1 /*
2 * Copyright(c) 2015 - 2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 #include <linux/numa.h>
52
53 #include "hfi.h"
54 #include "affinity.h"
55 #include "sdma.h"
56 #include "trace.h"
57
58 struct hfi1_affinity_node_list node_affinity = {
59 .list = LIST_HEAD_INIT(node_affinity.list),
60 .lock = __MUTEX_INITIALIZER(node_affinity.lock)
61 };
62
63 /* Name of IRQ types, indexed by enum irq_type */
64 static const char * const irq_type_names[] = {
65 "SDMA",
66 "RCVCTXT",
67 "NETDEVCTXT",
68 "GENERAL",
69 "OTHER",
70 };
71
72 /* Per NUMA node count of HFI devices */
73 static unsigned int *hfi1_per_node_cntr;
74
init_cpu_mask_set(struct cpu_mask_set * set)75 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
76 {
77 cpumask_clear(&set->mask);
78 cpumask_clear(&set->used);
79 set->gen = 0;
80 }
81
82 /* Increment generation of CPU set if needed */
_cpu_mask_set_gen_inc(struct cpu_mask_set * set)83 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
84 {
85 if (cpumask_equal(&set->mask, &set->used)) {
86 /*
87 * We've used up all the CPUs, bump up the generation
88 * and reset the 'used' map
89 */
90 set->gen++;
91 cpumask_clear(&set->used);
92 }
93 }
94
_cpu_mask_set_gen_dec(struct cpu_mask_set * set)95 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
96 {
97 if (cpumask_empty(&set->used) && set->gen) {
98 set->gen--;
99 cpumask_copy(&set->used, &set->mask);
100 }
101 }
102
103 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
cpu_mask_set_get_first(struct cpu_mask_set * set,cpumask_var_t diff)104 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
105 {
106 int cpu;
107
108 if (!diff || !set)
109 return -EINVAL;
110
111 _cpu_mask_set_gen_inc(set);
112
113 /* Find out CPUs left in CPU mask */
114 cpumask_andnot(diff, &set->mask, &set->used);
115
116 cpu = cpumask_first(diff);
117 if (cpu >= nr_cpu_ids) /* empty */
118 cpu = -EINVAL;
119 else
120 cpumask_set_cpu(cpu, &set->used);
121
122 return cpu;
123 }
124
cpu_mask_set_put(struct cpu_mask_set * set,int cpu)125 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
126 {
127 if (!set)
128 return;
129
130 cpumask_clear_cpu(cpu, &set->used);
131 _cpu_mask_set_gen_dec(set);
132 }
133
134 /* Initialize non-HT cpu cores mask */
init_real_cpu_mask(void)135 void init_real_cpu_mask(void)
136 {
137 int possible, curr_cpu, i, ht;
138
139 cpumask_clear(&node_affinity.real_cpu_mask);
140
141 /* Start with cpu online mask as the real cpu mask */
142 cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
143
144 /*
145 * Remove HT cores from the real cpu mask. Do this in two steps below.
146 */
147 possible = cpumask_weight(&node_affinity.real_cpu_mask);
148 ht = cpumask_weight(topology_sibling_cpumask(
149 cpumask_first(&node_affinity.real_cpu_mask)));
150 /*
151 * Step 1. Skip over the first N HT siblings and use them as the
152 * "real" cores. Assumes that HT cores are not enumerated in
153 * succession (except in the single core case).
154 */
155 curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
156 for (i = 0; i < possible / ht; i++)
157 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
158 /*
159 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to
160 * skip any gaps.
161 */
162 for (; i < possible; i++) {
163 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
164 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
165 }
166 }
167
node_affinity_init(void)168 int node_affinity_init(void)
169 {
170 int node;
171 struct pci_dev *dev = NULL;
172 const struct pci_device_id *ids = hfi1_pci_tbl;
173
174 cpumask_clear(&node_affinity.proc.used);
175 cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
176
177 node_affinity.proc.gen = 0;
178 node_affinity.num_core_siblings =
179 cpumask_weight(topology_sibling_cpumask(
180 cpumask_first(&node_affinity.proc.mask)
181 ));
182 node_affinity.num_possible_nodes = num_possible_nodes();
183 node_affinity.num_online_nodes = num_online_nodes();
184 node_affinity.num_online_cpus = num_online_cpus();
185
186 /*
187 * The real cpu mask is part of the affinity struct but it has to be
188 * initialized early. It is needed to calculate the number of user
189 * contexts in set_up_context_variables().
190 */
191 init_real_cpu_mask();
192
193 hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
194 sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
195 if (!hfi1_per_node_cntr)
196 return -ENOMEM;
197
198 while (ids->vendor) {
199 dev = NULL;
200 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
201 node = pcibus_to_node(dev->bus);
202 if (node < 0)
203 goto out;
204
205 hfi1_per_node_cntr[node]++;
206 }
207 ids++;
208 }
209
210 return 0;
211
212 out:
213 /*
214 * Invalid PCI NUMA node information found, note it, and populate
215 * our database 1:1.
