEADLK)
1998 		goto err;
1999 
2000 	if (err && !have_copy)
2001 		goto repeat;
2002 
2003 	if (err)
2004 		goto err;
2005 
2006 	/* as last step, parse the command buffer */
2007 	err = eb_parse(eb);
2008 	if (err)
2009 		goto err;
2010 
2011 	/*
2012 	 * Leave the user relocations as are, this is the painfully slow path,
2013 	 * and we want to avoid the complication of dropping the lock whilst
2014 	 * having buffers reserved in the aperture and so causing spurious
2015 	 * ENOSPC for random operations.
2016 	 */
2017 
2018 err:
2019 	if (err == -EDEADLK) {
2020 		eb_release_vmas(eb, false);
2021 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2022 		if (!err)
2023 			goto repeat_validate;
2024 	}
2025 
2026 	if (err == -EAGAIN)
2027 		goto repeat;
2028 
2029 out:
2030 	if (have_copy) {
2031 		const unsigned int count = eb->buffer_count;
2032 		unsigned int i;
2033 
2034 		for (i = 0; i < count; i++) {
2035 			const struct drm_i915_gem_exec_object2 *entry =
2036 				&eb->exec[i];
2037 			struct drm_i915_gem_relocation_entry *relocs;
2038 
2039 			if (!entry->relocation_count)
2040 				continue;
2041 
2042 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2043 			kvfree(relocs);
2044 		}
2045 	}
2046 
2047 	if (rq)
2048 		i915_request_put(rq);
2049 
2050 	return err;
2051 }
2052 
eb_relocate_parse(struct i915_execbuffer * eb)2053 static int eb_relocate_parse(struct i915_execbuffer *eb)
2054 {
2055 	int err;
2056 	struct i915_request *rq = NULL;
2057 	bool throttle = true;
2058 
2059 retry:
2060 	rq = eb_pin_engine(eb, throttle);
2061 	if (IS_ERR(rq)) {
2062 		err = PTR_ERR(rq);
2063 		rq = NULL;
2064 		if (err != -EDEADLK)
2065 			return err;
2066 
2067 		goto err;
2068 	}
2069 
2070 	if (rq) {
2071 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2072 
2073 		/* Need to drop all locks now for throttling, take slowpath */
2074 		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2075 		if (err == -ETIME) {
2076 			if (nonblock) {
2077 				err = -EWOULDBLOCK;
2078 				i915_request_put(rq);
2079 				goto err;
2080 			}
2081 			goto slow;
2082 		}
2083 		i915_request_put(rq);
2084 		rq = NULL;
2085 	}
2086 
2087 	/* only throttle once, even if we didn't need to throttle */
2088 	throttle = false;
2089 
2090 	err = eb_validate_vmas(eb);
2091 	if (err == -EAGAIN)
2092 		goto slow;
2093 	else if (err)
2094 		goto err;
2095 
2096 	/* The objects are in their final locations, apply the relocations. */
2097 	if (eb->args->flags & __EXEC_HAS_RELOC) {
2098 		struct eb_vma *ev;
2099 
2100 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2101 			err = eb_relocate_vma(eb, ev);
2102 			if (err)
2103 				break;
2104 		}
2105 
2106 		if (err == -EDEADLK)
2107 			goto err;
2108 		else if (err)
2109 			goto slow;
2110 	}
2111 
2112 	if (!err)
2113 		err = eb_parse(eb);
2114 
2115 err:
2116 	if (err == -EDEADLK) {
2117 		eb_release_vmas(eb, false);
2118 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2119 		if (!err)
2120 			goto retry;
2121 	}
2122 
2123 	return err;
2124 
2125 slow:
2126 	err = eb_relocate_parse_slow(eb, rq);
2127 	if (err)
2128 		/*
2129 		 * If the user expects the execobject.offset and
2130 		 * reloc.presumed_offset to be an exact match,
2131 		 * as for using NO_RELOC, then we cannot update
2132 		 * the execobject.offset until we have completed
2133 		 * relocation.
2134 		 */
2135 		eb->args->flags &= ~__EXEC_HAS_RELOC;
2136 
2137 	return err;
2138 }
2139 
eb_move_to_gpu(struct i915_execbuffer * eb)2140 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2141 {
2142 	const unsigned int count = eb->buffer_count;
2143 	unsigned int i = count;
2144 	int err = 0;
2145 
2146 	while (i--) {
2147 		struct eb_vma *ev = &eb->vma[i];
2148 		struct i915_vma *vma = ev->vma;
2149 		unsigned int flags = ev->flags;
2150 		struct drm_i915_gem_object *obj = vma->obj;
2151 
2152 		assert_vma_held(vma);
2153 
2154 		if (flags & EXEC_OBJECT_CAPTURE) {
2155 			struct i915_capture_list *capture;
2156 
2157 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2158 			if (capture) {
2159 				capture->next = eb->request->capture_list;
2160 				capture->vma = vma;
2161 				eb->request->capture_list = capture;
2162 			}
2163 		}
2164 
2165 		/*
2166 		 * If the GPU is not _reading_ through the CPU cache, we need
2167 		 * to make sure that any writes (both previous GPU writes from
2168 		 * before a change in snooping levels and normal CPU writes)
2169 		 * caught in that cache are flushed to main memory.
2170 		 *
2171 		 * We want to say
2172 		 *   obj->cache_dirty &&
2173 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2174 		 * but gcc's optimiser doesn't handle that as well and emits
2175 		 * two jumps instead of one. Maybe one day...
