1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2006-2009, Intel Corporation.
4 *
5 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
6 */
7
8 #include <linux/iova.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/smp.h>
12 #include <linux/bitops.h>
13 #include <linux/cpu.h>
14
15 /* The anchor node sits above the top of the usable address space */
16 #define IOVA_ANCHOR ~0UL
17
18 static bool iova_rcache_insert(struct iova_domain *iovad,
19 unsigned long pfn,
20 unsigned long size);
21 static unsigned long iova_rcache_get(struct iova_domain *iovad,
22 unsigned long size,
23 unsigned long limit_pfn);
24 static void init_iova_rcaches(struct iova_domain *iovad);
25 static void free_iova_rcaches(struct iova_domain *iovad);
26 static void fq_destroy_all_entries(struct iova_domain *iovad);
27 static void fq_flush_timeout(struct timer_list *t);
28
29 void
init_iova_domain(struct iova_domain * iovad,unsigned long granule,unsigned long start_pfn)30 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
31 unsigned long start_pfn)
32 {
33 /*
34 * IOVA granularity will normally be equal to the smallest
35 * supported IOMMU page size; both *must* be capable of
36 * representing individual CPU pages exactly.
37 */
38 BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
39
40 spin_lock_init(&iovad->iova_rbtree_lock);
41 iovad->rbroot = RB_ROOT;
42 iovad->cached_node = &iovad->anchor.node;
43 iovad->cached32_node = &iovad->anchor.node;
44 iovad->granule = granule;
45 iovad->start_pfn = start_pfn;
46 iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
47 iovad->max32_alloc_size = iovad->dma_32bit_pfn;
48 iovad->flush_cb = NULL;
49 iovad->fq = NULL;
50 iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
51 rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
52 rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
53 init_iova_rcaches(iovad);
54 }
55 EXPORT_SYMBOL_GPL(init_iova_domain);
56
has_iova_flush_queue(struct iova_domain * iovad)57 bool has_iova_flush_queue(struct iova_domain *iovad)
58 {
59 return !!iovad->fq;
60 }
61
free_iova_flush_queue(struct iova_domain * iovad)62 static void free_iova_flush_queue(struct iova_domain *iovad)
63 {
64 if (!has_iova_flush_queue(iovad))
65 return;
66
67 del_timer_sync(&iovad->fq_timer);
68
69 fq_destroy_all_entries(iovad);
70
71 free_percpu(iovad->fq);
72
73 iovad->fq = NULL;
74 iovad->flush_cb = NULL;
75 iovad->entry_dtor = NULL;
76 }
77
init_iova_flush_queue(struct iova_domain * iovad,iova_flush_cb flush_cb,iova_entry_dtor entry_dtor)78 int init_iova_flush_queue(struct iova_domain *iovad,
79 iova_flush_cb flush_cb, iova_entry_dtor entry_dtor)
80 {
81 struct iova_fq __percpu *queue;
82 int cpu;
83
84 atomic64_set(&iovad->fq_flush_start_cnt, 0);
85 atomic64_set(&iovad->fq_flush_finish_cnt, 0);
86
87 queue = alloc_percpu(struct iova_fq);
88 if (!queue)
89 return -ENOMEM;
90
91 iovad->flush_cb = flush_cb;
92 iovad->entry_dtor = entry_dtor;
93
94 for_each_possible_cpu(cpu) {
95 struct iova_fq *fq;
96
97 fq = per_cpu_ptr(queue, cpu);
98 fq->head = 0;
99 fq->tail = 0;
100
101 spin_lock_init(&fq->lock);
102 }
103
104 smp_wmb();
105
106 iovad->fq = queue;
107
108 timer_setup(&iovad->fq_timer, fq_flush_timeout, 0);
109 atomic_set(&iovad->fq_timer_on, 0);
110
111 return 0;
112 }
113 EXPORT_SYMBOL_GPL(init_iova_flush_queue);
114
115 static struct rb_node *
__get_cached_rbnode(struct iova_domain * iovad,unsigned long limit_pfn)116 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
117 {
118 if (limit_pfn <= iovad->dma_32bit_pfn)
