1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51 * validate a gm address and related range size,
52 * translate it to host gm address
53 */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 if (size == 0)
57 return vgpu_gmadr_is_valid(vgpu, addr);
58
59 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 return true;
62 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 return true;
65
66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 addr, size);
68 return false;
69 }
70
71 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75
76 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 "invalid guest gmadr %llx\n", g_addr))
78 return -EACCES;
79
80 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 *h_addr = vgpu_aperture_gmadr_base(vgpu)
82 + (g_addr - vgpu_aperture_offset(vgpu));
83 else
84 *h_addr = vgpu_hidden_gmadr_base(vgpu)
85 + (g_addr - vgpu_hidden_offset(vgpu));
86 return 0;
87 }
88
89 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 "invalid host gmadr %llx\n", h_addr))
96 return -EACCES;
97
98 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 *g_addr = vgpu_aperture_gmadr_base(vgpu)
100 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 else
102 *g_addr = vgpu_hidden_gmadr_base(vgpu)
103 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 return 0;
105 }
106
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 unsigned long *h_index)
109 {
110 u64 h_addr;
111 int ret;
112
113 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 &h_addr);
115 if (ret)
116 return ret;
117
118 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 return 0;
120 }
121
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 unsigned long *g_index)
124 {
125 u64 g_addr;
126 int ret;
127
128 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 &g_addr);
130 if (ret)
131 return ret;
132
133 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 return 0;
135 }
136
137 #define gtt_type_is_entry(type) \
138 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141
142 #define gtt_type_is_pt(type) \
143 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144
145 #define gtt_type_is_pte_pt(type) \
146 (type == GTT_TYPE_PPGTT_PTE_PT)
147
148 #define gtt_type_is_root_pointer(type) \
149 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150
151 #define gtt_init_entry(e, t, p, v) do { \
152 (e)->type = t; \
153 (e)->pdev = p; \
154 memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156
157 /*
158 * Mappings between GTT_TYPE* enumerations.
159 * Following information can be found according to the given type:
160 * - type of next level page table
161 * - type of entry inside this level page table
162 * - type of entry with PSE set
163 *
164 * If the given type doesn't have such a kind of information,
165 * e.g. give a l4 root entry type, then request to get its PSE type,
166 * give a PTE page table type, then request to get its next level page
167 * table type, as we know l4 root entry doesn't have a PSE bit,
168 * and a PTE page table doesn't have a next level page table type,
169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170 * page table.
171 */
172
173 struct gtt_type_table_entry {
174 int entry_type;
175 int pt_type;
176 int next_pt_type;
177 int pse_entry_type;
178 };
179
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 [type] = { \
182 .entry_type = e_type, \
183 .pt_type = cpt_type, \
184 .next_pt_type = npt_type, \
185 .pse_entry_type = pse_type, \
186 }
187
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 GTT_TYPE_INVALID,
192 GTT_TYPE_PPGTT_PML4_PT,
193 GTT_TYPE_INVALID),
194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 GTT_TYPE_PPGTT_PML4_ENTRY,
196 GTT_TYPE_PPGTT_PML4_PT,
197 GTT_TYPE_PPGTT_PDP_PT,
198 GTT_TYPE_INVALID),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 GTT_TYPE_PPGTT_PML4_ENTRY,
201 GTT_TYPE_PPGTT_PML4_PT,
202 GTT_TYPE_PPGTT_PDP_PT,
203 GTT_TYPE_INVALID),
204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 GTT_TYPE_PPGTT_PDP_ENTRY,
206 GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDE_PT,
208 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 GTT_TYPE_INVALID,
212 GTT_TYPE_PPGTT_PDE_PT,
213 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 GTT_TYPE_PPGTT_PDP_ENTRY,
216 GTT_TYPE_PPGTT_PDP_PT,
217 GTT_TYPE_PPGTT_PDE_PT,
218 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 GTT_TYPE_PPGTT_PDE_ENTRY,
221 GTT_TYPE_PPGTT_PDE_PT,
222 GTT_TYPE_PPGTT_PTE_PT,
223 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 GTT_TYPE_PPGTT_PDE_ENTRY,
226 GTT_TYPE_PPGTT_PDE_PT,
227 GTT_TYPE_PPGTT_PTE_PT,
228 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 /* We take IPS bit as 'PSE' for PTE level. */
230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_PT,
233 GTT_TYPE_INVALID,
234 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 GTT_TYPE_PPGTT_PTE_PT,
238 GTT_TYPE_INVALID,
239 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 GTT_TYPE_PPGTT_PTE_PT,
243 GTT_TYPE_INVALID,
244 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 GTT_TYPE_PPGTT_PDE_ENTRY,
247 GTT_TYPE_PPGTT_PDE_PT,
248 GTT_TYPE_INVALID,
249 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 GTT_TYPE_PPGTT_PDP_ENTRY,
252 GTT_TYPE_PPGTT_PDP_PT,
253 GTT_TYPE_INVALID,
254 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 GTT_TYPE_GGTT_PTE,
257 GTT_TYPE_INVALID,
258 GTT_TYPE_INVALID,
259 GTT_TYPE_INVALID),
260 };
261
get_next_pt_type(int type)262 static inline int get_next_pt_type(int type)
263 {
264 return gtt_type_table[type].next_pt_type;
265 }
266
get_pt_type(int type)267 static inline int get_pt_type(int type)
268 {
269 return gtt_type_table[type].pt_type;
270 }
271
get_entry_type(int type)272 static inline int get_entry_type(int type)
273 {
274 return gtt_type_table[type].entry_type;
275 }
276
get_pse_type(int type)277 static inline int get_pse_type(int type)
278 {
279 return gtt_type_table[type].pse_entry_type;
280 }
281
read_pte64(struct i915_ggtt * ggtt,unsigned long index)282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285
286 return readq(addr);
287 }
288
ggtt_invalidate(struct intel_gt * gt)289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 mmio_hw_access_pre(gt);
292 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 mmio_hw_access_post(gt);
294 }
295
write_pte64(struct i915_ggtt * ggtt,unsigned long index,u64 pte)296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299
300 writeq(pte, addr);
301 }
302
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)303 static inline int gtt_get_entry64(void *pt,
304 struct intel_gvt_gtt_entry *e,
305 unsigned long index, bool hypervisor_access, unsigned long gpa,
306 struct intel_vgpu *vgpu)
307 {
308 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 int ret;
310
311 if (WARN_ON(info->gtt_entry_size != 8))
312 return -EINVAL;
313
314 if (hypervisor_access) {
315 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 (index << info->gtt_entry_size_shift),
317 &e->val64, 8);
318 if (WARN_ON(ret))
319 return ret;
320 } else if (!pt) {
321 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 } else {
323 e->val64 = *((u64 *)pt + index);
324 }
325 return 0;
326 }
327
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)328 static inline int gtt_set_entry64(void *pt,
329 struct intel_gvt_gtt_entry *e,
330 unsigned long index, bool hypervisor_access, unsigned long gpa,
331 struct intel_vgpu *vgpu)
332 {
333 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 int ret;
335
336 if (WARN_ON(info->gtt_entry_size != 8))
337 return -EINVAL;
338
339 if (hypervisor_access) {
340 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 (index << info->gtt_entry_size_shift),
342 &e->val64, 8);
343 if (WARN_ON(ret))
344 return ret;
345 } else if (!pt) {
346 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 } else {
348 *((u64 *)pt + index) = e->val64;
349 }
350 return 0;
351 }
352
353 #define GTT_HAW 46
354
355 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
359
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362
363 #define GTT_64K_PTE_STRIDE 16
364
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 unsigned long pfn;
368
369 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 else
376 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 return pfn;
378 }
379
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 e->val64 &= ~ADDR_1G_MASK;
384 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 e->val64 &= ~ADDR_2M_MASK;
387 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 e->val64 &= ~ADDR_64K_MASK;
390 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 } else {
392 e->val64 &= ~ADDR_4K_MASK;
393 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 }
395
396 e->val64 |= (pfn << PAGE_SHIFT);
397 }
398
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 return !!(e->val64 & _PAGE_PSE);
402 }
403
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 if (gen8_gtt_test_pse(e)) {
407 switch (e->type) {
408 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 e->val64 &= ~_PAGE_PSE;
410 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 break;
412 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 e->val64 &= ~_PAGE_PSE;
415 break;
416 default:
417 WARN_ON(1);
418 }
419 }
420 }
421
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 return false;
426
427 return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 return;
434
435 e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 /*
441 * i915 writes PDP root pointer registers without present bit,
442 * it also works, so we need to treat root pointer entry
443 * specifically.
444 */
445 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 return (e->val64 != 0);
448 else
449 return (e->val64 & _PAGE_PRESENT);
450 }
451
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 e->val64 &= ~_PAGE_PRESENT;
455 }
456
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 e->val64 |= _PAGE_PRESENT;
460 }
461
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476
477 /*
478 * Per-platform GMA routines.