2176 		 */
2177 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2178 			if (i915_gem_clflush_object(obj, 0))
2179 				flags &= ~EXEC_OBJECT_ASYNC;
2180 		}
2181 
2182 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2183 			err = i915_request_await_object
2184 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
2185 		}
2186 
2187 		if (err == 0)
2188 			err = i915_vma_move_to_active(vma, eb->request, flags);
2189 	}
2190 
2191 	if (unlikely(err))
2192 		goto err_skip;
2193 
2194 	/* Unconditionally flush any chipset caches (for streaming writes). */
2195 	intel_gt_chipset_flush(eb->engine->gt);
2196 	return 0;
2197 
2198 err_skip:
2199 	i915_request_set_error_once(eb->request, err);
2200 	return err;
2201 }
2202 
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 * exec)2203 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2204 {
2205 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2206 		return -EINVAL;
2207 
2208 	/* Kernel clipping was a DRI1 misfeature */
2209 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2210 			     I915_EXEC_USE_EXTENSIONS))) {
2211 		if (exec->num_cliprects || exec->cliprects_ptr)
2212 			return -EINVAL;
2213 	}
2214 
2215 	if (exec->DR4 == 0xffffffff) {
2216 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2217 		exec->DR4 = 0;
2218 	}
2219 	if (exec->DR1 || exec->DR4)
2220 		return -EINVAL;
2221 
2222 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2223 		return -EINVAL;
2224 
2225 	return 0;
2226 }
2227 
i915_reset_gen7_sol_offsets(struct i915_request * rq)2228 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2229 {
2230 	u32 *cs;
2231 	int i;
2232 
2233 	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2234 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2235 		return -EINVAL;
2236 	}
2237 
2238 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2239 	if (IS_ERR(cs))
2240 		return PTR_ERR(cs);
2241 
2242 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2243 	for (i = 0; i < 4; i++) {
2244 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2245 		*cs++ = 0;
2246 	}
2247 	*cs++ = MI_NOOP;
2248 	intel_ring_advance(rq, cs);
2249 
2250 	return 0;
2251 }
2252 
2253 static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer * eb,struct drm_i915_gem_object * obj,struct i915_address_space * vm,unsigned int flags)2254 shadow_batch_pin(struct i915_execbuffer *eb,
2255 		 struct drm_i915_gem_object *obj,
2256 		 struct i915_address_space *vm,
2257 		 unsigned int flags)
2258 {
2259 	struct i915_vma *vma;
2260 	int err;
2261 
2262 	vma = i915_vma_instance(obj, vm, NULL);
2263 	if (IS_ERR(vma))
2264 		return vma;
2265 
2266 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2267 	if (err)
2268 		return ERR_PTR(err);
2269 
2270 	return vma;
2271 }
2272 
eb_dispatch_secure(struct i915_execbuffer * eb,struct i915_vma * vma)2273 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2274 {
2275 	/*
2276 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2277 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2278 	 * hsw should have this fixed, but bdw mucks it up again. */
2279 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2280 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2281 
2282 	return NULL;
2283 }
2284 
eb_parse(struct i915_execbuffer * eb)2285 static int eb_parse(struct i915_execbuffer *eb)
2286 {
2287 	struct drm_i915_private *i915 = eb->i915;
2288 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2289 	struct i915_vma *shadow, *trampoline, *batch;
2290 	unsigned long len;
2291 	int err;
2292 
2293 	if (!eb_use_cmdparser(eb)) {
2294 		batch = eb_dispatch_secure(eb, eb->batch->vma);
2295 		if (IS_ERR(batch))
2296 			return PTR_ERR(batch);
2297 
2298 		goto secure_batch;
2299 	}
2300 
2301 	len = eb->batch_len;
2302 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2303 		/*
2304 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2305 		 * post-scan tampering
2306 		 */
2307 		if (!eb->context->vm->has_read_only) {
2308 			drm_dbg(&i915->drm,
2309 				"Cannot prevent post-scan tampering without RO capable vm\n");
2310 			return -EINVAL;
2311 		}
2312 	} else {
2313 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2314 	}
2315 	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2316 		return -EINVAL;
2317 
2318 	if (!pool) {
2319 		pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2320 		if (IS_ERR(pool))
2321 			return PTR_ERR(pool);
2322 		eb->batch_pool = pool;
2323 	}
2324 
2325 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2326 	if (err)
2327 		goto err;
2328 
2329 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2330 	if (IS_ERR(shadow)) {
2331 		err = PTR_ERR(shadow);
2332 		goto err;
2333 	}
2334 	i915_gem_object_set_readonly(shadow->obj);
2335 	shadow->private = pool;
2336 
2337 	trampoline = NULL;
2338 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2339 		trampoline = shadow;
2340 
2341 		shadow = shadow_batch_pin(eb, pool->obj,
2342 					  &eb->engine->gt->ggtt->vm,
2343 					  PIN_GLOBAL);
2344 		if (IS_ERR(shadow)) {
2345 			err = PTR_ERR(shadow);
2346 			shadow = trampoline;
2347 			goto err_shadow;
2348 		}
2349 		shadow->private = pool;
2350 
2351 		eb->batch_flags |= I915_DISPATCH_SECURE;
2352 	}
2353 
2354 	batch = eb_dispatch_secure(eb, shadow);
2355 	if (IS_ERR(batch)) {
2356 		err = PTR_ERR(batch);
2357 		goto err_trampoline;
2358 	}
2359 
2360 	err = intel_engine_cmd_parser(eb->engine,
2361 				      eb->batch->vma,
2362 				      eb->batch_start_offset,
2363 				      eb->batch_len,
2364 				      shadow, trampoline);
2365 	if (err)
2366 		goto err_unpin_batch;
2367 
2368 	eb->batch = &eb->vma[eb->buffer_count++];
2369 	eb->batch->vma = i915_vma_get(shadow);
2370 	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2371 
2372 	eb->trampoline = trampoline;
2373 	eb->batch_start_offset = 0;
2374 
2375 secure_batch:
2376 	if (batch) {
2377 		eb->batch = &eb->vma[eb->buffer_count++];
2378 		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2379 		eb->batch->vma = i915_vma_get(batch);
2380 	}
2381 	return 0;
2382 
2383 err_unpin_batch:
2384 	if (batch)
2385 		i915_vma_unpin(batch);
2386 err_trampoline:
2387 	if (trampoline)
2388 		i915_vma_unpin(trampoline);
2389 err_shadow:
2390 	i915_vma_unpin(shadow);
2391 err:
2392 	return err;
2393 }
2394 
eb_submit(struct i915_execbuffer * eb,struct i915_vma * batch)2395 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2396 {
2397 	int err;
2398 
2399 	err = eb_move_to_gpu(eb);
2400 	if (err)
2401 		return err;
2402 
2403 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2404 		err = i915_reset_gen7_sol_offsets(eb->request);
2405 		if (err)
2406 			return err;
2407 	}
2408 
2409 	/*
2410 	 * After we completed waiting for other engines (using HW semaphores)
2411 	 * then we can signal that this request/batch is ready to run. This
2412 	 * allows us to determine if the batch is still waiting on the GPU
2413 	 * or actually running by checking the breadcrumb.