216 */
217 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
218 pr_err("HFI: System BIOS may need to be upgraded\n");
219 for (node = 0; node < node_affinity.num_possible_nodes; node++)
220 hfi1_per_node_cntr[node] = 1;
221
222 return 0;
223 }
224
node_affinity_destroy(struct hfi1_affinity_node * entry)225 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
226 {
227 free_percpu(entry->comp_vect_affinity);
228 kfree(entry);
229 }
230
node_affinity_destroy_all(void)231 void node_affinity_destroy_all(void)
232 {
233 struct list_head *pos, *q;
234 struct hfi1_affinity_node *entry;
235
236 mutex_lock(&node_affinity.lock);
237 list_for_each_safe(pos, q, &node_affinity.list) {
238 entry = list_entry(pos, struct hfi1_affinity_node,
239 list);
240 list_del(pos);
241 node_affinity_destroy(entry);
242 }
243 mutex_unlock(&node_affinity.lock);
244 kfree(hfi1_per_node_cntr);
245 }
246
node_affinity_allocate(int node)247 static struct hfi1_affinity_node *node_affinity_allocate(int node)
248 {
249 struct hfi1_affinity_node *entry;
250
251 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
252 if (!entry)
253 return NULL;
254 entry->node = node;
255 entry->comp_vect_affinity = alloc_percpu(u16);
256 INIT_LIST_HEAD(&entry->list);
257
258 return entry;
259 }
260
261 /*
262 * It appends an entry to the list.
263 * It *must* be called with node_affinity.lock held.
264 */
node_affinity_add_tail(struct hfi1_affinity_node * entry)265 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
266 {
267 list_add_tail(&entry->list, &node_affinity.list);
268 }
269
270 /* It must be called with node_affinity.lock held */
node_affinity_lookup(int node)271 static struct hfi1_affinity_node *node_affinity_lookup(int node)
272 {
273 struct list_head *pos;
274 struct hfi1_affinity_node *entry;
275
276 list_for_each(pos, &node_affinity.list) {
277 entry = list_entry(pos, struct hfi1_affinity_node, list);
278 if (entry->node == node)
279 return entry;
280 }
281
282 return NULL;
283 }
284
per_cpu_affinity_get(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)285 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
286 u16 __percpu *comp_vect_affinity)
287 {
288 int curr_cpu;
289 u16 cntr;
290 u16 prev_cntr;
291 int ret_cpu;
292
293 if (!possible_cpumask) {
294 ret_cpu = -EINVAL;
295 goto fail;
296 }
297
298 if (!comp_vect_affinity) {
299 ret_cpu = -EINVAL;
300 goto fail;
301 }
302
303 ret_cpu = cpumask_first(possible_cpumask);
304 if (ret_cpu >= nr_cpu_ids) {
305 ret_cpu = -EINVAL;
306 goto fail;
307 }
308
309 prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
310 for_each_cpu(curr_cpu, possible_cpumask) {
311 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
312
313 if (cntr < prev_cntr) {
314 ret_cpu = curr_cpu;
315 prev_cntr = cntr;
316 }
317 }
318
319 *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
320
321 fail:
322 return ret_cpu;
323 }
324
per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)325 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
326 u16 __percpu *comp_vect_affinity)
327 {
328 int curr_cpu;
329 int max_cpu;
330 u16 cntr;
331 u16 prev_cntr;
332
333 if (!possible_cpumask)
334 return -EINVAL;
335
336 if (!comp_vect_affinity)
337 return -EINVAL;
338
339 max_cpu = cpumask_first(possible_cpumask);
340 if (max_cpu >= nr_cpu_ids)
341 return -EINVAL;
342
343 prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
344 for_each_cpu(curr_cpu, possible_cpumask) {
345 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
346
347 if (cntr > prev_cntr) {
348 max_cpu = curr_cpu;
349 prev_cntr = cntr;
350 }
351 }
352
353 *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
354
355 return max_cpu;
356 }
357
358 /*
359 * Non-interrupt CPUs are used first, then interrupt CPUs.
360 * Two already allocated cpu masks must be passed.