479 */
gma_to_ggtt_pte_index(unsigned long gma)480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483
484 trace_gma_index(__func__, gma, x);
485 return x;
486 }
487
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 unsigned long x = (exp); \
492 trace_gma_index(__func__, gma, x); \
493 return x; \
494 }
495
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 .get_entry = gtt_get_entry64,
504 .set_entry = gtt_set_entry64,
505 .clear_present = gtt_entry_clear_present,
506 .set_present = gtt_entry_set_present,
507 .test_present = gen8_gtt_test_present,
508 .test_pse = gen8_gtt_test_pse,
509 .clear_pse = gen8_gtt_clear_pse,
510 .clear_ips = gen8_gtt_clear_ips,
511 .test_ips = gen8_gtt_test_ips,
512 .clear_64k_splited = gen8_gtt_clear_64k_splited,
513 .set_64k_splited = gen8_gtt_set_64k_splited,
514 .test_64k_splited = gen8_gtt_test_64k_splited,
515 .get_pfn = gen8_gtt_get_pfn,
516 .set_pfn = gen8_gtt_set_pfn,
517 };
518
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 .gma_to_pte_index = gen8_gma_to_pte_index,
522 .gma_to_pde_index = gen8_gma_to_pde_index,
523 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 .gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527
528 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 switch (entry->type) {
533 case GTT_TYPE_PPGTT_PDE_ENTRY:
534 case GTT_TYPE_PPGTT_PDP_ENTRY:
535 if (pte_ops->test_pse(entry))
536 entry->type = get_pse_type(entry->type);
537 break;
538 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 if (ips)
540 entry->type = get_pse_type(entry->type);
541 break;
542 default:
543 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 }
545
546 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548
549 /*
550 * MM helpers.
551 */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 struct intel_gvt_gtt_entry *entry, unsigned long index,
554 bool guest)
555 {
556 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557
558 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559
560 entry->type = mm->ppgtt_mm.root_entry_type;
561 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 mm->ppgtt_mm.shadow_pdps,
563 entry, index, false, 0, mm->vgpu);
564 update_entry_type_for_real(pte_ops, entry, false);
565 }
566
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 _ppgtt_get_root_entry(mm, entry, index, true);
571 }
572
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 _ppgtt_get_root_entry(mm, entry, index, false);
577 }
578
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 struct intel_gvt_gtt_entry *entry, unsigned long index,
581 bool guest)
582 {
583 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584
585 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 mm->ppgtt_mm.shadow_pdps,
587 entry, index, false, 0, mm->vgpu);
588 }
589
ppgtt_set_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591 struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 _ppgtt_set_root_entry(mm, entry, index, true);
594 }
595
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597 struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 _ppgtt_set_root_entry(mm, entry, index, false);
600 }
601
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603 struct intel_gvt_gtt_entry *entry, unsigned long index)
604 {
605 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
606
607 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
608
609 entry->type = GTT_TYPE_GGTT_PTE;
610 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
611 false, 0, mm->vgpu);
612 }
613
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615 struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618
619 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620
621 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
622 false, 0, mm->vgpu);
623 }
624
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626 struct intel_gvt_gtt_entry *entry, unsigned long index)
627 {
628 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
629
630 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
631
632 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
633 }
634
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636 struct intel_gvt_gtt_entry *entry, unsigned long index)
637 {
638 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
639
640 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
641
642 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
643 }
644
645 /*
646 * PPGTT shadow page table helpers.
647 */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)648 static inline int ppgtt_spt_get_entry(
649 struct intel_vgpu_ppgtt_spt *spt,
650 void *page_table, int type,
651 struct intel_gvt_gtt_entry *e, unsigned long index,
652 bool guest)
653 {
654 struct intel_gvt *gvt = spt->vgpu->gvt;
655 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
656 int ret;
657
658 e->type = get_entry_type(type);
659
660 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
661 return -EINVAL;
662
663 ret = ops->get_entry(page_table, e, index, guest,
664 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
665 spt->vgpu);
666 if (ret)
667 return ret;
668
669 update_entry_type_for_real(ops, e, guest ?
670 spt->guest_page.pde_ips : false);
671
672 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673 type, e->type, index, e->val64);
674 return 0;
675 }
676
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)677 static inline int ppgtt_spt_set_entry(
678 struct intel_vgpu_ppgtt_spt *spt,
679 void *page_table, int type,
680 struct intel_gvt_gtt_entry *e, unsigned long index,
681 bool guest)
682 {
683 struct intel_gvt *gvt = spt->vgpu->gvt;
684 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
685
686 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
687 return -EINVAL;
688
689 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690 type, e->type, index, e->val64);
691
692 return ops->set_entry(page_table, e, index, guest,
693 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
694 spt->vgpu);
695 }
696
697 #define ppgtt_get_guest_entry(spt, e, index) \
698 ppgtt_spt_get_entry(spt, NULL, \
699 spt->guest_page.type, e, index, true)
700
701 #define ppgtt_set_guest_entry(spt, e, index) \
702 ppgtt_spt_set_entry(spt, NULL, \
703 spt->guest_page.type, e, index, true)
704
705 #define ppgtt_get_shadow_entry(spt, e, index) \
706 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707 spt->shadow_page.type, e, index, false)
708
709 #define ppgtt_set_shadow_entry(spt, e, index) \
710 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711 spt->shadow_page.type, e, index, false)
712
alloc_spt(gfp_t gfp_mask)713 static void *alloc_spt(gfp_t gfp_mask)
714 {
715 struct intel_vgpu_ppgtt_spt *spt;
716
717 spt = kzalloc(sizeof(*spt), gfp_mask);
718 if (!spt)
719 return NULL;
720
721 spt->shadow_page.page = alloc_page(gfp_mask);
722 if (!spt->shadow_page.page) {
723 kfree(spt);
724 return NULL;
725 }
726 return spt;
727 }
728
free_spt(struct intel_vgpu_ppgtt_spt * spt)729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 __free_page(spt->shadow_page.page);
732 kfree(spt);
733 }
734
735 static int detach_oos_page(struct intel_vgpu *vgpu,
736 struct intel_vgpu_oos_page *oos_page);
737
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740 struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
741
742 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
743
744 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745 PCI_DMA_BIDIRECTIONAL);
746
747 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
748
749 if (spt->guest_page.gfn) {
750 if (spt->guest_page.oos_page)
751 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
752
753 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
754 }
755
756 list_del_init(&spt->post_shadow_list);
757 free_spt(spt);
758 }
759
ppgtt_free_all_spt(struct intel_vgpu * vgpu)760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
761 {
762 struct intel_vgpu_ppgtt_spt *spt, *spn;
763 struct radix_tree_iter iter;
764 LIST_HEAD(all_spt);
765 void __rcu **slot;
766
767 rcu_read_lock();
768 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769 spt = radix_tree_deref_slot(slot);
770 list_move(&spt->post_shadow_list, &all_spt);
771 }
772 rcu_read_unlock();
773
774 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
775 ppgtt_free_spt(spt);
776 }
777
778 static int ppgtt_handle_guest_write_page_table_bytes(
779 struct intel_vgpu_ppgtt_spt *spt,
780 u64 pa, void *p_data, int bytes);
781
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)782 static int ppgtt_write_protection_handler(
783 struct intel_vgpu_page_track *page_track,
784 u64 gpa, void *data, int bytes)
785 {
786 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
787
788 int ret;
789
790 if (bytes != 4 && bytes != 8)
791 return -EINVAL;
792
793 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
794 if (ret)
795 return ret;
796 return ret;
797 }
798
799 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801 struct intel_vgpu *vgpu, unsigned long gfn)
802 {
803 struct intel_vgpu_page_track *track;
804
805 track = intel_vgpu_find_page_track(vgpu, gfn);
806 if (track && track->handler == ppgtt_write_protection_handler)
807 return track->priv_data;
808
809 return NULL;
810 }
811
812 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814 struct intel_vgpu *vgpu, unsigned long mfn)
815 {
816 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
817 }
818
819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
820
821 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
824 {
825 struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
826 struct intel_vgpu_ppgtt_spt *spt = NULL;
827 dma_addr_t daddr;
828 int ret;
829
830 retry:
831 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
832 if (!spt) {
833 if (reclaim_one_ppgtt_mm(vgpu->gvt))
834 goto retry;
835
836 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837 return ERR_PTR(-ENOMEM);
838 }
839
840 spt->vgpu = vgpu;
841 atomic_set(&spt->refcount, 1);
842 INIT_LIST_HEAD(&spt->post_shadow_list);
843
844 /*
845 * Init shadow_page.