2414 	 */
2415 	if (eb->engine->emit_init_breadcrumb) {
2416 		err = eb->engine->emit_init_breadcrumb(eb->request);
2417 		if (err)
2418 			return err;
2419 	}
2420 
2421 	err = eb->engine->emit_bb_start(eb->request,
2422 					batch->node.start +
2423 					eb->batch_start_offset,
2424 					eb->batch_len,
2425 					eb->batch_flags);
2426 	if (err)
2427 		return err;
2428 
2429 	if (eb->trampoline) {
2430 		GEM_BUG_ON(eb->batch_start_offset);
2431 		err = eb->engine->emit_bb_start(eb->request,
2432 						eb->trampoline->node.start +
2433 						eb->batch_len,
2434 						0, 0);
2435 		if (err)
2436 			return err;
2437 	}
2438 
2439 	if (intel_context_nopreempt(eb->context))
2440 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2441 
2442 	return 0;
2443 }
2444 
num_vcs_engines(const struct drm_i915_private * i915)2445 static int num_vcs_engines(const struct drm_i915_private *i915)
2446 {
2447 	return hweight64(VDBOX_MASK(&i915->gt));
2448 }
2449 
2450 /*
2451  * Find one BSD ring to dispatch the corresponding BSD command.
2452  * The engine index is returned.
2453  */
2454 static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private * dev_priv,struct drm_file * file)2455 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2456 			 struct drm_file *file)
2457 {
2458 	struct drm_i915_file_private *file_priv = file->driver_priv;
2459 
2460 	/* Check whether the file_priv has already selected one ring. */
2461 	if ((int)file_priv->bsd_engine < 0)
2462 		file_priv->bsd_engine =
2463 			get_random_int() % num_vcs_engines(dev_priv);
2464 
2465 	return file_priv->bsd_engine;
2466 }
2467 
2468 static const enum intel_engine_id user_ring_map[] = {
2469 	[I915_EXEC_DEFAULT]	= RCS0,
2470 	[I915_EXEC_RENDER]	= RCS0,
2471 	[I915_EXEC_BLT]		= BCS0,
2472 	[I915_EXEC_BSD]		= VCS0,
2473 	[I915_EXEC_VEBOX]	= VECS0
2474 };
2475 
eb_throttle(struct i915_execbuffer * eb,struct intel_context * ce)2476 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2477 {
2478 	struct intel_ring *ring = ce->ring;
2479 	struct intel_timeline *tl = ce->timeline;
2480 	struct i915_request *rq;
2481 
2482 	/*
2483 	 * Completely unscientific finger-in-the-air estimates for suitable
2484 	 * maximum user request size (to avoid blocking) and then backoff.
2485 	 */
2486 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2487 		return NULL;
2488 
2489 	/*
2490 	 * Find a request that after waiting upon, there will be at least half
2491 	 * the ring available. The hysteresis allows us to compete for the
2492 	 * shared ring and should mean that we sleep less often prior to
2493 	 * claiming our resources, but not so long that the ring completely
2494 	 * drains before we can submit our next request.
2495 	 */
2496 	list_for_each_entry(rq, &tl->requests, link) {
2497 		if (rq->ring != ring)
2498 			continue;
2499 
2500 		if (__intel_ring_space(rq->postfix,
2501 				       ring->emit, ring->size) > ring->size / 2)
2502 			break;
2503 	}
2504 	if (&rq->link == &tl->requests)
2505 		return NULL; /* weird, we will check again later for real */
2506 
2507 	return i915_request_get(rq);
2508 }
2509 
eb_pin_engine(struct i915_execbuffer * eb,bool throttle)2510 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2511 {
2512 	struct intel_context *ce = eb->context;
2513 	struct intel_timeline *tl;
2514 	struct i915_request *rq = NULL;
2515 	int err;
2516 
2517 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2518 
2519 	if (unlikely(intel_context_is_banned(ce)))
2520 		return ERR_PTR(-EIO);
2521 
2522 	/*
2523 	 * Pinning the contexts may generate requests in order to acquire
2524 	 * GGTT space, so do this first before we reserve a seqno for
2525 	 * ourselves.
2526 	 */
2527 	err = intel_context_pin_ww(ce, &eb->ww);
2528 	if (err)
2529 		return ERR_PTR(err);
2530 
2531 	/*
2532 	 * Take a local wakeref for preparing to dispatch the execbuf as
2533 	 * we expect to access the hardware fairly frequently in the
2534 	 * process, and require the engine to be kept awake between accesses.
2535 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2536 	 * until the timeline is idle, which in turn releases the wakeref
2537 	 * taken on the engine, and the parent device.