119 return iovad->cached32_node;
120
121 return iovad->cached_node;
122 }
123
124 static void
__cached_rbnode_insert_update(struct iova_domain * iovad,struct iova * new)125 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
126 {
127 if (new->pfn_hi < iovad->dma_32bit_pfn)
128 iovad->cached32_node = &new->node;
129 else
130 iovad->cached_node = &new->node;
131 }
132
133 static void
__cached_rbnode_delete_update(struct iova_domain * iovad,struct iova * free)134 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
135 {
136 struct iova *cached_iova;
137
138 cached_iova = rb_entry(iovad->cached32_node, struct iova, node);
139 if (free == cached_iova ||
140 (free->pfn_hi < iovad->dma_32bit_pfn &&
141 free->pfn_lo >= cached_iova->pfn_lo)) {
142 iovad->cached32_node = rb_next(&free->node);
143 iovad->max32_alloc_size = iovad->dma_32bit_pfn;
144 }
145
146 cached_iova = rb_entry(iovad->cached_node, struct iova, node);
147 if (free->pfn_lo >= cached_iova->pfn_lo)
148 iovad->cached_node = rb_next(&free->node);
149 }
150
151 /* Insert the iova into domain rbtree by holding writer lock */
152 static void
iova_insert_rbtree(struct rb_root * root,struct iova * iova,struct rb_node * start)153 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
154 struct rb_node *start)
155 {
156 struct rb_node **new, *parent = NULL;
157
158 new = (start) ? &start : &(root->rb_node);
159 /* Figure out where to put new node */
160 while (*new) {
161 struct iova *this = rb_entry(*new, struct iova, node);
162
163 parent = *new;
164
165 if (iova->pfn_lo < this->pfn_lo)
166 new = &((*new)->rb_left);
167 else if (iova->pfn_lo > this->pfn_lo)
168 new = &((*new)->rb_right);
169 else {
170 WARN_ON(1); /* this should not happen */
171 return;
172 }
173 }
174 /* Add new node and rebalance tree. */
175 rb_link_node(&iova->node, parent, new);
176 rb_insert_color(&iova->node, root);
177 }
178
__alloc_and_insert_iova_range(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn,struct iova * new,bool size_aligned)179 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
180 unsigned long size, unsigned long limit_pfn,
181 struct iova *new, bool size_aligned)
182 {
183 struct rb_node *curr, *prev;
184 struct iova *curr_iova;
185 unsigned long flags;
186 unsigned long new_pfn;
187 unsigned long align_mask = ~0UL;
188
189 if (size_aligned)
190 align_mask <<= fls_long(size - 1);
191
192 /* Walk the tree backwards */
193 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
194 if (limit_pfn <= iovad->dma_32bit_pfn &&
195 size >= iovad->max32_alloc_size)
196 goto iova32_full;
197
198 curr = __get_cached_rbnode(iovad, limit_pfn);
199 curr_iova = rb_entry(curr, struct iova, node);
200 do {
201 limit_pfn = min(limit_pfn, curr_iova->pfn_lo);
202 new_pfn = (limit_pfn - size) & align_mask;
203 prev = curr;
204 curr = rb_prev(curr);
205 curr_iova = rb_entry(curr, struct iova, node);
206 } while (curr && new_pfn <= curr_iova->pfn_hi);
207
208 if (limit_pfn < size || new_pfn < iovad->start_pfn) {
209 iovad->max32_alloc_size = size;
210 goto iova32_full;
211 }
212
213 /* pfn_lo will point to size aligned address if size_aligned is set */
214 new->pfn_lo = new_pfn;
215 new->pfn_hi = new->pfn_lo + size - 1;
216
217 /* If we have 'prev', it's a valid place to start the insertion. */
218 iova_insert_rbtree(&iovad->rbroot, new, prev);
219 __cached_rbnode_insert_update(iovad, new);
220
221 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
222 return 0;
223
224 iova32_full:
225 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
226 return -ENOMEM;