846 */
847 spt->shadow_page.type = type;
848 daddr = dma_map_page(kdev, spt->shadow_page.page,
849 0, 4096, PCI_DMA_BIDIRECTIONAL);
850 if (dma_mapping_error(kdev, daddr)) {
851 gvt_vgpu_err("fail to map dma addr\n");
852 ret = -EINVAL;
853 goto err_free_spt;
854 }
855 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
857
858 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
859 if (ret)
860 goto err_unmap_dma;
861
862 return spt;
863
864 err_unmap_dma:
865 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
866 err_free_spt:
867 free_spt(spt);
868 return ERR_PTR(ret);
869 }
870
871 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type,unsigned long gfn,bool guest_pde_ips)872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874 unsigned long gfn, bool guest_pde_ips)
875 {
876 struct intel_vgpu_ppgtt_spt *spt;
877 int ret;
878
879 spt = ppgtt_alloc_spt(vgpu, type);
880 if (IS_ERR(spt))
881 return spt;
882
883 /*
884 * Init guest_page.
885 */
886 ret = intel_vgpu_register_page_track(vgpu, gfn,
887 ppgtt_write_protection_handler, spt);
888 if (ret) {
889 ppgtt_free_spt(spt);
890 return ERR_PTR(ret);
891 }
892
893 spt->guest_page.type = type;
894 spt->guest_page.gfn = gfn;
895 spt->guest_page.pde_ips = guest_pde_ips;
896
897 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
898
899 return spt;
900 }
901
902 #define pt_entry_size_shift(spt) \
903 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
904
905 #define pt_entries(spt) \
906 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
907
908 #define for_each_present_guest_entry(spt, e, i) \
909 for (i = 0; i < pt_entries(spt); \
910 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911 if (!ppgtt_get_guest_entry(spt, e, i) && \
912 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
913
914 #define for_each_present_shadow_entry(spt, e, i) \
915 for (i = 0; i < pt_entries(spt); \
916 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917 if (!ppgtt_get_shadow_entry(spt, e, i) && \
918 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
919
920 #define for_each_shadow_entry(spt, e, i) \
921 for (i = 0; i < pt_entries(spt); \
922 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923 if (!ppgtt_get_shadow_entry(spt, e, i))
924
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
926 {
927 int v = atomic_read(&spt->refcount);
928
929 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930 atomic_inc(&spt->refcount);
931 }
932
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
934 {
935 int v = atomic_read(&spt->refcount);
936
937 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938 return atomic_dec_return(&spt->refcount);
939 }
940
941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
942
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944 struct intel_gvt_gtt_entry *e)
945 {
946 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948 struct intel_vgpu_ppgtt_spt *s;
949 enum intel_gvt_gtt_type cur_pt_type;
950
951 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
952
953 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955 cur_pt_type = get_next_pt_type(e->type);
956
957 if (!gtt_type_is_pt(cur_pt_type) ||
958 !gtt_type_is_pt(cur_pt_type + 1)) {
959 drm_WARN(&i915->drm, 1,
960 "Invalid page table type, cur_pt_type is: %d\n",
961 cur_pt_type);
962 return -EINVAL;
963 }
964
965 cur_pt_type += 1;
966
967 if (ops->get_pfn(e) ==
968 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
969 return 0;
970 }
971 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
972 if (!s) {
973 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
974 ops->get_pfn(e));
975 return -ENXIO;
976 }
977 return ppgtt_invalidate_spt(s);
978 }
979
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981 struct intel_gvt_gtt_entry *entry)
982 {
983 struct intel_vgpu *vgpu = spt->vgpu;
984 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
985 unsigned long pfn;
986 int type;
987
988 pfn = ops->get_pfn(entry);
989 type = spt->shadow_page.type;
990
991 /* Uninitialized spte or unshadowed spte. */
992 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
993 return;
994
995 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
996 }
997
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
999 {
1000 struct intel_vgpu *vgpu = spt->vgpu;
1001 struct intel_gvt_gtt_entry e;
1002 unsigned long index;
1003 int ret;
1004
1005 trace_spt_change(spt->vgpu->id, "die", spt,
1006 spt->guest_page.gfn, spt->shadow_page.type);
1007
1008 if (ppgtt_put_spt(spt) > 0)
1009 return 0;
1010
1011 for_each_present_shadow_entry(spt, &e, index) {
1012 switch (e.type) {
1013 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014 gvt_vdbg_mm("invalidate 4K entry\n");
1015 ppgtt_invalidate_pte(spt, &e);
1016 break;
1017 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018 /* We don't setup 64K shadow entry so far. */
1019 WARN(1, "suspicious 64K gtt entry\n");
1020 continue;
1021 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022 gvt_vdbg_mm("invalidate 2M entry\n");
1023 continue;
1024 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025 WARN(1, "GVT doesn't support 1GB page\n");
1026 continue;
1027 case GTT_TYPE_PPGTT_PML4_ENTRY:
1028 case GTT_TYPE_PPGTT_PDP_ENTRY:
1029 case GTT_TYPE_PPGTT_PDE_ENTRY:
1030 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031 ret = ppgtt_invalidate_spt_by_shadow_entry(
1032 spt->vgpu, &e);
1033 if (ret)
1034 goto fail;
1035 break;
1036 default:
1037 GEM_BUG_ON(1);
1038 }
1039 }
1040
1041 trace_spt_change(spt->vgpu->id, "release", spt,
1042 spt->guest_page.gfn, spt->shadow_page.type);
1043 ppgtt_free_spt(spt);
1044 return 0;
1045 fail:
1046 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047 spt, e.val64, e.type);
1048 return ret;
1049 }
1050
vgpu_ips_enabled(struct intel_vgpu * vgpu)1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052 {
1053 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054
1055 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1056 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058
1059 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060 } else if (INTEL_GEN(dev_priv) >= 11) {
1061 /* 64K paging only controlled by IPS bit in PTE now. */
1062 return true;
1063 } else
1064 return false;
1065 }
1066
1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071 {
1072 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073 struct intel_vgpu_ppgtt_spt *spt = NULL;
1074 bool ips = false;
1075 int ret;
1076
1077 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078
1079 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081
1082 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083 if (spt) {
1084 ppgtt_get_spt(spt);
1085
1086 if (ips != spt->guest_page.pde_ips) {
1087 spt->guest_page.pde_ips = ips;
1088
1089 gvt_dbg_mm("reshadow PDE since ips changed\n");
1090 clear_page(spt->shadow_page.vaddr);
1091 ret = ppgtt_populate_spt(spt);
1092 if (ret) {
1093 ppgtt_put_spt(spt);
1094 goto err;
1095 }
1096 }
1097 } else {
1098 int type = get_next_pt_type(we->type);
1099
1100 if (!gtt_type_is_pt(type)) {
1101 ret = -EINVAL;
1102 goto err;
1103 }
1104
1105 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106 if (IS_ERR(spt)) {
1107 ret = PTR_ERR(spt);
1108 goto err;
1109 }
1110
1111 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112 if (ret)
1113 goto err_free_spt;
1114
1115 ret = ppgtt_populate_spt(spt);
1116 if (ret)
1117 goto err_free_spt;
1118
1119 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120 spt->shadow_page.type);
1121 }
1122 return spt;
1123
1124 err_free_spt:
1125 ppgtt_free_spt(spt);
1126 spt = NULL;
1127 err:
1128 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129 spt, we->val64, we->type);
1130 return ERR_PTR(ret);
1131 }
1132
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135 {
1136 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137
1138 se->type = ge->type;
1139 se->val64 = ge->val64;
1140
1141 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143 ops->clear_ips(se);
1144
1145 ops->set_pfn(se, s->shadow_page.mfn);
1146 }
1147
1148 /**
1149 * Check if can do 2M page
1150 * @vgpu: target vgpu
1151 * @entry: target pfn's gtt entry
1152 *
1153 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1154 * negtive if found err.