361 */
_dev_comp_vect_cpu_get(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,cpumask_var_t non_intr_cpus,cpumask_var_t available_cpus)362 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
363 struct hfi1_affinity_node *entry,
364 cpumask_var_t non_intr_cpus,
365 cpumask_var_t available_cpus)
366 __must_hold(&node_affinity.lock)
367 {
368 int cpu;
369 struct cpu_mask_set *set = dd->comp_vect;
370
371 lockdep_assert_held(&node_affinity.lock);
372 if (!non_intr_cpus) {
373 cpu = -1;
374 goto fail;
375 }
376
377 if (!available_cpus) {
378 cpu = -1;
379 goto fail;
380 }
381
382 /* Available CPUs for pinning completion vectors */
383 _cpu_mask_set_gen_inc(set);
384 cpumask_andnot(available_cpus, &set->mask, &set->used);
385
386 /* Available CPUs without SDMA engine interrupts */
387 cpumask_andnot(non_intr_cpus, available_cpus,
388 &entry->def_intr.used);
389
390 /* If there are non-interrupt CPUs available, use them first */
391 if (!cpumask_empty(non_intr_cpus))
392 cpu = cpumask_first(non_intr_cpus);
393 else /* Otherwise, use interrupt CPUs */
394 cpu = cpumask_first(available_cpus);
395
396 if (cpu >= nr_cpu_ids) { /* empty */
397 cpu = -1;
398 goto fail;
399 }
400 cpumask_set_cpu(cpu, &set->used);
401
402 fail:
403 return cpu;
404 }
405
_dev_comp_vect_cpu_put(struct hfi1_devdata * dd,int cpu)406 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
407 {
408 struct cpu_mask_set *set = dd->comp_vect;
409
410 if (cpu < 0)
411 return;
412
413 cpu_mask_set_put(set, cpu);
414 }
415
416 /* _dev_comp_vect_mappings_destroy() is reentrant */
_dev_comp_vect_mappings_destroy(struct hfi1_devdata * dd)417 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
418 {
419 int i, cpu;
420
421 if (!dd->comp_vect_mappings)
422 return;
423
424 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
425 cpu = dd->comp_vect_mappings[i];
426 _dev_comp_vect_cpu_put(dd, cpu);
427 dd->comp_vect_mappings[i] = -1;
428 hfi1_cdbg(AFFINITY,
429 "[%s] Release CPU %d from completion vector %d",
430 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
431 }
432
433 kfree(dd->comp_vect_mappings);
434 dd->comp_vect_mappings = NULL;
435 }
436
437 /*
438 * This function creates the table for looking up CPUs for completion vectors.
439 * num_comp_vectors needs to have been initilized before calling this function.
440 */
_dev_comp_vect_mappings_create(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)441 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
442 struct hfi1_affinity_node *entry)
443 __must_hold(&node_affinity.lock)
444 {
445 int i, cpu, ret;
446 cpumask_var_t non_intr_cpus;
447 cpumask_var_t available_cpus;
448
449 lockdep_assert_held(&node_affinity.lock);
450
451 if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
452 return -ENOMEM;
453
454 if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
455 free_cpumask_var(non_intr_cpus);
456 return -ENOMEM;
457 }
458
459 dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
460 sizeof(*dd->comp_vect_mappings),
461 GFP_KERNEL);
462 if (!dd->comp_vect_mappings) {
463 ret = -ENOMEM;
464 goto fail;
465 }
466 for (i = 0; i < dd->comp_vect_possible_cpus; i++)
467 dd->comp_vect_mappings[i] = -1;
468
469 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
470 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
471 available_cpus);
472 if (cpu < 0) {
473 ret = -EINVAL;
474 goto fail;
475 }
476
477 dd->comp_vect_mappings[i] = cpu;
478 hfi1_cdbg(AFFINITY,
479 "[%s] Completion Vector %d -> CPU %d",
480 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
481 }
482
483 free_cpumask_var(available_cpus);
484 free_cpumask_var(non_intr_cpus);
485 return 0;
486
487 fail:
488 free_cpumask_var(available_cpus);
489 free_cpumask_var(non_intr_cpus);
490 _dev_comp_vect_mappings_destroy(dd);
491
492 return ret;
493 }
494
hfi1_comp_vectors_set_up(struct hfi1_devdata * dd)495 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
496 {
497 int ret;
498 struct hfi1_affinity_node *entry;
499
500 mutex_lock(&node_affinity.lock);
501 entry = node_affinity_lookup(dd->node);
502 if (!entry) {
503 ret = -EINVAL;
504 goto unlock;
505 }
506 ret = _dev_comp_vect_mappings_create(dd, entry);
507 unlock:
508 mutex_unlock(&node_affinity.lock);
509
510 return ret;
511 }
512
hfi1_comp_vectors_clean_up(struct hfi1_devdata * dd)513 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
514 {
515 _dev_comp_vect_mappings_destroy(dd);
516 }
517
hfi1_comp_vect_mappings_lookup(struct rvt_dev_info * rdi,int comp_vect)518 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
519 {
520 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
521 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
522
523 if (!dd->comp_vect_mappings)
524 return -EINVAL;
525 if (comp_vect >= dd->comp_vect_possible_cpus)
526 return -EINVAL;
527
528 return dd->comp_vect_mappings[comp_vect];
529 }
530
531 /*
532 * It assumes dd->comp_vect_possible_cpus is available.