227 }
228
229 static struct kmem_cache *iova_cache;
230 static unsigned int iova_cache_users;
231 static DEFINE_MUTEX(iova_cache_mutex);
232
alloc_iova_mem(void)233 struct iova *alloc_iova_mem(void)
234 {
235 return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN);
236 }
237 EXPORT_SYMBOL(alloc_iova_mem);
238
free_iova_mem(struct iova * iova)239 void free_iova_mem(struct iova *iova)
240 {
241 if (iova->pfn_lo != IOVA_ANCHOR)
242 kmem_cache_free(iova_cache, iova);
243 }
244 EXPORT_SYMBOL(free_iova_mem);
245
iova_cache_get(void)246 int iova_cache_get(void)
247 {
248 mutex_lock(&iova_cache_mutex);
249 if (!iova_cache_users) {
250 iova_cache = kmem_cache_create(
251 "iommu_iova", sizeof(struct iova), 0,
252 SLAB_HWCACHE_ALIGN, NULL);
253 if (!iova_cache) {
254 mutex_unlock(&iova_cache_mutex);
255 pr_err("Couldn't create iova cache\n");
256 return -ENOMEM;
257 }
258 }
259
260 iova_cache_users++;
261 mutex_unlock(&iova_cache_mutex);
262
263 return 0;
264 }
265 EXPORT_SYMBOL_GPL(iova_cache_get);
266
iova_cache_put(void)267 void iova_cache_put(void)
268 {
269 mutex_lock(&iova_cache_mutex);
270 if (WARN_ON(!iova_cache_users)) {
271 mutex_unlock(&iova_cache_mutex);
272 return;
273 }
274 iova_cache_users--;
275 if (!iova_cache_users)
276 kmem_cache_destroy(iova_cache);
277 mutex_unlock(&iova_cache_mutex);
278 }
279 EXPORT_SYMBOL_GPL(iova_cache_put);
280
281 /**
282 * alloc_iova - allocates an iova
283 * @iovad: - iova domain in question
284 * @size: - size of page frames to allocate
285 * @limit_pfn: - max limit address
286 * @size_aligned: - set if size_aligned address range is required
287 * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
288 * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
289 * flag is set then the allocated address iova->pfn_lo will be naturally
290 * aligned on roundup_power_of_two(size).
291 */
292 struct iova *
alloc_iova(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn,bool size_aligned)293 alloc_iova(struct iova_domain *iovad, unsigned long size,
294 unsigned long limit_pfn,
295 bool size_aligned)
296 {
297 struct iova *new_iova;
298 int ret;
299
300 new_iova = alloc_iova_mem();
301 if (!new_iova)
302 return NULL;
303
304 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
305 new_iova, size_aligned);
306
307 if (ret) {
308 free_iova_mem(new_iova);
309 return NULL;
310 }
311
312 return new_iova;
313 }
314 EXPORT_SYMBOL_GPL(alloc_iova);
315
316 static struct iova *
private_find_iova(struct iova_domain * iovad,unsigned long pfn)317 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
318 {
319 struct rb_node *node = iovad->rbroot.rb_node;
320
321 assert_spin_locked(&iovad->iova_rbtree_lock);
322
323 while (node) {
324 struct iova *iova = rb_entry(node, struct iova, node);
325
326 if (pfn < iova->pfn_lo)
327 node = node->rb_left;
328 else if (pfn > iova->pfn_hi)
329 node = node->rb_right;
330 else
331 return iova; /* pfn falls within iova's range */
332 }
333
334 return NULL;
335 }
336
private_free_iova(struct iova_domain * iovad,struct iova * iova)337 static void private_free_iova(struct iova_domain *iovad, struct iova *iova)
338 {
339 assert_spin_locked(&iovad->iova_rbtree_lock);
340 __cached_rbnode_delete_update(iovad, iova);
341 rb_erase(&iova->node, &iovad->rbroot);
342 free_iova_mem(iova);
343 }
344
345 /**
346 * find_iova - finds an iova for a given pfn
347 * @iovad: - iova domain in question.
348 * @pfn: - page frame number
349 * This function finds and returns an iova belonging to the
350 * given doamin which matches the given pfn.