1155 */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1156 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157 struct intel_gvt_gtt_entry *entry)
1158 {
1159 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1160 unsigned long pfn;
1161
1162 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1163 return 0;
1164
1165 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1166 if (pfn == INTEL_GVT_INVALID_ADDR)
1167 return -EINVAL;
1168
1169 return PageTransHuge(pfn_to_page(pfn));
1170 }
1171
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1172 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1173 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1174 struct intel_gvt_gtt_entry *se)
1175 {
1176 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1177 struct intel_vgpu_ppgtt_spt *sub_spt;
1178 struct intel_gvt_gtt_entry sub_se;
1179 unsigned long start_gfn;
1180 dma_addr_t dma_addr;
1181 unsigned long sub_index;
1182 int ret;
1183
1184 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1185
1186 start_gfn = ops->get_pfn(se);
1187
1188 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1189 if (IS_ERR(sub_spt))
1190 return PTR_ERR(sub_spt);
1191
1192 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1193 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1194 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1195 if (ret)
1196 goto err;
1197 sub_se.val64 = se->val64;
1198
1199 /* Copy the PAT field from PDE. */
1200 sub_se.val64 &= ~_PAGE_PAT;
1201 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1202
1203 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1204 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1205 }
1206
1207 /* Clear dirty field. */
1208 se->val64 &= ~_PAGE_DIRTY;
1209
1210 ops->clear_pse(se);
1211 ops->clear_ips(se);
1212 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1213 ppgtt_set_shadow_entry(spt, se, index);
1214 return 0;
1215 err:
1216 /* Cancel the existing addess mappings of DMA addr. */
1217 for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1218 gvt_vdbg_mm("invalidate 4K entry\n");
1219 ppgtt_invalidate_pte(sub_spt, &sub_se);
1220 }
1221 /* Release the new allocated spt. */
1222 trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1223 sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1224 ppgtt_free_spt(sub_spt);
1225 return ret;
1226 }
1227
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1228 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1229 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1230 struct intel_gvt_gtt_entry *se)
1231 {
1232 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1233 struct intel_gvt_gtt_entry entry = *se;
1234 unsigned long start_gfn;
1235 dma_addr_t dma_addr;
1236 int i, ret;
1237
1238 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1239
1240 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1241
1242 start_gfn = ops->get_pfn(se);
1243
1244 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1245 ops->set_64k_splited(&entry);
1246
1247 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1248 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1249 start_gfn + i, PAGE_SIZE, &dma_addr);
1250 if (ret)
1251 return ret;
1252
1253 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1254 ppgtt_set_shadow_entry(spt, &entry, index + i);
1255 }
1256 return 0;
1257 }
1258
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1259 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1260 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1261 struct intel_gvt_gtt_entry *ge)
1262 {
1263 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1264 struct intel_gvt_gtt_entry se = *ge;
1265 unsigned long gfn, page_size = PAGE_SIZE;
1266 dma_addr_t dma_addr;
1267 int ret;
1268
1269 if (!pte_ops->test_present(ge))
1270 return 0;
1271
1272 gfn = pte_ops->get_pfn(ge);
1273
1274 switch (ge->type) {
1275 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1276 gvt_vdbg_mm("shadow 4K gtt entry\n");
1277 break;
1278 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1279 gvt_vdbg_mm("shadow 64K gtt entry\n");
1280 /*
1281 * The layout of 64K page is special, the page size is
1282 * controlled by uper PDE. To be simple, we always split
1283 * 64K page to smaller 4K pages in shadow PT.
1284 */
1285 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1286 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1287 gvt_vdbg_mm("shadow 2M gtt entry\n");
1288 ret = is_2MB_gtt_possible(vgpu, ge);
1289 if (ret == 0)
1290 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1291 else if (ret < 0)
1292 return ret;
1293 page_size = I915_GTT_PAGE_SIZE_2M;
1294 break;
1295 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1296 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1297 return -EINVAL;
1298 default:
1299 GEM_BUG_ON(1);
1300 }
1301
1302 /* direct shadow */
1303 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1304 &dma_addr);
1305 if (ret)
1306 return -ENXIO;
1307
1308 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1309 ppgtt_set_shadow_entry(spt, &se, index);
1310 return 0;
1311 }
1312
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1313 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1314 {
1315 struct intel_vgpu *vgpu = spt->vgpu;
1316 struct intel_gvt *gvt = vgpu->gvt;
1317 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1318 struct intel_vgpu_ppgtt_spt *s;
1319 struct intel_gvt_gtt_entry se, ge;
1320 unsigned long gfn, i;
1321 int ret;
1322
1323 trace_spt_change(spt->vgpu->id, "born", spt,
1324 spt->guest_page.gfn, spt->shadow_page.type);
1325
1326 for_each_present_guest_entry(spt, &ge, i) {
1327 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1328 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1329 if (IS_ERR(s)) {
1330 ret = PTR_ERR(s);
1331 goto fail;
1332 }
1333 ppgtt_get_shadow_entry(spt, &se, i);
1334 ppgtt_generate_shadow_entry(&se, s, &ge);
1335 ppgtt_set_shadow_entry(spt, &se, i);
1336 } else {
1337 gfn = ops->get_pfn(&ge);
1338 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1339 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1340 ppgtt_set_shadow_entry(spt, &se, i);
1341 continue;
1342 }
1343
1344 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1345 if (ret)
1346 goto fail;
1347 }
1348 }
1349 return 0;
1350 fail:
1351 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1352 spt, ge.val64, ge.type);
1353 return ret;
1354 }
1355
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1356 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1357 struct intel_gvt_gtt_entry *se, unsigned long index)
1358 {
1359 struct intel_vgpu *vgpu = spt->vgpu;
1360 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1361 int ret;
1362
1363 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1364 spt->shadow_page.type, se->val64, index);
1365
1366 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1367 se->type, index, se->val64);
1368
1369 if (!ops->test_present(se))
1370 return 0;
1371
1372 if (ops->get_pfn(se) ==
1373 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1374 return 0;
1375
1376 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1377 struct intel_vgpu_ppgtt_spt *s =
1378 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1379 if (!s) {
1380 gvt_vgpu_err("fail to find guest page\n");
1381 ret = -ENXIO;
1382 goto fail;
1383 }
1384 ret = ppgtt_invalidate_spt(s);
1385 if (ret)
1386 goto fail;
1387 } else {
1388 /* We don't setup 64K shadow entry so far. */
1389 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1390 "suspicious 64K entry\n");
1391 ppgtt_invalidate_pte(spt, se);
1392 }
1393
1394 return 0;
1395 fail:
1396 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1397 spt, se->val64, se->type);
1398 return ret;
1399 }
1400
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1401 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1402 struct intel_gvt_gtt_entry *we, unsigned long index)
1403 {
1404 struct intel_vgpu *vgpu = spt->vgpu;
1405 struct intel_gvt_gtt_entry m;
1406 struct intel_vgpu_ppgtt_spt *s;
1407 int ret;
1408
1409 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1410 we->val64, index);
1411
1412 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1413 we->type, index, we->val64);
1414
1415 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1416 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1417 if (IS_ERR(s)) {
1418 ret = PTR_ERR(s);
1419 goto fail;
1420 }
1421 ppgtt_get_shadow_entry(spt, &m, index);
1422 ppgtt_generate_shadow_entry(&m, s, we);
1423 ppgtt_set_shadow_entry(spt, &m, index);
1424 } else {
1425 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1426 if (ret)
1427 goto fail;
1428 }
1429 return 0;
1430 fail:
1431 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1432 spt, we->val64, we->type);
1433 return ret;
1434 }
1435
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1436 static int sync_oos_page(struct intel_vgpu *vgpu,
1437 struct intel_vgpu_oos_page *oos_page)
1438 {
1439 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1440 struct intel_gvt *gvt = vgpu->gvt;
1441 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1442 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1443 struct intel_gvt_gtt_entry old, new;
1444 int index;
1445 int ret;
1446
1447 trace_oos_change(vgpu->id, "sync", oos_page->id,
1448 spt, spt->guest_page.type);
1449
1450 old.type = new.type = get_entry_type(spt->guest_page.type);
1451 old.val64 = new.val64 = 0;
1452
1453 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1454 info->gtt_entry_size_shift); index++) {
1455 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1456 ops->get_entry(NULL, &new, index, true,
1457 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1458
1459 if (old.val64 == new.val64
1460 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1461 continue;
1462
1463 trace_oos_sync(vgpu->id, oos_page->id,
1464 spt, spt->guest_page.type,
1465 new.val64, index);
1466
1467 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1468 if (ret)
1469 return ret;
1470
1471 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1472 }
1473
1474 spt->guest_page.write_cnt = 0;
1475 list_del_init(&spt->post_shadow_list);
1476 return 0;
1477 }
1478
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1479 static int detach_oos_page(struct intel_vgpu *vgpu,
1480 struct intel_vgpu_oos_page *oos_page)
1481 {
1482 struct intel_gvt *gvt = vgpu->gvt;
1483 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1484
1485 trace_oos_change(vgpu->id, "detach", oos_page->id,
1486 spt, spt->guest_page.type);
1487
1488 spt->guest_page.write_cnt = 0;
1489 spt->guest_page.oos_page = NULL;
1490 oos_page->spt = NULL;
1491
1492 list_del_init(&oos_page->vm_list);
1493 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1494
1495 return 0;
1496 }
1497
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1498 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1499 struct intel_vgpu_ppgtt_spt *spt)
1500 {
1501 struct intel_gvt *gvt = spt->vgpu->gvt;
1502 int ret;
1503
1504 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1505 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1506 oos_page->mem, I915_GTT_PAGE_SIZE);
1507 if (ret)
1508 return ret;
1509
1510 oos_page->spt = spt;
1511 spt->guest_page.oos_page = oos_page;
1512
1513 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1514
1515 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1516 spt, spt->guest_page.type);
1517 return 0;
1518 }
1519
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1520 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1521 {
1522 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1523 int ret;
1524
1525 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1526 if (ret)
1527 return ret;
1528
1529 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1530 spt, spt->guest_page.type);
1531
1532 list_del_init(&oos_page->vm_list);
1533 return sync_oos_page(spt->vgpu, oos_page);
1534 }
1535
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1536 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1537 {
1538 struct intel_gvt *gvt = spt->vgpu->gvt;
1539 struct intel_gvt_gtt *gtt = &gvt->gtt;
1540 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1541 int ret;
1542
1543 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1544
1545 if (list_empty(>t->oos_page_free_list_head)) {
1546 oos_page = container_of(gtt->oos_page_use_list_head.next,
1547 struct intel_vgpu_oos_page, list);
1548 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1549 if (ret)
1550 return ret;
1551 ret = detach_oos_page(spt->vgpu, oos_page);
1552 if (ret)
1553 return ret;
1554 } else
1555 oos_page = container_of(gtt->oos_page_free_list_head.next,
1556 struct intel_vgpu_oos_page, list);
1557 return attach_oos_page(oos_page, spt);
1558 }
1559
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1560 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1561 {
1562 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1563
1564 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1565 return -EINVAL;
1566
1567 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1568 spt, spt->guest_page.type);
1569
1570 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1571 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1572 }
1573
1574 /**
1575 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1576 * @vgpu: a vGPU
1577 *
1578 * This function is called before submitting a guest workload to host,
1579 * to sync all the out-of-synced shadow for vGPU
1580 *
1581 * Returns:
1582 * Zero on success, negative error code if failed.