533 */
_dev_comp_vect_cpu_mask_init(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,bool first_dev_init)534 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
535 struct hfi1_affinity_node *entry,
536 bool first_dev_init)
537 __must_hold(&node_affinity.lock)
538 {
539 int i, j, curr_cpu;
540 int possible_cpus_comp_vect = 0;
541 struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
542
543 lockdep_assert_held(&node_affinity.lock);
544 /*
545 * If there's only one CPU available for completion vectors, then
546 * there will only be one completion vector available. Othewise,
547 * the number of completion vector available will be the number of
548 * available CPUs divide it by the number of devices in the
549 * local NUMA node.
550 */
551 if (cpumask_weight(&entry->comp_vect_mask) == 1) {
552 possible_cpus_comp_vect = 1;
553 dd_dev_warn(dd,
554 "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
555 } else {
556 possible_cpus_comp_vect +=
557 cpumask_weight(&entry->comp_vect_mask) /
558 hfi1_per_node_cntr[dd->node];
559
560 /*
561 * If the completion vector CPUs available doesn't divide
562 * evenly among devices, then the first device device to be
563 * initialized gets an extra CPU.
564 */
565 if (first_dev_init &&
566 cpumask_weight(&entry->comp_vect_mask) %
567 hfi1_per_node_cntr[dd->node] != 0)
568 possible_cpus_comp_vect++;
569 }
570
571 dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
572
573 /* Reserving CPUs for device completion vector */
574 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
575 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
576 entry->comp_vect_affinity);
577 if (curr_cpu < 0)
578 goto fail;
579
580 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
581 }
582
583 hfi1_cdbg(AFFINITY,
584 "[%s] Completion vector affinity CPU set(s) %*pbl",
585 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
586 cpumask_pr_args(dev_comp_vect_mask));
587
588 return 0;
589
590 fail:
591 for (j = 0; j < i; j++)
592 per_cpu_affinity_put_max(&entry->comp_vect_mask,
593 entry->comp_vect_affinity);
594
595 return curr_cpu;
596 }
597
598 /*
599 * It assumes dd->comp_vect_possible_cpus is available.
600 */
_dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)601 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
602 struct hfi1_affinity_node *entry)
603 __must_hold(&node_affinity.lock)
604 {
605 int i, cpu;
606
607 lockdep_assert_held(&node_affinity.lock);
608 if (!dd->comp_vect_possible_cpus)
609 return;
610
611 for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
612 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
613 entry->comp_vect_affinity);
614 /* Clearing CPU in device completion vector cpu mask */
615 if (cpu >= 0)
616 cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
617 }
618
619 dd->comp_vect_possible_cpus = 0;
620 }
621
622 /*
623 * Interrupt affinity.
624 *
625 * non-rcv avail gets a default mask that
626 * starts as possible cpus with threads reset
627 * and each rcv avail reset.
628 *
629 * rcv avail gets node relative 1 wrapping back
630 * to the node relative 1 as necessary.
631 *
632 */
hfi1_dev_affinity_init(struct hfi1_devdata * dd)633 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
634 {
635 struct hfi1_affinity_node *entry;
636 const struct cpumask *local_mask;
637 int curr_cpu, possible, i, ret;
638 bool new_entry = false;
639
640 local_mask = cpumask_of_node(dd->node);
641 if (cpumask_first(local_mask) >= nr_cpu_ids)
642 local_mask = topology_core_cpumask(0);
643
644 mutex_lock(&node_affinity.lock);
645 entry = node_affinity_lookup(dd->node);
646
647 /*
648 * If this is the first time this NUMA node's affinity is used,
649 * create an entry in the global affinity structure and initialize it.
650 */
651 if (!entry) {
652 entry = node_affinity_allocate(dd->node);
653 if (!entry) {
654 dd_dev_err(dd,
655 "Unable to allocate global affinity node\n");
656 ret = -ENOMEM;
657 goto fail;
658 }
659 new_entry = true;
660
661 init_cpu_mask_set(&entry->def_intr);
662 init_cpu_mask_set(&entry->rcv_intr);
663 cpumask_clear(&entry->comp_vect_mask);
664 cpumask_clear(&entry->general_intr_mask);
665 /* Use the "real" cpu mask of this node as the default */
666 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
667 local_mask);
668
669 /* fill in the receive list */
670 possible = cpumask_weight(&entry->def_intr.mask);
671 curr_cpu = cpumask_first(&entry->def_intr.mask);
672
673 if (possible == 1) {
674 /* only one CPU, everyone will use it */
675 cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
676 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
677 } else {
678 /*
679 * The general/control context will be the first CPU in
680 * the default list, so it is removed from the default
681 * list and added to the general interrupt list.