351 */
find_iova(struct iova_domain * iovad,unsigned long pfn)352 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
353 {
354 unsigned long flags;
355 struct iova *iova;
356
357 /* Take the lock so that no other thread is manipulating the rbtree */
358 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
359 iova = private_find_iova(iovad, pfn);
360 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
361 return iova;
362 }
363 EXPORT_SYMBOL_GPL(find_iova);
364
365 /**
366 * __free_iova - frees the given iova
367 * @iovad: iova domain in question.
368 * @iova: iova in question.
369 * Frees the given iova belonging to the giving domain
370 */
371 void
__free_iova(struct iova_domain * iovad,struct iova * iova)372 __free_iova(struct iova_domain *iovad, struct iova *iova)
373 {
374 unsigned long flags;
375
376 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
377 private_free_iova(iovad, iova);
378 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(__free_iova);
381
382 /**
383 * free_iova - finds and frees the iova for a given pfn
384 * @iovad: - iova domain in question.
385 * @pfn: - pfn that is allocated previously
386 * This functions finds an iova for a given pfn and then
387 * frees the iova from that domain.
388 */
389 void
free_iova(struct iova_domain * iovad,unsigned long pfn)390 free_iova(struct iova_domain *iovad, unsigned long pfn)
391 {
392 struct iova *iova = find_iova(iovad, pfn);
393
394 if (iova)
395 __free_iova(iovad, iova);
396
397 }
398 EXPORT_SYMBOL_GPL(free_iova);
399
400 /**
401 * alloc_iova_fast - allocates an iova from rcache
402 * @iovad: - iova domain in question
403 * @size: - size of page frames to allocate
404 * @limit_pfn: - max limit address
405 * @flush_rcache: - set to flush rcache on regular allocation failure
406 * This function tries to satisfy an iova allocation from the rcache,
407 * and falls back to regular allocation on failure. If regular allocation
408 * fails too and the flush_rcache flag is set then the rcache will be flushed.
409 */
410 unsigned long
alloc_iova_fast(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn,bool flush_rcache)411 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
412 unsigned long limit_pfn, bool flush_rcache)
413 {
414 unsigned long iova_pfn;
415 struct iova *new_iova;
416
417 iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
418 if (iova_pfn)
419 return iova_pfn;
420
421 retry:
422 new_iova = alloc_iova(iovad, size, limit_pfn, true);
423 if (!new_iova) {
424 unsigned int cpu;
425
426 if (!flush_rcache)
427 return 0;
428
429 /* Try replenishing IOVAs by flushing rcache. */
430 flush_rcache = false;
431 for_each_online_cpu(cpu)
432 free_cpu_cached_iovas(cpu, iovad);
433 goto retry;
434 }
435
436 return new_iova->pfn_lo;
437 }
438 EXPORT_SYMBOL_GPL(alloc_iova_fast);
439
440 /**
441 * free_iova_fast - free iova pfn range into rcache
442 * @iovad: - iova domain in question.
443 * @pfn: - pfn that is allocated previously
444 * @size: - # of pages in range
445 * This functions frees an iova range by trying to put it into the rcache,
446 * falling back to regular iova deallocation via free_iova() if this fails.