2538 	 */
2539 	tl = intel_context_timeline_lock(ce);
2540 	if (IS_ERR(tl)) {
2541 		intel_context_unpin(ce);
2542 		return ERR_CAST(tl);
2543 	}
2544 
2545 	intel_context_enter(ce);
2546 	if (throttle)
2547 		rq = eb_throttle(eb, ce);
2548 	intel_context_timeline_unlock(tl);
2549 
2550 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2551 	return rq;
2552 }
2553 
eb_unpin_engine(struct i915_execbuffer * eb)2554 static void eb_unpin_engine(struct i915_execbuffer *eb)
2555 {
2556 	struct intel_context *ce = eb->context;
2557 	struct intel_timeline *tl = ce->timeline;
2558 
2559 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2560 		return;
2561 
2562 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2563 
2564 	mutex_lock(&tl->mutex);
2565 	intel_context_exit(ce);
2566 	mutex_unlock(&tl->mutex);
2567 
2568 	intel_context_unpin(ce);
2569 }
2570 
2571 static unsigned int
eb_select_legacy_ring(struct i915_execbuffer * eb)2572 eb_select_legacy_ring(struct i915_execbuffer *eb)
2573 {
2574 	struct drm_i915_private *i915 = eb->i915;
2575 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2576 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2577 
2578 	if (user_ring_id != I915_EXEC_BSD &&
2579 	    (args->flags & I915_EXEC_BSD_MASK)) {
2580 		drm_dbg(&i915->drm,
2581 			"execbuf with non bsd ring but with invalid "
2582 			"bsd dispatch flags: %d\n", (int)(args->flags));
2583 		return -1;
2584 	}
2585 
2586 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2587 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2588 
2589 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2590 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2591 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2592 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2593 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2594 			bsd_idx--;
2595 		} else {
2596 			drm_dbg(&i915->drm,
2597 				"execbuf with unknown bsd ring: %u\n",
2598 				bsd_idx);
2599 			return -1;
2600 		}
2601 
2602 		return _VCS(bsd_idx);
2603 	}
2604 
2605 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2606 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2607 			user_ring_id);
2608 		return -1;
2609 	}
2610 
2611 	return user_ring_map[user_ring_id];
2612 }
2613 
2614 static int
eb_select_engine(struct i915_execbuffer * eb)2615 eb_select_engine(struct i915_execbuffer *eb)
2616 {
2617 	struct intel_context *ce;
2618 	unsigned int idx;
2619 	int err;
2620 
2621 	if (i915_gem_context_user_engines(eb->gem_context))
2622 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2623 	else
2624 		idx = eb_select_legacy_ring(eb);
2625 
2626 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2627 	if (IS_ERR(ce))
2628 		return PTR_ERR(ce);
2629 
2630 	intel_gt_pm_get(ce->engine->gt);
2631 
2632 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2633 		err = intel_context_alloc_state(ce);
2634 		if (err)
2635 			goto err;
2636 	}
2637 
2638 	/*
2639 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2640 	 * EIO if the GPU is already wedged.
2641 	 */
2642 	err = intel_gt_terminally_wedged(ce->engine->gt);
2643 	if (err)
2644 		goto err;
2645 
2646 	eb->context = ce;
2647 	eb->engine = ce->engine;
2648 
2649 	/*
2650 	 * Make sure engine pool stays alive even if we call intel_context_put
2651 	 * during ww handling. The pool is destroyed when last pm reference
2652 	 * is dropped, which breaks our -EDEADLK handling.
2653 	 */
2654 	return err;
2655 
2656 err:
2657 	intel_gt_pm_put(ce->engine->gt);
2658 	intel_context_put(ce);
2659 	return err;
2660 }
2661 
2662 static void
eb_put_engine(struct i915_execbuffer * eb)2663 eb_put_engine(struct i915_execbuffer *eb)
2664 {
2665 	intel_gt_pm_put(eb->engine->gt);
2666 	intel_context_put(eb->context);
2667 }
2668 
2669 static void
__free_fence_array(struct eb_fence * fences,unsigned int n)2670 __free_fence_array(struct eb_fence *fences, unsigned int n)
2671 {
2672 	while (n--) {
2673 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2674 		dma_fence_put(fences[n].dma_fence);
2675 		kfree(fences[n].chain_fence);
2676 	}
2677 	kvfree(fences);
2678 }
2679 
2680 static int
add_timeline_fence_array(struct i915_execbuffer * eb,const struct drm_i915_gem_execbuffer_ext_timeline_fences * timeline_fences)2681 add_timeline_fence_array(struct i915_execbuffer *eb,
2682 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2683 {
2684 	struct drm_i915_gem_exec_fence __user *user_fences;
2685 	u64 __user *user_values;
2686 	struct eb_fence *f;
2687 	u64 nfences;
2688 	int err = 0;
2689 
2690 	nfences = timeline_fences->fence_count;
2691 	if (!nfences)
2692 		return 0;
2693 
2694 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2695 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2696 	if (nfences > min_t(unsigned long,
2697 			    ULONG_MAX / sizeof(*user_fences),
2698 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2699 		return -EINVAL;
2700 
2701 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2702 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2703 		return -EFAULT;
2704 
2705 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2706 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2707 		return -EFAULT;
2708 
2709 	f = krealloc(eb->fences,
2710 		     (eb->num_fences + nfences) * sizeof(*f),
2711 		     __GFP_NOWARN | GFP_KERNEL);
2712 	if (!f)
2713 		return -ENOMEM;
2714 
2715 	eb->fences = f;
2716 	f += eb->num_fences;
2717 
2718 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2719 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2720 
2721 	while (nfences--) {
2722 		struct drm_i915_gem_exec_fence user_fence;
2723 		struct drm_syncobj *syncobj;
2724 		struct dma_fence *fence = NULL;
2725 		u64 point;
2726 
2727 		if (__copy_from_user(&user_fence,
2728 				     user_fences++,
2729 				     sizeof(user_fence)))
2730 			return -EFAULT;
2731 
2732 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2733 			return -EINVAL;
2734 
2735 		if (__get_user(point, user_values++))
2736 			return -EFAULT;
2737 
2738 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2739 		if (!syncobj) {
2740 			DRM_DEBUG("Invalid syncobj handle provided\n");
2741 			return -ENOENT;
2742 		}
2743 
2744 		fence = drm_syncobj_fence_get(syncobj);
2745 
2746 		if (!fence && user_fence.flags &&
2747 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2748 			DRM_DEBUG("Syncobj handle has no fence\n");
2749 			drm_syncobj_put(syncobj);
2750 			return -EINVAL;
2751 		}
2752 
2753 		if (fence)
2754 			err = dma_fence_chain_find_seqno(&fence, point);
2755 
2756 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2757 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2758 			dma_fence_put(fence);
2759 			drm_syncobj_put(syncobj);
2760 			return err;
2761 		}
2762 
2763 		/*
2764 		 * A point might have been signaled already and
2765 		 * garbage collected from the timeline. In this case
2766 		 * just ignore the point and carry on.