1583 */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1584 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1585 {
1586 struct list_head *pos, *n;
1587 struct intel_vgpu_oos_page *oos_page;
1588 int ret;
1589
1590 if (!enable_out_of_sync)
1591 return 0;
1592
1593 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1594 oos_page = container_of(pos,
1595 struct intel_vgpu_oos_page, vm_list);
1596 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1597 if (ret)
1598 return ret;
1599 }
1600 return 0;
1601 }
1602
1603 /*
1604 * The heart of PPGTT shadow page table.
1605 */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1606 static int ppgtt_handle_guest_write_page_table(
1607 struct intel_vgpu_ppgtt_spt *spt,
1608 struct intel_gvt_gtt_entry *we, unsigned long index)
1609 {
1610 struct intel_vgpu *vgpu = spt->vgpu;
1611 int type = spt->shadow_page.type;
1612 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1613 struct intel_gvt_gtt_entry old_se;
1614 int new_present;
1615 int i, ret;
1616
1617 new_present = ops->test_present(we);
1618
1619 /*
1620 * Adding the new entry first and then removing the old one, that can
1621 * guarantee the ppgtt table is validated during the window between
1622 * adding and removal.
1623 */
1624 ppgtt_get_shadow_entry(spt, &old_se, index);
1625
1626 if (new_present) {
1627 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1628 if (ret)
1629 goto fail;
1630 }
1631
1632 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1633 if (ret)
1634 goto fail;
1635
1636 if (!new_present) {
1637 /* For 64KB splited entries, we need clear them all. */
1638 if (ops->test_64k_splited(&old_se) &&
1639 !(index % GTT_64K_PTE_STRIDE)) {
1640 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1641 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1642 ops->clear_64k_splited(&old_se);
1643 ops->set_pfn(&old_se,
1644 vgpu->gtt.scratch_pt[type].page_mfn);
1645 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1646 }
1647 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1648 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1649 ops->clear_pse(&old_se);
1650 ops->set_pfn(&old_se,
1651 vgpu->gtt.scratch_pt[type].page_mfn);
1652 ppgtt_set_shadow_entry(spt, &old_se, index);
1653 } else {
1654 ops->set_pfn(&old_se,
1655 vgpu->gtt.scratch_pt[type].page_mfn);
1656 ppgtt_set_shadow_entry(spt, &old_se, index);
1657 }
1658 }
1659
1660 return 0;
1661 fail:
1662 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1663 spt, we->val64, we->type);
1664 return ret;
1665 }
1666
1667
1668
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1669 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1670 {
1671 return enable_out_of_sync
1672 && gtt_type_is_pte_pt(spt->guest_page.type)
1673 && spt->guest_page.write_cnt >= 2;
1674 }
1675
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1676 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1677 unsigned long index)
1678 {
1679 set_bit(index, spt->post_shadow_bitmap);
1680 if (!list_empty(&spt->post_shadow_list))
1681 return;
1682
1683 list_add_tail(&spt->post_shadow_list,
1684 &spt->vgpu->gtt.post_shadow_list_head);
1685 }
1686
1687 /**
1688 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1689 * @vgpu: a vGPU
1690 *
1691 * This function is called before submitting a guest workload to host,
1692 * to flush all the post shadows for a vGPU.
1693 *
1694 * Returns:
1695 * Zero on success, negative error code if failed.
1696 */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1697 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1698 {
1699 struct list_head *pos, *n;
1700 struct intel_vgpu_ppgtt_spt *spt;
1701 struct intel_gvt_gtt_entry ge;
1702 unsigned long index;
1703 int ret;
1704
1705 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1706 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1707 post_shadow_list);
1708
1709 for_each_set_bit(index, spt->post_shadow_bitmap,
1710 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1711 ppgtt_get_guest_entry(spt, &ge, index);
1712
1713 ret = ppgtt_handle_guest_write_page_table(spt,
1714 &ge, index);
1715 if (ret)
1716 return ret;
1717 clear_bit(index, spt->post_shadow_bitmap);
1718 }
1719 list_del_init(&spt->post_shadow_list);
1720 }
1721 return 0;
1722 }
1723
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1724 static int ppgtt_handle_guest_write_page_table_bytes(
1725 struct intel_vgpu_ppgtt_spt *spt,
1726 u64 pa, void *p_data, int bytes)
1727 {
1728 struct intel_vgpu *vgpu = spt->vgpu;
1729 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1730 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1731 struct intel_gvt_gtt_entry we, se;
1732 unsigned long index;
1733 int ret;
1734
1735 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1736
1737 ppgtt_get_guest_entry(spt, &we, index);
1738
1739 /*
1740 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1741 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1742 * ignored.
1743 */
1744 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1745 (index % GTT_64K_PTE_STRIDE)) {
1746 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1747 index);
1748 return 0;
1749 }
1750
1751 if (bytes == info->gtt_entry_size) {
1752 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1753 if (ret)
1754 return ret;
1755 } else {
1756 if (!test_bit(index, spt->post_shadow_bitmap)) {
1757 int type = spt->shadow_page.type;
1758
1759 ppgtt_get_shadow_entry(spt, &se, index);
1760 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1761 if (ret)
1762 return ret;
1763 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1764 ppgtt_set_shadow_entry(spt, &se, index);
1765 }
1766 ppgtt_set_post_shadow(spt, index);
1767 }
1768
1769 if (!enable_out_of_sync)
1770 return 0;
1771
1772 spt->guest_page.write_cnt++;
1773
1774 if (spt->guest_page.oos_page)
1775 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1776 false, 0, vgpu);
1777
1778 if (can_do_out_of_sync(spt)) {
1779 if (!spt->guest_page.oos_page)
1780 ppgtt_allocate_oos_page(spt);
1781
1782 ret = ppgtt_set_guest_page_oos(spt);
1783 if (ret < 0)
1784 return ret;
1785 }
1786 return 0;
1787 }
1788
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1789 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1790 {
1791 struct intel_vgpu *vgpu = mm->vgpu;
1792 struct intel_gvt *gvt = vgpu->gvt;
1793 struct intel_gvt_gtt *gtt = &gvt->gtt;
1794 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1795 struct intel_gvt_gtt_entry se;
1796 int index;
1797
1798 if (!mm->ppgtt_mm.shadowed)
1799 return;
1800
1801 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1802 ppgtt_get_shadow_root_entry(mm, &se, index);
1803
1804 if (!ops->test_present(&se))
1805 continue;
1806
1807 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1808 se.val64 = 0;
1809 ppgtt_set_shadow_root_entry(mm, &se, index);
1810
1811 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1812 NULL, se.type, se.val64, index);
1813 }
1814
1815 mm->ppgtt_mm.shadowed = false;
1816 }
1817
1818
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1819 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1820 {
1821 struct intel_vgpu *vgpu = mm->vgpu;
1822 struct intel_gvt *gvt = vgpu->gvt;
1823 struct intel_gvt_gtt *gtt = &gvt->gtt;
1824 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1825 struct intel_vgpu_ppgtt_spt *spt;
1826 struct intel_gvt_gtt_entry ge, se;
1827 int index, ret;
1828
1829 if (mm->ppgtt_mm.shadowed)
1830 return 0;
1831
1832 mm->ppgtt_mm.shadowed = true;
1833
1834 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1835 ppgtt_get_guest_root_entry(mm, &ge, index);
1836
1837 if (!ops->test_present(&ge))
1838 continue;
1839
1840 trace_spt_guest_change(vgpu->id, __func__, NULL,
1841 ge.type, ge.val64, index);
1842
1843 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1844 if (IS_ERR(spt)) {
1845 gvt_vgpu_err("fail to populate guest root pointer\n");
1846 ret = PTR_ERR(spt);
1847 goto fail;
1848 }
1849 ppgtt_generate_shadow_entry(&se, spt, &ge);
1850 ppgtt_set_shadow_root_entry(mm, &se, index);
1851
1852 trace_spt_guest_change(vgpu->id, "populate root pointer",
1853 NULL, se.type, se.val64, index);
1854 }
1855
1856 return 0;
1857 fail:
1858 invalidate_ppgtt_mm(mm);
1859 return ret;
1860 }
1861
vgpu_alloc_mm(struct intel_vgpu * vgpu)1862 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1863 {
1864 struct intel_vgpu_mm *mm;
1865
1866 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1867 if (!mm)
1868 return NULL;
1869
1870 mm->vgpu = vgpu;
1871 kref_init(&mm->ref);
1872 atomic_set(&mm->pincount, 0);
1873
1874 return mm;
1875 }
1876
vgpu_free_mm(struct intel_vgpu_mm * mm)1877 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1878 {
1879 kfree(mm);
1880 }
1881
1882 /**
1883 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1884 * @vgpu: a vGPU
1885 * @root_entry_type: ppgtt root entry type
1886 * @pdps: guest pdps.