682 */
683 cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
684 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
685 curr_cpu = cpumask_next(curr_cpu,
686 &entry->def_intr.mask);
687
688 /*
689 * Remove the remaining kernel receive queues from
690 * the default list and add them to the receive list.
691 */
692 for (i = 0;
693 i < (dd->n_krcv_queues - 1) *
694 hfi1_per_node_cntr[dd->node];
695 i++) {
696 cpumask_clear_cpu(curr_cpu,
697 &entry->def_intr.mask);
698 cpumask_set_cpu(curr_cpu,
699 &entry->rcv_intr.mask);
700 curr_cpu = cpumask_next(curr_cpu,
701 &entry->def_intr.mask);
702 if (curr_cpu >= nr_cpu_ids)
703 break;
704 }
705
706 /*
707 * If there ends up being 0 CPU cores leftover for SDMA
708 * engines, use the same CPU cores as general/control
709 * context.
710 */
711 if (cpumask_weight(&entry->def_intr.mask) == 0)
712 cpumask_copy(&entry->def_intr.mask,
713 &entry->general_intr_mask);
714 }
715
716 /* Determine completion vector CPUs for the entire node */
717 cpumask_and(&entry->comp_vect_mask,
718 &node_affinity.real_cpu_mask, local_mask);
719 cpumask_andnot(&entry->comp_vect_mask,
720 &entry->comp_vect_mask,
721 &entry->rcv_intr.mask);
722 cpumask_andnot(&entry->comp_vect_mask,
723 &entry->comp_vect_mask,
724 &entry->general_intr_mask);
725
726 /*
727 * If there ends up being 0 CPU cores leftover for completion
728 * vectors, use the same CPU core as the general/control
729 * context.
730 */
731 if (cpumask_weight(&entry->comp_vect_mask) == 0)
732 cpumask_copy(&entry->comp_vect_mask,
733 &entry->general_intr_mask);
734 }
735
736 ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
737 if (ret < 0)
738 goto fail;
739
740 if (new_entry)
741 node_affinity_add_tail(entry);
742
743 dd->affinity_entry = entry;
744 mutex_unlock(&node_affinity.lock);
745
746 return 0;
747
748 fail:
749 if (new_entry)
750 node_affinity_destroy(entry);
751 mutex_unlock(&node_affinity.lock);
752 return ret;
753 }
754
hfi1_dev_affinity_clean_up(struct hfi1_devdata * dd)755 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
756 {
757 struct hfi1_affinity_node *entry;
758
759 mutex_lock(&node_affinity.lock);
760 if (!dd->affinity_entry)
761 goto unlock;
762 entry = node_affinity_lookup(dd->node);
763 if (!entry)
764 goto unlock;
765
766 /*
767 * Free device completion vector CPUs to be used by future
768 * completion vectors
769 */
770 _dev_comp_vect_cpu_mask_clean_up(dd, entry);
771 unlock:
772 dd->affinity_entry = NULL;
773 mutex_unlock(&node_affinity.lock);
774 }
775
776 /*
777 * Function updates the irq affinity hint for msix after it has been changed
778 * by the user using the /proc/irq interface. This function only accepts
779 * one cpu in the mask.
780 */
hfi1_update_sdma_affinity(struct hfi1_msix_entry * msix,int cpu)781 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
782 {
783 struct sdma_engine *sde = msix->arg;
784 struct hfi1_devdata *dd = sde->dd;
785 struct hfi1_affinity_node *entry;
786 struct cpu_mask_set *set;
787 int i, old_cpu;
788
789 if (cpu > num_online_cpus() || cpu == sde->cpu)
790 return;
791
792 mutex_lock(&node_affinity.lock);
793 entry = node_affinity_lookup(dd->node);
794 if (!entry)
795 goto unlock;
796
797 old_cpu = sde->cpu;
798 sde->cpu = cpu;
799 cpumask_clear(&msix->mask);
800 cpumask_set_cpu(cpu, &msix->mask);
801 dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
802 msix->irq, irq_type_names[msix->type],
803 sde->this_idx, cpu);
804 irq_set_affinity_hint(msix->irq, &msix->mask);
805
806 /*
807 * Set the new cpu in the hfi1_affinity_node and clean
808 * the old cpu if it is not used by any other IRQ
809 */
810 set = &entry->def_intr;
811 cpumask_set_cpu(cpu, &set->mask);
812 cpumask_set_cpu(cpu, &set->used);
813 for (i = 0; i < dd->msix_info.max_requested; i++) {
814 struct hfi1_msix_entry *other_msix;
815
816 other_msix = &dd->msix_info.msix_entries[i];
817 if (other_msix->type != IRQ_SDMA || other_msix == msix)
818 continue;
819
820 if (cpumask_test_cpu(old_cpu, &other_msix->mask))
821 goto unlock;
822 }
823 cpumask_clear_cpu(old_cpu, &set->mask);
824 cpumask_clear_cpu(old_cpu, &set->used);
825 unlock:
826 mutex_unlock(&node_affinity.lock);
827 }
828
hfi1_irq_notifier_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)829 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
830 const cpumask_t *mask)
831 {
832 int cpu = cpumask_first(mask);
833 struct hfi1_msix_entry *msix = container_of(notify,
834 struct hfi1_msix_entry,
835 notify);
836
837 /* Only one CPU configuration supported currently */
838 hfi1_update_sdma_affinity(msix, cpu);
839 }
840
hfi1_irq_notifier_release(struct kref * ref)841 static void hfi1_irq_notifier_release(struct kref *ref)
842 {
843 /*
844 * This is required by affinity notifier. We don't have anything to
845 * free here.