2767 		 */
2768 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2769 			drm_syncobj_put(syncobj);
2770 			continue;
2771 		}
2772 
2773 		/*
2774 		 * For timeline syncobjs we need to preallocate chains for
2775 		 * later signaling.
2776 		 */
2777 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2778 			/*
2779 			 * Waiting and signaling the same point (when point !=
2780 			 * 0) would break the timeline.
2781 			 */
2782 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2783 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2784 				dma_fence_put(fence);
2785 				drm_syncobj_put(syncobj);
2786 				return -EINVAL;
2787 			}
2788 
2789 			f->chain_fence =
2790 				kmalloc(sizeof(*f->chain_fence),
2791 					GFP_KERNEL);
2792 			if (!f->chain_fence) {
2793 				drm_syncobj_put(syncobj);
2794 				dma_fence_put(fence);
2795 				return -ENOMEM;
2796 			}
2797 		} else {
2798 			f->chain_fence = NULL;
2799 		}
2800 
2801 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2802 		f->dma_fence = fence;
2803 		f->value = point;
2804 		f++;
2805 		eb->num_fences++;
2806 	}
2807 
2808 	return 0;
2809 }
2810 
add_fence_array(struct i915_execbuffer * eb)2811 static int add_fence_array(struct i915_execbuffer *eb)
2812 {
2813 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2814 	struct drm_i915_gem_exec_fence __user *user;
2815 	unsigned long num_fences = args->num_cliprects;
2816 	struct eb_fence *f;
2817 
2818 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2819 		return 0;
2820 
2821 	if (!num_fences)
2822 		return 0;
2823 
2824 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2825 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2826 	if (num_fences > min_t(unsigned long,
2827 			       ULONG_MAX / sizeof(*user),
2828 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2829 		return -EINVAL;
2830 
2831 	user = u64_to_user_ptr(args->cliprects_ptr);
2832 	if (!access_ok(user, num_fences * sizeof(*user)))
2833 		return -EFAULT;
2834 
2835 	f = krealloc(eb->fences,
2836 		     (eb->num_fences + num_fences) * sizeof(*f),
2837 		     __GFP_NOWARN | GFP_KERNEL);
2838 	if (!f)
2839 		return -ENOMEM;
2840 
2841 	eb->fences = f;
2842 	f += eb->num_fences;
2843 	while (num_fences--) {
2844 		struct drm_i915_gem_exec_fence user_fence;
2845 		struct drm_syncobj *syncobj;
2846 		struct dma_fence *fence = NULL;
2847 
2848 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2849 			return -EFAULT;
2850 
2851 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2852 			return -EINVAL;
2853 
2854 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2855 		if (!syncobj) {
2856 			DRM_DEBUG("Invalid syncobj handle provided\n");
2857 			return -ENOENT;
2858 		}
2859 
2860 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2861 			fence = drm_syncobj_fence_get(syncobj);
2862 			if (!fence) {
2863 				DRM_DEBUG("Syncobj handle has no fence\n");
2864 				drm_syncobj_put(syncobj);
2865 				return -EINVAL;
2866 			}
2867 		}
2868 
2869 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2870 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2871 
2872 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2873 		f->dma_fence = fence;
2874 		f->value = 0;
2875 		f->chain_fence = NULL;
2876 		f++;
2877 		eb->num_fences++;
2878 	}
2879 
2880 	return 0;
2881 }
2882 
put_fence_array(struct eb_fence * fences,int num_fences)2883 static void put_fence_array(struct eb_fence *fences, int num_fences)
2884 {
2885 	if (fences)
2886 		__free_fence_array(fences, num_fences);
2887 }
2888 
2889 static int
await_fence_array(struct i915_execbuffer * eb)2890 await_fence_array(struct i915_execbuffer *eb)
2891 {
2892 	unsigned int n;
2893 	int err;
2894 
2895 	for (n = 0; n < eb->num_fences; n++) {
2896 		struct drm_syncobj *syncobj;
2897 		unsigned int flags;
2898 
2899 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2900 
2901 		if (!eb->fences[n].dma_fence)
2902 			continue;
2903 
2904 		err = i915_request_await_dma_fence(eb->request,
2905 						   eb->fences[n].dma_fence);
2906 		if (err < 0)
2907 			return err;
2908 	}
2909 
2910 	return 0;
2911 }
2912 
signal_fence_array(const struct i915_execbuffer * eb)2913 static void signal_fence_array(const struct i915_execbuffer *eb)
2914 {
2915 	struct dma_fence * const fence = &eb->request->fence;
2916 	unsigned int n;
2917 
2918 	for (n = 0; n < eb->num_fences; n++) {
2919 		struct drm_syncobj *syncobj;
2920 		unsigned int flags;
2921 
2922 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2923 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2924 			continue;
2925 
2926 		if (eb->fences[n].chain_fence) {
2927 			drm_syncobj_add_point(syncobj,
2928 					      eb->fences[n].chain_fence,
2929 					      fence,
2930 					      eb->fences[n].value);
2931 			/*
2932 			 * The chain's ownership is transferred to the
2933 			 * timeline.