1887 *
1888 * This function is used to create a ppgtt mm object for a vGPU.
1889 *
1890 * Returns:
1891 * Zero on success, negative error code in pointer if failed.
1892 */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])1893 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1894 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1895 {
1896 struct intel_gvt *gvt = vgpu->gvt;
1897 struct intel_vgpu_mm *mm;
1898 int ret;
1899
1900 mm = vgpu_alloc_mm(vgpu);
1901 if (!mm)
1902 return ERR_PTR(-ENOMEM);
1903
1904 mm->type = INTEL_GVT_MM_PPGTT;
1905
1906 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1907 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1908 mm->ppgtt_mm.root_entry_type = root_entry_type;
1909
1910 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1911 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1912 INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1913
1914 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1915 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1916 else
1917 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1918 sizeof(mm->ppgtt_mm.guest_pdps));
1919
1920 ret = shadow_ppgtt_mm(mm);
1921 if (ret) {
1922 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1923 vgpu_free_mm(mm);
1924 return ERR_PTR(ret);
1925 }
1926
1927 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1928
1929 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1930 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1931 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1932
1933 return mm;
1934 }
1935
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1936 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1937 {
1938 struct intel_vgpu_mm *mm;
1939 unsigned long nr_entries;
1940
1941 mm = vgpu_alloc_mm(vgpu);
1942 if (!mm)
1943 return ERR_PTR(-ENOMEM);
1944
1945 mm->type = INTEL_GVT_MM_GGTT;
1946
1947 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1948 mm->ggtt_mm.virtual_ggtt =
1949 vzalloc(array_size(nr_entries,
1950 vgpu->gvt->device_info.gtt_entry_size));
1951 if (!mm->ggtt_mm.virtual_ggtt) {
1952 vgpu_free_mm(mm);
1953 return ERR_PTR(-ENOMEM);
1954 }
1955
1956 return mm;
1957 }
1958
1959 /**
1960 * _intel_vgpu_mm_release - destroy a mm object
1961 * @mm_ref: a kref object
1962 *
1963 * This function is used to destroy a mm object for vGPU
1964 *
1965 */
_intel_vgpu_mm_release(struct kref * mm_ref)1966 void _intel_vgpu_mm_release(struct kref *mm_ref)
1967 {
1968 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1969
1970 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1971 gvt_err("vgpu mm pin count bug detected\n");
1972
1973 if (mm->type == INTEL_GVT_MM_PPGTT) {
1974 list_del(&mm->ppgtt_mm.list);
1975
1976 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1977 list_del(&mm->ppgtt_mm.lru_list);
1978 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1979
1980 invalidate_ppgtt_mm(mm);
1981 } else {
1982 vfree(mm->ggtt_mm.virtual_ggtt);
1983 }
1984
1985 vgpu_free_mm(mm);
1986 }
1987
1988 /**
1989 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1990 * @mm: a vGPU mm object
1991 *
1992 * This function is called when user doesn't want to use a vGPU mm object
1993 */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)1994 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1995 {
1996 atomic_dec_if_positive(&mm->pincount);
1997 }
1998
1999 /**
2000 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2001 * @mm: target vgpu mm
2002 *
2003 * This function is called when user wants to use a vGPU mm object. If this
2004 * mm object hasn't been shadowed yet, the shadow will be populated at this
2005 * time.
2006 *
2007 * Returns:
2008 * Zero on success, negative error code if failed.
2009 */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)2010 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2011 {
2012 int ret;
2013
2014 atomic_inc(&mm->pincount);
2015
2016 if (mm->type == INTEL_GVT_MM_PPGTT) {
2017 ret = shadow_ppgtt_mm(mm);
2018 if (ret)
2019 return ret;
2020
2021 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2022 list_move_tail(&mm->ppgtt_mm.lru_list,
2023 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2024 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2025 }
2026
2027 return 0;
2028 }
2029
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)2030 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2031 {
2032 struct intel_vgpu_mm *mm;
2033 struct list_head *pos, *n;
2034
2035 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2036
2037 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2038 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2039
2040 if (atomic_read(&mm->pincount))
2041 continue;
2042
2043 list_del_init(&mm->ppgtt_mm.lru_list);
2044 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2045 invalidate_ppgtt_mm(mm);
2046 return 1;
2047 }
2048 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2049 return 0;
2050 }
2051
2052 /*
2053 * GMA translation APIs.
2054 */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)2055 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2056 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2057 {
2058 struct intel_vgpu *vgpu = mm->vgpu;
2059 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2060 struct intel_vgpu_ppgtt_spt *s;
2061
2062 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2063 if (!s)
2064 return -ENXIO;
2065
2066 if (!guest)
2067 ppgtt_get_shadow_entry(s, e, index);
2068 else
2069 ppgtt_get_guest_entry(s, e, index);
2070 return 0;
2071 }
2072
2073 /**
2074 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2075 * @mm: mm object. could be a PPGTT or GGTT mm object
2076 * @gma: graphics memory address in this mm object
2077 *
2078 * This function is used to translate a graphics memory address in specific
2079 * graphics memory space to guest physical address.
2080 *
2081 * Returns:
2082 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2083 */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2084 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2085 {
2086 struct intel_vgpu *vgpu = mm->vgpu;
2087 struct intel_gvt *gvt = vgpu->gvt;
2088 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2089 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2090 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2091 unsigned long gma_index[4];
2092 struct intel_gvt_gtt_entry e;
2093 int i, levels = 0;
2094 int ret;
2095
2096 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2097 mm->type != INTEL_GVT_MM_PPGTT);
2098
2099 if (mm->type == INTEL_GVT_MM_GGTT) {
2100 if (!vgpu_gmadr_is_valid(vgpu, gma))
2101 goto err;
2102
2103 ggtt_get_guest_entry(mm, &e,
2104 gma_ops->gma_to_ggtt_pte_index(gma));
2105
2106 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2107 + (gma & ~I915_GTT_PAGE_MASK);
2108
2109 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2110 } else {
2111 switch (mm->ppgtt_mm.root_entry_type) {
2112 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2113 ppgtt_get_shadow_root_entry(mm, &e, 0);
2114
2115 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2116 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2117 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2118 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2119 levels = 4;
2120 break;
2121 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2122 ppgtt_get_shadow_root_entry(mm, &e,
2123 gma_ops->gma_to_l3_pdp_index(gma));
2124
2125 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2126 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2127 levels = 2;
2128 break;
2129 default:
2130 GEM_BUG_ON(1);
2131 }
2132
2133 /* walk the shadow page table and get gpa from guest entry */
2134 for (i = 0; i < levels; i++) {
2135 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2136 (i == levels - 1));
2137 if (ret)
2138 goto err;
2139
2140 if (!pte_ops->test_present(&e)) {
2141 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2142 goto err;
2143 }
2144 }
2145
2146 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2147 (gma & ~I915_GTT_PAGE_MASK);
2148 trace_gma_translate(vgpu->id, "ppgtt", 0,
2149 mm->ppgtt_mm.root_entry_type, gma, gpa);
2150 }
2151
2152 return gpa;
2153 err:
2154 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2155 return INTEL_GVT_INVALID_ADDR;
2156 }
2157
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2158 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2159 unsigned int off, void *p_data, unsigned int bytes)
2160 {
2161 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2162 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2163 unsigned long index = off >> info->gtt_entry_size_shift;
2164 unsigned long gma;
2165 struct intel_gvt_gtt_entry e;
2166
2167 if (bytes != 4 && bytes != 8)
2168 return -EINVAL;
2169
2170 gma = index << I915_GTT_PAGE_SHIFT;
2171 if (!intel_gvt_ggtt_validate_range(vgpu,
2172 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2173 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2174 memset(p_data, 0, bytes);
2175 return 0;
2176 }
2177
2178 ggtt_get_guest_entry(ggtt_mm, &e, index);
2179 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2180 bytes);
2181 return 0;
2182 }
2183
2184 /**
2185 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2186 * @vgpu: a vGPU
2187 * @off: register offset
2188 * @p_data: data will be returned to guest
2189 * @bytes: data length
2190 *
2191 * This function is used to emulate the GTT MMIO register read
2192 *
2193 * Returns:
2194 * Zero on success, error code if failed.