846 */
847 }
848
hfi1_setup_sdma_notifier(struct hfi1_msix_entry * msix)849 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
850 {
851 struct irq_affinity_notify *notify = &msix->notify;
852
853 notify->irq = msix->irq;
854 notify->notify = hfi1_irq_notifier_notify;
855 notify->release = hfi1_irq_notifier_release;
856
857 if (irq_set_affinity_notifier(notify->irq, notify))
858 pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
859 notify->irq);
860 }
861
hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry * msix)862 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
863 {
864 struct irq_affinity_notify *notify = &msix->notify;
865
866 if (irq_set_affinity_notifier(notify->irq, NULL))
867 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
868 notify->irq);
869 }
870
871 /*
872 * Function sets the irq affinity for msix.
873 * It *must* be called with node_affinity.lock held.
874 */
get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)875 static int get_irq_affinity(struct hfi1_devdata *dd,
876 struct hfi1_msix_entry *msix)
877 {
878 cpumask_var_t diff;
879 struct hfi1_affinity_node *entry;
880 struct cpu_mask_set *set = NULL;
881 struct sdma_engine *sde = NULL;
882 struct hfi1_ctxtdata *rcd = NULL;
883 char extra[64];
884 int cpu = -1;
885
886 extra[0] = '\0';
887 cpumask_clear(&msix->mask);
888
889 entry = node_affinity_lookup(dd->node);
890
891 switch (msix->type) {
892 case IRQ_SDMA:
893 sde = (struct sdma_engine *)msix->arg;
894 scnprintf(extra, 64, "engine %u", sde->this_idx);
895 set = &entry->def_intr;
896 break;
897 case IRQ_GENERAL:
898 cpu = cpumask_first(&entry->general_intr_mask);
899 break;
900 case IRQ_RCVCTXT:
901 rcd = (struct hfi1_ctxtdata *)msix->arg;
902 if (rcd->ctxt == HFI1_CTRL_CTXT)
903 cpu = cpumask_first(&entry->general_intr_mask);
904 else
905 set = &entry->rcv_intr;
906 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
907 break;
908 case IRQ_NETDEVCTXT:
909 rcd = (struct hfi1_ctxtdata *)msix->arg;
910 set = &entry->def_intr;
911 scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
912 break;
913 default:
914 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
915 return -EINVAL;
916 }
917
918 /*
919 * The general and control contexts are placed on a particular
920 * CPU, which is set above. Skip accounting for it. Everything else
921 * finds its CPU here.