2934 			 */
2935 			eb->fences[n].chain_fence = NULL;
2936 		} else {
2937 			drm_syncobj_replace_fence(syncobj, fence);
2938 		}
2939 	}
2940 }
2941 
2942 static int
parse_timeline_fences(struct i915_user_extension __user * ext,void * data)2943 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2944 {
2945 	struct i915_execbuffer *eb = data;
2946 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2947 
2948 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
2949 		return -EFAULT;
2950 
2951 	return add_timeline_fence_array(eb, &timeline_fences);
2952 }
2953 
retire_requests(struct intel_timeline * tl,struct i915_request * end)2954 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2955 {
2956 	struct i915_request *rq, *rn;
2957 
2958 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
2959 		if (rq == end || !i915_request_retire(rq))
2960 			break;
2961 }
2962 
eb_request_add(struct i915_execbuffer * eb,int err)2963 static int eb_request_add(struct i915_execbuffer *eb, int err)
2964 {
2965 	struct i915_request *rq = eb->request;
2966 	struct intel_timeline * const tl = i915_request_timeline(rq);
2967 	struct i915_sched_attr attr = {};
2968 	struct i915_request *prev;
2969 
2970 	lockdep_assert_held(&tl->mutex);
2971 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
2972 
2973 	trace_i915_request_add(rq);
2974 
2975 	prev = __i915_request_commit(rq);
2976 
2977 	/* Check that the context wasn't destroyed before submission */
2978 	if (likely(!intel_context_is_closed(eb->context))) {
2979 		attr = eb->gem_context->sched;
2980 	} else {
2981 		/* Serialise with context_close via the add_to_timeline */
2982 		i915_request_set_error_once(rq, -ENOENT);
2983 		__i915_request_skip(rq);
2984 		err = -ENOENT; /* override any transient errors */
2985 	}
2986 
2987 	__i915_request_queue(rq, &attr);
2988 
2989 	/* Try to clean up the client's timeline after submitting the request */
2990 	if (prev)
2991 		retire_requests(tl, prev);
2992 
2993 	mutex_unlock(&tl->mutex);
2994 
2995 	return err;
2996 }
2997 
2998 static const i915_user_extension_fn execbuf_extensions[] = {
2999 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3000 };
3001 
3002 static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 * args,struct i915_execbuffer * eb)3003 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3004 			  struct i915_execbuffer *eb)
3005 {
3006 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3007 		return 0;
3008 
3009 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3010 	 * have another flag also using it at the same time.
3011 	 */
3012 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3013 		return -EINVAL;
3014 
3015 	if (args->num_cliprects != 0)
3016 		return -EINVAL;
3017 
3018 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3019 				    execbuf_extensions,
3020 				    ARRAY_SIZE(execbuf_extensions),
3021 				    eb);
3022 }
3023 
3024 static int
i915_gem_do_execbuffer(struct drm_device * dev,struct drm_file * file,struct drm_i915_gem_execbuffer2 * args,struct drm_i915_gem_exec_object2 * exec)3025 i915_gem_do_execbuffer(struct drm_device *dev,
3026 		       struct drm_file *file,
3027 		       struct drm_i915_gem_execbuffer2 *args,
3028 		       struct drm_i915_gem_exec_object2 *exec)
3029 {
3030 	struct drm_i915_private *i915 = to_i915(dev);
3031 	struct i915_execbuffer eb;
3032 	struct dma_fence *in_fence = NULL;
3033 	struct sync_file *out_fence = NULL;
3034 	struct i915_vma *batch;
3035 	int out_fence_fd = -1;
3036 	int err;
3037 
3038 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3039 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3040 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3041 
3042 	eb.i915 = i915;
3043 	eb.file = file;
3044 	eb.args = args;
3045 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3046 		args->flags |= __EXEC_HAS_RELOC;
3047 
3048 	eb.exec = exec;
3049 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3050 	eb.vma[0].vma = NULL;
3051 	eb.reloc_pool = eb.batch_pool = NULL;
3052 	eb.reloc_context = NULL;
3053 
3054 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3055 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3056 
3057 	eb.buffer_count = args->buffer_count;
3058 	eb.batch_start_offset = args->batch_start_offset;
3059 	eb.batch_len = args->batch_len;
3060 	eb.trampoline = NULL;
3061 
3062 	eb.fences = NULL;
3063 	eb.num_fences = 0;
3064 
3065 	eb.batch_flags = 0;
3066 	if (args->flags & I915_EXEC_SECURE) {
3067 		if (INTEL_GEN(i915) >= 11)
3068 			return -ENODEV;
3069 
3070 		/* Return -EPERM to trigger fallback code on old binaries. */
3071 		if (!HAS_SECURE_BATCHES(i915))
3072 			return -EPERM;
3073 
3074 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3075 			return -EPERM;
3076 
3077 		eb.batch_flags |= I915_DISPATCH_SECURE;
3078 	}
3079 	if (args->flags & I915_EXEC_IS_PINNED)
3080 		eb.batch_flags |= I915_DISPATCH_PINNED;
3081 
3082 	err = parse_execbuf2_extensions(args, &eb);
3083 	if (err)
3084 		goto err_ext;
3085 
3086 	err = add_fence_array(&eb);
3087 	if (err)
3088 		goto err_ext;
3089 
3090 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3091 	if (args->flags & IN_FENCES) {
3092 		if ((args->flags & IN_FENCES) == IN_FENCES)
3093 			return -EINVAL;
3094 
3095 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3096 		if (!in_fence) {
3097 			err = -EINVAL;
3098 			goto err_ext;
3099 		}
3100 	}
3101 #undef IN_FENCES
3102 
3103 	if (args->flags & I915_EXEC_FENCE_OUT) {
3104 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3105 		if (out_fence_fd < 0) {
3106 			err = out_fence_fd;
3107 			goto err_in_fence;
3108 		}
3109 	}
3110 
3111 	err = eb_create(&eb);
3112 	if (err)
3113 		goto err_out_fence;
3114 
3115 	GEM_BUG_ON(!eb.lut_size);
3116 
3117 	err = eb_select_context(&eb);
3118 	if (unlikely(err))
3119 		goto err_destroy;
3120 
3121 	err = eb_select_engine(&eb);
3122 	if (unlikely(err))
3123 		goto err_context;
3124 
3125 	err = eb_lookup_vmas(&eb);
3126 	if (err) {
3127 		eb_release_vmas(&eb, true);
3128 		goto err_engine;
3129 	}
3130 
3131 	i915_gem_ww_ctx_init(&eb.ww, true);
3132 
3133 	err = eb_relocate_parse(&eb);
3134 	if (err) {
3135 		/*
3136 		 * If the user expects the execobject.offset and
3137 		 * reloc.presumed_offset to be an exact match,
3138 		 * as for using NO_RELOC, then we cannot update
3139 		 * the execobject.offset until we have completed
3140 		 * relocation.