2195 */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2196 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2197 void *p_data, unsigned int bytes)
2198 {
2199 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2200 int ret;
2201
2202 if (bytes != 4 && bytes != 8)
2203 return -EINVAL;
2204
2205 off -= info->gtt_start_offset;
2206 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2207 return ret;
2208 }
2209
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2210 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2211 struct intel_gvt_gtt_entry *entry)
2212 {
2213 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2214 unsigned long pfn;
2215
2216 pfn = pte_ops->get_pfn(entry);
2217 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2218 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2219 pfn << PAGE_SHIFT);
2220 }
2221
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2222 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2223 void *p_data, unsigned int bytes)
2224 {
2225 struct intel_gvt *gvt = vgpu->gvt;
2226 const struct intel_gvt_device_info *info = &gvt->device_info;
2227 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2228 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2229 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2230 unsigned long gma, gfn;
2231 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2232 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2233 dma_addr_t dma_addr;
2234 int ret;
2235 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2236 bool partial_update = false;
2237
2238 if (bytes != 4 && bytes != 8)
2239 return -EINVAL;
2240
2241 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2242
2243 /* the VM may configure the whole GM space when ballooning is used */
2244 if (!vgpu_gmadr_is_valid(vgpu, gma))
2245 return 0;
2246
2247 e.type = GTT_TYPE_GGTT_PTE;
2248 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2249 bytes);
2250
2251 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2252 * write, save the first 4 bytes in a list and update virtual
2253 * PTE. Only update shadow PTE when the second 4 bytes comes.
2254 */
2255 if (bytes < info->gtt_entry_size) {
2256 bool found = false;
2257
2258 list_for_each_entry_safe(pos, n,
2259 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2260 if (g_gtt_index == pos->offset >>
2261 info->gtt_entry_size_shift) {
2262 if (off != pos->offset) {
2263 /* the second partial part*/
2264 int last_off = pos->offset &
2265 (info->gtt_entry_size - 1);
2266
2267 memcpy((void *)&e.val64 + last_off,
2268 (void *)&pos->data + last_off,
2269 bytes);
2270
2271 list_del(&pos->list);
2272 kfree(pos);
2273 found = true;
2274 break;
2275 }
2276
2277 /* update of the first partial part */
2278 pos->data = e.val64;
2279 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2280 return 0;
2281 }
2282 }
2283
2284 if (!found) {
2285 /* the first partial part */
2286 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2287 if (!partial_pte)
2288 return -ENOMEM;
2289 partial_pte->offset = off;
2290 partial_pte->data = e.val64;
2291 list_add_tail(&partial_pte->list,
2292 &ggtt_mm->ggtt_mm.partial_pte_list);
2293 partial_update = true;
2294 }
2295 }
2296
2297 if (!partial_update && (ops->test_present(&e))) {
2298 gfn = ops->get_pfn(&e);
2299 m.val64 = e.val64;
2300 m.type = e.type;
2301
2302 /* one PTE update may be issued in multiple writes and the
2303 * first write may not construct a valid gfn
2304 */
2305 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2306 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2307 goto out;
2308 }
2309
2310 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2311 PAGE_SIZE, &dma_addr);
2312 if (ret) {
2313 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2314 /* guest driver may read/write the entry when partial
2315 * update the entry in this situation p2m will fail
2316 * settting the shadow entry to point to a scratch page
2317 */
2318 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2319 } else
2320 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2321 } else {
2322 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2323 ops->clear_present(&m);
2324 }
2325
2326 out:
2327 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2328
2329 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2330 ggtt_invalidate_pte(vgpu, &e);
2331
2332 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2333 ggtt_invalidate(gvt->gt);
2334 return 0;
2335 }
2336
2337 /*
2338 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2339 * @vgpu: a vGPU
2340 * @off: register offset
2341 * @p_data: data from guest write
2342 * @bytes: data length
2343 *
2344 * This function is used to emulate the GTT MMIO register write
2345 *
2346 * Returns:
2347 * Zero on success, error code if failed.
2348 */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2349 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2350 unsigned int off, void *p_data, unsigned int bytes)
2351 {
2352 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2353 int ret;
2354 struct intel_vgpu_submission *s = &vgpu->submission;
2355 struct intel_engine_cs *engine;
2356 int i;
2357
2358 if (bytes != 4 && bytes != 8)
2359 return -EINVAL;
2360
2361 off -= info->gtt_start_offset;
2362 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2363
2364 /* if ggtt of last submitted context is written,
2365 * that context is probably got unpinned.
2366 * Set last shadowed ctx to invalid.
2367 */
2368 for_each_engine(engine, vgpu->gvt->gt, i) {
2369 if (!s->last_ctx[i].valid)
2370 continue;
2371
2372 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2373 s->last_ctx[i].valid = false;
2374 }
2375 return ret;
2376 }
2377
alloc_scratch_pages(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)2378 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2379 enum intel_gvt_gtt_type type)
2380 {
2381 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2382 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2383 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2384 int page_entry_num = I915_GTT_PAGE_SIZE >>
2385 vgpu->gvt->device_info.gtt_entry_size_shift;
2386 void *scratch_pt;
2387 int i;
2388 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2389 dma_addr_t daddr;
2390
2391 if (drm_WARN_ON(&i915->drm,
2392 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2393 return -EINVAL;
2394
2395 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2396 if (!scratch_pt) {
2397 gvt_vgpu_err("fail to allocate scratch page\n");
2398 return -ENOMEM;
2399 }
2400
2401 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2402 4096, PCI_DMA_BIDIRECTIONAL);
2403 if (dma_mapping_error(dev, daddr)) {
2404 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2405 __free_page(virt_to_page(scratch_pt));
2406 return -ENOMEM;
2407 }
2408 gtt->scratch_pt[type].page_mfn =
2409 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2410 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2411 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2412 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2413
2414 /* Build the tree by full filled the scratch pt with the entries which
2415 * point to the next level scratch pt or scratch page. The
2416 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2417 * 'type' pt.
2418 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2419 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2420 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2421 */
2422 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2423 struct intel_gvt_gtt_entry se;
2424
2425 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2426 se.type = get_entry_type(type - 1);
2427 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2428
2429 /* The entry parameters like present/writeable/cache type
2430 * set to the same as i915's scratch page tree.
2431 */
2432 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2433 if (type == GTT_TYPE_PPGTT_PDE_PT)
2434 se.val64 |= PPAT_CACHED;
2435
2436 for (i = 0; i < page_entry_num; i++)
2437 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2438 }
2439
2440 return 0;
2441 }
2442
release_scratch_page_tree(struct intel_vgpu * vgpu)2443 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2444 {
2445 int i;
2446 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2447 dma_addr_t daddr;
2448
2449 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2450 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2451 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2452 I915_GTT_PAGE_SHIFT);
2453 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2454 __free_page(vgpu->gtt.scratch_pt[i].page);
2455 vgpu->gtt.scratch_pt[i].page = NULL;
2456 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2457 }
2458 }
2459
2460 return 0;
2461 }
2462
create_scratch_page_tree(struct intel_vgpu * vgpu)2463 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2464 {
2465 int i, ret;
2466
2467 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2468 ret = alloc_scratch_pages(vgpu, i);
2469 if (ret)
2470 goto err;
2471 }
2472
2473 return 0;
2474
2475 err:
2476 release_scratch_page_tree(vgpu);
2477 return ret;
2478 }
2479
2480 /**
2481 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2482 * @vgpu: a vGPU
2483 *
2484 * This function is used to initialize per-vGPU graphics memory virtualization
2485 * components.
2486 *
2487 * Returns:
2488 * Zero on success, error code if failed.
2489 */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2490 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2491 {
2492 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2493
2494 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2495
2496 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2497 INIT_LIST_HEAD(>t->oos_page_list_head);
2498 INIT_LIST_HEAD(>t->post_shadow_list_head);
2499
2500 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2501 if (IS_ERR(gtt->ggtt_mm)) {
2502 gvt_vgpu_err("fail to create mm for ggtt.\n");
2503 return PTR_ERR(gtt->ggtt_mm);
2504 }
2505
2506 intel_vgpu_reset_ggtt(vgpu, false);
2507
2508 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2509
2510 return create_scratch_page_tree(vgpu);
2511 }
2512
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2513 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2514 {
2515 struct list_head *pos, *n;
2516 struct intel_vgpu_mm *mm;
2517
2518 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2519 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2520 intel_vgpu_destroy_mm(mm);
2521 }
2522
2523 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2524 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2525
2526 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2527 gvt_err("Why we still has spt not freed?\n");
2528 ppgtt_free_all_spt(vgpu);
2529 }
2530 }
2531
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2532 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2533 {
2534 struct intel_gvt_partial_pte *pos, *next;
2535
2536 list_for_each_entry_safe(pos, next,
2537 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2538 list) {
2539 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2540 pos->offset, pos->data);
2541 kfree(pos);
2542 }
2543 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2544 vgpu->gtt.ggtt_mm = NULL;
2545 }
2546
2547 /**
2548 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2549 * @vgpu: a vGPU
2550 *
2551 * This function is used to clean up per-vGPU graphics memory virtualization
2552 * components.