922 */
923 if (cpu == -1 && set) {
924 if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
925 return -ENOMEM;
926
927 cpu = cpu_mask_set_get_first(set, diff);
928 if (cpu < 0) {
929 free_cpumask_var(diff);
930 dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
931 return cpu;
932 }
933
934 free_cpumask_var(diff);
935 }
936
937 cpumask_set_cpu(cpu, &msix->mask);
938 dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
939 msix->irq, irq_type_names[msix->type],
940 extra, cpu);
941 irq_set_affinity_hint(msix->irq, &msix->mask);
942
943 if (msix->type == IRQ_SDMA) {
944 sde->cpu = cpu;
945 hfi1_setup_sdma_notifier(msix);
946 }
947
948 return 0;
949 }
950
hfi1_get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)951 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
952 {
953 int ret;
954
955 mutex_lock(&node_affinity.lock);
956 ret = get_irq_affinity(dd, msix);
957 mutex_unlock(&node_affinity.lock);
958 return ret;
959 }
960
hfi1_put_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)961 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
962 struct hfi1_msix_entry *msix)
963 {
964 struct cpu_mask_set *set = NULL;
965 struct hfi1_ctxtdata *rcd;
966 struct hfi1_affinity_node *entry;
967
968 mutex_lock(&node_affinity.lock);
969 entry = node_affinity_lookup(dd->node);
970
971 switch (msix->type) {
972 case IRQ_SDMA:
973 set = &entry->def_intr;
974 hfi1_cleanup_sdma_notifier(msix);
975 break;
976 case IRQ_GENERAL:
977 /* Don't do accounting for general contexts */
978 break;
979 case IRQ_RCVCTXT:
980 rcd = (struct hfi1_ctxtdata *)msix->arg;
981 /* Don't do accounting for control contexts */
982 if (rcd->ctxt != HFI1_CTRL_CTXT)
983 set = &entry->rcv_intr;
984 break;
985 case IRQ_NETDEVCTXT:
986 rcd = (struct hfi1_ctxtdata *)msix->arg;
987 set = &entry->def_intr;
988 break;
989 default:
990 mutex_unlock(&node_affinity.lock);
991 return;
992 }
993
994 if (set) {
995 cpumask_andnot(&set->used, &set->used, &msix->mask);
996 _cpu_mask_set_gen_dec(set);
997 }
998
999 irq_set_affinity_hint(msix->irq, NULL);
1000 cpumask_clear(&msix->mask);
1001 mutex_unlock(&node_affinity.lock);
1002 }
1003
1004 /* This should be called with node_affinity.lock held */
find_hw_thread_mask(uint hw_thread_no,cpumask_var_t hw_thread_mask,struct hfi1_affinity_node_list * affinity)1005 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
1006 struct hfi1_affinity_node_list *affinity)
1007 {
1008 int possible, curr_cpu, i;
1009 uint num_cores_per_socket = node_affinity.num_online_cpus /
1010 affinity->num_core_siblings /
1011 node_affinity.num_online_nodes;
1012
1013 cpumask_copy(hw_thread_mask, &affinity->proc.mask);
1014 if (affinity->num_core_siblings > 0) {
1015 /* Removing other siblings not needed for now */
1016 possible = cpumask_weight(hw_thread_mask);
1017 curr_cpu = cpumask_first(hw_thread_mask);
1018 for (i = 0;
1019 i < num_cores_per_socket * node_affinity.num_online_nodes;
1020 i++)
1021 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1022
1023 for (; i < possible; i++) {
1024 cpumask_clear_cpu(curr_cpu, hw_thread_mask);
1025 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1026 }
1027
1028 /* Identifying correct HW threads within physical cores */
1029 cpumask_shift_left(hw_thread_mask, hw_thread_mask,
1030 num_cores_per_socket *
1031 node_affinity.num_online_nodes *
1032 hw_thread_no);
1033 }
1034 }
1035
hfi1_get_proc_affinity(int node)1036 int hfi1_get_proc_affinity(int node)
1037 {
1038 int cpu = -1, ret, i;
1039 struct hfi1_affinity_node *entry;
1040 cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1041 const struct cpumask *node_mask,
1042 *proc_mask = current->cpus_ptr;
1043 struct hfi1_affinity_node_list *affinity = &node_affinity;
1044 struct cpu_mask_set *set = &affinity->proc;
1045
1046 /*
1047 * check whether process/context affinity has already
1048 * been set
1049 */
1050 if (current->nr_cpus_allowed == 1) {
1051 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1052 current->pid, current->comm,
1053 cpumask_pr_args(proc_mask));
1054 /*
1055 * Mark the pre-set CPU as used. This is atomic so we don't
1056 * need the lock
1057 */
1058 cpu = cpumask_first(proc_mask);
1059 cpumask_set_cpu(cpu, &set->used);
1060 goto done;
1061 } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1062 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1063 current->pid, current->comm,
1064 cpumask_pr_args(proc_mask));
1065 goto done;
1066 }
1067
1068 /*
1069 * The process does not have a preset CPU affinity so find one to
1070 * recommend using the following algorithm:
1071 *
1072 * For each user process that is opening a context on HFI Y:
1073 * a) If all cores are filled, reinitialize the bitmask
1074 * b) Fill real cores first, then HT cores (First set of HT
1075 * cores on all physical cores, then second set of HT core,
1076 * and, so on) in the following order:
1077 *
1078 * 1. Same NUMA node as HFI Y and not running an IRQ
1079 * handler
1080 * 2. Same NUMA node as HFI Y and running an IRQ handler
1081 * 3. Different NUMA node to HFI Y and not running an IRQ
1082 * handler
1083 * 4. Different NUMA node to HFI Y and running an IRQ
1084 * handler
1085 * c) Mark core as filled in the bitmask. As user processes are
1086 * done, clear cores from the bitmask.
1087 */
1088
1089 ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1090 if (!ret)
1091 goto done;
1092 ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1093 if (!ret)
1094 goto free_diff;
1095 ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1096 if (!ret)
1097 goto free_hw_thread_mask;
1098 ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1099 if (!ret)
1100 goto free_available_mask;
1101
1102 mutex_lock(&affinity->lock);
1103 /*
1104 * If we've used all available HW threads, clear the mask and start
1105 * overloading.