3141 		 */
3142 		args->flags &= ~__EXEC_HAS_RELOC;
3143 		goto err_vma;
3144 	}
3145 
3146 	ww_acquire_done(&eb.ww.ctx);
3147 
3148 	batch = eb.batch->vma;
3149 
3150 	/* All GPU relocation batches must be submitted prior to the user rq */
3151 	GEM_BUG_ON(eb.reloc_cache.rq);
3152 
3153 	/* Allocate a request for this batch buffer nice and early. */
3154 	eb.request = i915_request_create(eb.context);
3155 	if (IS_ERR(eb.request)) {
3156 		err = PTR_ERR(eb.request);
3157 		goto err_vma;
3158 	}
3159 
3160 	if (in_fence) {
3161 		if (args->flags & I915_EXEC_FENCE_SUBMIT)
3162 			err = i915_request_await_execution(eb.request,
3163 							   in_fence,
3164 							   eb.engine->bond_execute);
3165 		else
3166 			err = i915_request_await_dma_fence(eb.request,
3167 							   in_fence);
3168 		if (err < 0)
3169 			goto err_request;
3170 	}
3171 
3172 	if (eb.fences) {
3173 		err = await_fence_array(&eb);
3174 		if (err)
3175 			goto err_request;
3176 	}
3177 
3178 	if (out_fence_fd != -1) {
3179 		out_fence = sync_file_create(&eb.request->fence);
3180 		if (!out_fence) {
3181 			err = -ENOMEM;
3182 			goto err_request;
3183 		}
3184 	}
3185 
3186 	/*
3187 	 * Whilst this request exists, batch_obj will be on the
3188 	 * active_list, and so will hold the active reference. Only when this
3189 	 * request is retired will the the batch_obj be moved onto the
3190 	 * inactive_list and lose its active reference. Hence we do not need
3191 	 * to explicitly hold another reference here.
3192 	 */
3193 	eb.request->batch = batch;
3194 	if (eb.batch_pool)
3195 		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3196 
3197 	trace_i915_request_queue(eb.request, eb.batch_flags);
3198 	err = eb_submit(&eb, batch);
3199 err_request:
3200 	i915_request_get(eb.request);
3201 	err = eb_request_add(&eb, err);
3202 
3203 	if (eb.fences)
3204 		signal_fence_array(&eb);
3205 
3206 	if (out_fence) {
3207 		if (err == 0) {
3208 			fd_install(out_fence_fd, out_fence->file);
3209 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3210 			args->rsvd2 |= (u64)out_fence_fd << 32;
3211 			out_fence_fd = -1;
3212 		} else {
3213 			fput(out_fence->file);
3214 		}
3215 	}
3216 	i915_request_put(eb.request);
3217 
3218 err_vma:
3219 	eb_release_vmas(&eb, true);
3220 	if (eb.trampoline)
3221 		i915_vma_unpin(eb.trampoline);
3222 	WARN_ON(err == -EDEADLK);
3223 	i915_gem_ww_ctx_fini(&eb.ww);
3224 
3225 	if (eb.batch_pool)
3226 		intel_gt_buffer_pool_put(eb.batch_pool);
3227 	if (eb.reloc_pool)
3228 		intel_gt_buffer_pool_put(eb.reloc_pool);
3229 	if (eb.reloc_context)
3230 		intel_context_put(eb.reloc_context);
3231 err_engine:
3232 	eb_put_engine(&eb);
3233 err_context:
3234 	i915_gem_context_put(eb.gem_context);
3235 err_destroy:
3236 	eb_destroy(&eb);
3237 err_out_fence:
3238 	if (out_fence_fd != -1)
3239 		put_unused_fd(out_fence_fd);
3240 err_in_fence:
3241 	dma_fence_put(in_fence);
3242 err_ext:
3243 	put_fence_array(eb.fences, eb.num_fences);
3244 	return err;
3245 }
3246 
eb_element_size(void)3247 static size_t eb_element_size(void)
3248 {
3249 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3250 }
3251 
check_buffer_count(size_t count)3252 static bool check_buffer_count(size_t count)
3253 {
3254 	const size_t sz = eb_element_size();
3255 
3256 	/*
3257 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3258 	 * array size (see eb_create()). Otherwise, we can accept an array as
3259 	 * large as can be addressed (though use large arrays at your peril)!
3260 	 */
3261 
3262 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3263 }
3264 
3265 /*
3266  * Legacy execbuffer just creates an exec2 list from the original exec object
3267  * list array and passes it to the real function.