2553 *
2554 * Returns:
2555 * Zero on success, error code if failed.
2556 */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2557 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2558 {
2559 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2560 intel_vgpu_destroy_ggtt_mm(vgpu);
2561 release_scratch_page_tree(vgpu);
2562 }
2563
clean_spt_oos(struct intel_gvt * gvt)2564 static void clean_spt_oos(struct intel_gvt *gvt)
2565 {
2566 struct intel_gvt_gtt *gtt = &gvt->gtt;
2567 struct list_head *pos, *n;
2568 struct intel_vgpu_oos_page *oos_page;
2569
2570 WARN(!list_empty(>t->oos_page_use_list_head),
2571 "someone is still using oos page\n");
2572
2573 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2574 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2575 list_del(&oos_page->list);
2576 free_page((unsigned long)oos_page->mem);
2577 kfree(oos_page);
2578 }
2579 }
2580
setup_spt_oos(struct intel_gvt * gvt)2581 static int setup_spt_oos(struct intel_gvt *gvt)
2582 {
2583 struct intel_gvt_gtt *gtt = &gvt->gtt;
2584 struct intel_vgpu_oos_page *oos_page;
2585 int i;
2586 int ret;
2587
2588 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2589 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2590
2591 for (i = 0; i < preallocated_oos_pages; i++) {
2592 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2593 if (!oos_page) {
2594 ret = -ENOMEM;
2595 goto fail;
2596 }
2597 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2598 if (!oos_page->mem) {
2599 ret = -ENOMEM;
2600 kfree(oos_page);
2601 goto fail;
2602 }
2603
2604 INIT_LIST_HEAD(&oos_page->list);
2605 INIT_LIST_HEAD(&oos_page->vm_list);
2606 oos_page->id = i;
2607 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2608 }
2609
2610 gvt_dbg_mm("%d oos pages preallocated\n", i);
2611
2612 return 0;
2613 fail:
2614 clean_spt_oos(gvt);
2615 return ret;
2616 }
2617
2618 /**
2619 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2620 * @vgpu: a vGPU
2621 * @pdps: pdp root array
2622 *
2623 * This function is used to find a PPGTT mm object from mm object pool
2624 *
2625 * Returns:
2626 * pointer to mm object on success, NULL if failed.
2627 */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2628 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2629 u64 pdps[])
2630 {
2631 struct intel_vgpu_mm *mm;
2632 struct list_head *pos;
2633
2634 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2635 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2636
2637 switch (mm->ppgtt_mm.root_entry_type) {
2638 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2639 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2640 return mm;
2641 break;
2642 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2643 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2644 sizeof(mm->ppgtt_mm.guest_pdps)))
2645 return mm;
2646 break;
2647 default:
2648 GEM_BUG_ON(1);
2649 }
2650 }
2651 return NULL;
2652 }
2653
2654 /**
2655 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2656 * @vgpu: a vGPU
2657 * @root_entry_type: ppgtt root entry type
2658 * @pdps: guest pdps
2659 *
2660 * This function is used to find or create a PPGTT mm object from a guest.
2661 *
2662 * Returns:
2663 * Zero on success, negative error code if failed.
2664 */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])2665 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2666 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2667 {
2668 struct intel_vgpu_mm *mm;
2669
2670 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2671 if (mm) {
2672 intel_vgpu_mm_get(mm);
2673 } else {
2674 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2675 if (IS_ERR(mm))
2676 gvt_vgpu_err("fail to create mm\n");
2677 }
2678 return mm;
2679 }
2680
2681 /**
2682 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2683 * @vgpu: a vGPU
2684 * @pdps: guest pdps
2685 *
2686 * This function is used to find a PPGTT mm object from a guest and destroy it.
2687 *
2688 * Returns:
2689 * Zero on success, negative error code if failed.
2690 */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2691 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2692 {
2693 struct intel_vgpu_mm *mm;
2694
2695 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2696 if (!mm) {
2697 gvt_vgpu_err("fail to find ppgtt instance.\n");
2698 return -EINVAL;
2699 }
2700 intel_vgpu_mm_put(mm);
2701 return 0;
2702 }
2703
2704 /**
2705 * intel_gvt_init_gtt - initialize mm components of a GVT device
2706 * @gvt: GVT device
2707 *
2708 * This function is called at the initialization stage, to initialize
2709 * the mm components of a GVT device.
2710 *
2711 * Returns:
2712 * zero on success, negative error code if failed.
2713 */
intel_gvt_init_gtt(struct intel_gvt * gvt)2714 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2715 {
2716 int ret;
2717 void *page;
2718 struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2719 dma_addr_t daddr;
2720
2721 gvt_dbg_core("init gtt\n");
2722
2723 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2724 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2725
2726 page = (void *)get_zeroed_page(GFP_KERNEL);
2727 if (!page) {
2728 gvt_err("fail to allocate scratch ggtt page\n");
2729 return -ENOMEM;
2730 }
2731
2732 daddr = dma_map_page(dev, virt_to_page(page), 0,
2733 4096, PCI_DMA_BIDIRECTIONAL);
2734 if (dma_mapping_error(dev, daddr)) {
2735 gvt_err("fail to dmamap scratch ggtt page\n");
2736 __free_page(virt_to_page(page));
2737 return -ENOMEM;
2738 }
2739
2740 gvt->gtt.scratch_page = virt_to_page(page);
2741 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2742
2743 if (enable_out_of_sync) {
2744 ret = setup_spt_oos(gvt);
2745 if (ret) {
2746 gvt_err("fail to initialize SPT oos\n");
2747 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2748 __free_page(gvt->gtt.scratch_page);
2749 return ret;
2750 }
2751 }
2752 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2753 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2754 return 0;
2755 }
2756
2757 /**
2758 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2759 * @gvt: GVT device
2760 *
2761 * This function is called at the driver unloading stage, to clean up the
2762 * the mm components of a GVT device.
2763 *
2764 */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2765 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2766 {
2767 struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2768 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2769 I915_GTT_PAGE_SHIFT);
2770
2771 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2772
2773 __free_page(gvt->gtt.scratch_page);
2774
2775 if (enable_out_of_sync)
2776 clean_spt_oos(gvt);
2777 }
2778
2779 /**
2780 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2781 * @vgpu: a vGPU
2782 *
2783 * This function is called when invalidate all PPGTT instances of a vGPU.
2784 *
2785 */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2786 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2787 {
2788 struct list_head *pos, *n;
2789 struct intel_vgpu_mm *mm;
2790
2791 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2792 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2793 if (mm->type == INTEL_GVT_MM_PPGTT) {
2794 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2795 list_del_init(&mm->ppgtt_mm.lru_list);
2796 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2797 if (mm->ppgtt_mm.shadowed)
2798 invalidate_ppgtt_mm(mm);
2799 }
2800 }
2801 }
2802
2803 /**
2804 * intel_vgpu_reset_ggtt - reset the GGTT entry
2805 * @vgpu: a vGPU
2806 * @invalidate_old: invalidate old entries
2807 *
2808 * This function is called at the vGPU create stage
2809 * to reset all the GGTT entries.
2810 *
2811 */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2812 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2813 {
2814 struct intel_gvt *gvt = vgpu->gvt;
2815 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2816 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2817 struct intel_gvt_gtt_entry old_entry;
2818 u32 index;
2819 u32 num_entries;
2820
2821 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2822 pte_ops->set_present(&entry);
2823
2824 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2825 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2826 while (num_entries--) {
2827 if (invalidate_old) {
2828 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2829 ggtt_invalidate_pte(vgpu, &old_entry);
2830 }
2831 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2832 }
2833
2834 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2835 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2836 while (num_entries--) {
2837 if (invalidate_old) {
2838 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2839 ggtt_invalidate_pte(vgpu, &old_entry);
2840 }
2841 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2842 }
2843
2844 ggtt_invalidate(gvt->gt);
2845 }
2846
2847 /**
2848 * intel_vgpu_reset_gtt - reset the all GTT related status
2849 * @vgpu: a vGPU
2850 *
2851 * This function is called from vfio core to reset reset all
2852 * GTT related status, including GGTT, PPGTT, scratch page.
2853 *
2854 */
intel_vgpu_reset_gtt(struct intel_vgpu * vgpu)2855 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2856 {
2857 /* Shadow pages are only created when there is no page
2858 * table tracking data, so remove page tracking data after
2859 * removing the shadow pages.
2860 */
2861 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2862 intel_vgpu_reset_ggtt(vgpu, true);
2863 }
2864