1106 */
1107 _cpu_mask_set_gen_inc(set);
1108
1109 /*
1110 * If NUMA node has CPUs used by interrupt handlers, include them in the
1111 * interrupt handler mask.
1112 */
1113 entry = node_affinity_lookup(node);
1114 if (entry) {
1115 cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1116 &entry->def_intr.mask :
1117 &entry->def_intr.used));
1118 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1119 &entry->rcv_intr.mask :
1120 &entry->rcv_intr.used));
1121 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1122 }
1123 hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1124 cpumask_pr_args(intrs_mask));
1125
1126 cpumask_copy(hw_thread_mask, &set->mask);
1127
1128 /*
1129 * If HT cores are enabled, identify which HW threads within the
1130 * physical cores should be used.
1131 */
1132 if (affinity->num_core_siblings > 0) {
1133 for (i = 0; i < affinity->num_core_siblings; i++) {
1134 find_hw_thread_mask(i, hw_thread_mask, affinity);
1135
1136 /*
1137 * If there's at least one available core for this HW
1138 * thread number, stop looking for a core.
1139 *
1140 * diff will always be not empty at least once in this
1141 * loop as the used mask gets reset when
1142 * (set->mask == set->used) before this loop.
1143 */
1144 cpumask_andnot(diff, hw_thread_mask, &set->used);
1145 if (!cpumask_empty(diff))
1146 break;
1147 }
1148 }
1149 hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1150 cpumask_pr_args(hw_thread_mask));
1151
1152 node_mask = cpumask_of_node(node);
1153 hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1154 cpumask_pr_args(node_mask));
1155
1156 /* Get cpumask of available CPUs on preferred NUMA */
1157 cpumask_and(available_mask, hw_thread_mask, node_mask);
1158 cpumask_andnot(available_mask, available_mask, &set->used);
1159 hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1160 cpumask_pr_args(available_mask));
1161
1162 /*
1163 * At first, we don't want to place processes on the same
1164 * CPUs as interrupt handlers. Then, CPUs running interrupt
1165 * handlers are used.
1166 *
1167 * 1) If diff is not empty, then there are CPUs not running
1168 * non-interrupt handlers available, so diff gets copied
1169 * over to available_mask.
1170 * 2) If diff is empty, then all CPUs not running interrupt
1171 * handlers are taken, so available_mask contains all
1172 * available CPUs running interrupt handlers.
1173 * 3) If available_mask is empty, then all CPUs on the
1174 * preferred NUMA node are taken, so other NUMA nodes are
1175 * used for process assignments using the same method as
1176 * the preferred NUMA node.
1177 */
1178 cpumask_andnot(diff, available_mask, intrs_mask);
1179 if (!cpumask_empty(diff))
1180 cpumask_copy(available_mask, diff);
1181
1182 /* If we don't have CPUs on the preferred node, use other NUMA nodes */
1183 if (cpumask_empty(available_mask)) {
1184 cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1185 /* Excluding preferred NUMA cores */
1186 cpumask_andnot(available_mask, available_mask, node_mask);
1187 hfi1_cdbg(PROC,
1188 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1189 cpumask_pr_args(available_mask));
1190
1191 /*
1192 * At first, we don't want to place processes on the same
1193 * CPUs as interrupt handlers.
1194 */
1195 cpumask_andnot(diff, available_mask, intrs_mask);
1196 if (!cpumask_empty(diff))
1197 cpumask_copy(available_mask, diff);
1198 }
1199 hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1200 cpumask_pr_args(available_mask));
1201
1202 cpu = cpumask_first(available_mask);
1203 if (cpu >= nr_cpu_ids) /* empty */
1204 cpu = -1;
1205 else
1206 cpumask_set_cpu(cpu, &set->used);
1207
1208 mutex_unlock(&affinity->lock);
1209 hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1210
1211 free_cpumask_var(intrs_mask);
1212 free_available_mask:
1213 free_cpumask_var(available_mask);
1214 free_hw_thread_mask:
1215 free_cpumask_var(hw_thread_mask);
1216 free_diff:
1217 free_cpumask_var(diff);
1218 done:
1219 return cpu;
1220 }
1221
hfi1_put_proc_affinity(int cpu)1222 void hfi1_put_proc_affinity(int cpu)
1223 {
1224 struct hfi1_affinity_node_list *affinity = &node_affinity;
1225 struct cpu_mask_set *set = &affinity->proc;
1226
1227 if (cpu < 0)
1228 return;
1229
1230 mutex_lock(&affinity->lock);
1231 cpu_mask_set_put(set, cpu);
1232 hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1233 mutex_unlock(&affinity->lock);
1234 }
1235