3268  */
3269 int
i915_gem_execbuffer_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3270 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3271 			  struct drm_file *file)
3272 {
3273 	struct drm_i915_private *i915 = to_i915(dev);
3274 	struct drm_i915_gem_execbuffer *args = data;
3275 	struct drm_i915_gem_execbuffer2 exec2;
3276 	struct drm_i915_gem_exec_object *exec_list = NULL;
3277 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3278 	const size_t count = args->buffer_count;
3279 	unsigned int i;
3280 	int err;
3281 
3282 	if (!check_buffer_count(count)) {
3283 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3284 		return -EINVAL;
3285 	}
3286 
3287 	exec2.buffers_ptr = args->buffers_ptr;
3288 	exec2.buffer_count = args->buffer_count;
3289 	exec2.batch_start_offset = args->batch_start_offset;
3290 	exec2.batch_len = args->batch_len;
3291 	exec2.DR1 = args->DR1;
3292 	exec2.DR4 = args->DR4;
3293 	exec2.num_cliprects = args->num_cliprects;
3294 	exec2.cliprects_ptr = args->cliprects_ptr;
3295 	exec2.flags = I915_EXEC_RENDER;
3296 	i915_execbuffer2_set_context_id(exec2, 0);
3297 
3298 	err = i915_gem_check_execbuffer(&exec2);
3299 	if (err)
3300 		return err;
3301 
3302 	/* Copy in the exec list from userland */
3303 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3304 				   __GFP_NOWARN | GFP_KERNEL);
3305 
3306 	/* Allocate extra slots for use by the command parser */
3307 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3308 				    __GFP_NOWARN | GFP_KERNEL);
3309 	if (exec_list == NULL || exec2_list == NULL) {
3310 		drm_dbg(&i915->drm,
3311 			"Failed to allocate exec list for %d buffers\n",
3312 			args->buffer_count);
3313 		kvfree(exec_list);
3314 		kvfree(exec2_list);
3315 		return -ENOMEM;
3316 	}
3317 	err = copy_from_user(exec_list,
3318 			     u64_to_user_ptr(args->buffers_ptr),
3319 			     sizeof(*exec_list) * count);
3320 	if (err) {
3321 		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
3322 			args->buffer_count, err);
3323 		kvfree(exec_list);
3324 		kvfree(exec2_list);
3325 		return -EFAULT;
3326 	}
3327 
3328 	for (i = 0; i < args->buffer_count; i++) {
3329 		exec2_list[i].handle = exec_list[i].handle;
3330 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
3331 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3332 		exec2_list[i].alignment = exec_list[i].alignment;
3333 		exec2_list[i].offset = exec_list[i].offset;
3334 		if (INTEL_GEN(to_i915(dev)) < 4)
3335 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3336 		else
3337 			exec2_list[i].flags = 0;
3338 	}
3339 
3340 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3341 	if (exec2.flags & __EXEC_HAS_RELOC) {
3342 		struct drm_i915_gem_exec_object __user *user_exec_list =
3343 			u64_to_user_ptr(args->buffers_ptr);
3344 
3345 		/* Copy the new buffer offsets back to the user's exec list. */
3346 		for (i = 0; i < args->buffer_count; i++) {
3347 			if (!(exec2_list[i].offset & UPDATE))
3348 				continue;
3349 
3350 			exec2_list[i].offset =
3351 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3352 			exec2_list[i].offset &= PIN_OFFSET_MASK;
3353 			if (__copy_to_user(&user_exec_list[i].offset,
3354 					   &exec2_list[i].offset,
3355 					   sizeof(user_exec_list[i].offset)))
3356 				break;
3357 		}
3358 	}
3359 
3360 	kvfree(exec_list);
3361 	kvfree(exec2_list);
3362 	return err;
3363 }
3364 
3365 int
i915_gem_execbuffer2_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3366 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3367 			   struct drm_file *file)
3368 {
3369 	struct drm_i915_private *i915 = to_i915(dev);
3370 	struct drm_i915_gem_execbuffer2 *args = data;
3371 	struct drm_i915_gem_exec_object2 *exec2_list;
3372 	const size_t count = args->buffer_count;
3373 	int err;
3374 
3375 	if (!check_buffer_count(count)) {
3376 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3377 		return -EINVAL;
3378 	}
3379 
3380 	err = i915_gem_check_execbuffer(args);
3381 	if (err)
3382 		return err;
3383 
3384 	/* Allocate extra slots for use by the command parser */
3385 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3386 				    __GFP_NOWARN | GFP_KERNEL);
3387 	if (exec2_list == NULL) {
3388 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3389 			count);
3390 		return -ENOMEM;
3391 	}
3392 	if (copy_from_user(exec2_list,
3393 			   u64_to_user_ptr(args->buffers_ptr),
3394 			   sizeof(*exec2_list) * count)) {
3395 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3396 		kvfree(exec2_list);
3397 		return -EFAULT;
3398 	}
3399 
3400 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3401 
3402 	/*
3403 	 * Now that we have begun execution of the batchbuffer, we ignore
3404 	 * any new error after this point. Also given that we have already
3405 	 * updated the associated relocations, we try to write out the current
3406 	 * object locations irrespective of any error.
3407 	 */
3408 	if (args->flags & __EXEC_HAS_RELOC) {
3409 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3410 			u64_to_user_ptr(args->buffers_ptr);
3411 		unsigned int i;
3412 
3413 		/* Copy the new buffer offsets back to the user's exec list. */
3414 		/*
3415 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3416 		 * because we checked 'count' in check_buffer_count().
3417 		 *
3418 		 * And this range already got effectively checked earlier
3419 		 * when we did the "copy_from_user()" above.
3420 		 */
3421 		if (!user_write_access_begin(user_exec_list,
3422 					     count * sizeof(*user_exec_list)))
3423 			goto end;
3424 
3425 		for (i = 0; i < args->buffer_count; i++) {
3426 			if (!(exec2_list[i].offset & UPDATE))
3427 				continue;
3428 
3429 			exec2_list[i].offset =
3430 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3431 			unsafe_put_user(exec2_list[i].offset,
3432 					&user_exec_list[i].offset,
3433 					end_user);
3434 		}
3435 end_user:
3436 		user_write_access_end();
3437 end:;
3438 	}
3439 
3440 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3441 	kvfree(exec2_list);
3442 	return err;
3443 }
3444 
3445 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3446 #include "selftests/i915_gem_execbuffer.c"
3447 #endif
3448