447 */
448 void
free_iova_fast(struct iova_domain * iovad,unsigned long pfn,unsigned long size)449 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
450 {
451 if (iova_rcache_insert(iovad, pfn, size))
452 return;
453
454 free_iova(iovad, pfn);
455 }
456 EXPORT_SYMBOL_GPL(free_iova_fast);
457
458 #define fq_ring_for_each(i, fq) \
459 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
460
fq_full(struct iova_fq * fq)461 static inline bool fq_full(struct iova_fq *fq)
462 {
463 assert_spin_locked(&fq->lock);
464 return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
465 }
466
fq_ring_add(struct iova_fq * fq)467 static inline unsigned fq_ring_add(struct iova_fq *fq)
468 {
469 unsigned idx = fq->tail;
470
471 assert_spin_locked(&fq->lock);
472
473 fq->tail = (idx + 1) % IOVA_FQ_SIZE;
474
475 return idx;
476 }
477
fq_ring_free(struct iova_domain * iovad,struct iova_fq * fq)478 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq)
479 {
480 u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt);
481 unsigned idx;
482
483 assert_spin_locked(&fq->lock);
484
485 fq_ring_for_each(idx, fq) {
486
487 if (fq->entries[idx].counter >= counter)
488 break;
489
490 if (iovad->entry_dtor)
491 iovad->entry_dtor(fq->entries[idx].data);
492
493 free_iova_fast(iovad,
494 fq->entries[idx].iova_pfn,
495 fq->entries[idx].pages);
496
497 fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
498 }
499 }
500
iova_domain_flush(struct iova_domain * iovad)501 static void iova_domain_flush(struct iova_domain *iovad)
502 {
503 atomic64_inc(&iovad->fq_flush_start_cnt);
504 iovad->flush_cb(iovad);
505 atomic64_inc(&iovad->fq_flush_finish_cnt);
506 }
507
fq_destroy_all_entries(struct iova_domain * iovad)508 static void fq_destroy_all_entries(struct iova_domain *iovad)
509 {
510 int cpu;
511
512 /*
513 * This code runs when the iova_domain is being detroyed, so don't
514 * bother to free iovas, just call the entry_dtor on all remaining
515 * entries.
516 */
517 if (!iovad->entry_dtor)
518 return;
519
520 for_each_possible_cpu(cpu) {
521 struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu);
522 int idx;
523
524 fq_ring_for_each(idx, fq)
525 iovad->entry_dtor(fq->entries[idx].data);
526 }
527 }
528
fq_flush_timeout(struct timer_list * t)529 static void fq_flush_timeout(struct timer_list *t)
530 {
531 struct iova_domain *iovad = from_timer(iovad, t, fq_timer);
532 int cpu;
533
534 atomic_set(&iovad->fq_timer_on, 0);
535 iova_domain_flush(iovad);
536
537 for_each_possible_cpu(cpu) {
538 unsigned long flags;
539 struct iova_fq *fq;
540
541 fq = per_cpu_ptr(iovad->fq, cpu);
542 spin_lock_irqsave(&fq->lock, flags);
543 fq_ring_free(iovad, fq);
544 spin_unlock_irqrestore(&fq->lock, flags);
545 }
546 }
547
queue_iova(struct iova_domain * iovad,unsigned long pfn,unsigned long pages,unsigned long data)548 void queue_iova(struct iova_domain *iovad,
549 unsigned long pfn, unsigned long pages,
550 unsigned long data)
551 {
552 struct iova_fq *fq = raw_cpu_ptr(iovad->fq);
553 unsigned long flags;
554 unsigned idx;
555
556 spin_lock_irqsave(&fq->lock, flags);
557
558 /*
559 * First remove all entries from the flush queue that have already been
560 * flushed out on another CPU. This makes the fq_full() check below less
561 * likely to be true.
562 */
563 fq_ring_free(iovad, fq);
564
565 if (fq_full(fq)) {
566 iova_domain_flush(iovad);
567 fq_ring_free(iovad, fq);
568 }
569
570 idx = fq_ring_add(fq);
571
572 fq->entries[idx].iova_pfn = pfn;
573 fq->entries[idx].pages = pages;
574 fq->entries[idx].data = data;
575 fq->entries[idx].counter = atomic64_read(&iovad->fq_flush_start_cnt);
576
577 spin_unlock_irqrestore(&fq->lock, flags);
578
579 /* Avoid false sharing as much as possible. */
580 if (!atomic_read(&iovad->fq_timer_on) &&
581 !atomic_xchg(&iovad->fq_timer_on, 1))
582 mod_timer(&iovad->fq_timer,
583 jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
584 }
585 EXPORT_SYMBOL_GPL(queue_iova);
586
587 /**
588 * put_iova_domain - destroys the iova doamin
589 * @iovad: - iova domain in question.
590 * All the iova's in that domain are destroyed.
591 */
put_iova_domain(struct iova_domain * iovad)592 void put_iova_domain(struct iova_domain *iovad)
593 {
594 struct iova *iova, *tmp;
595
596 free_iova_flush_queue(iovad);
597 free_iova_rcaches(iovad);
598 rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
599 free_iova_mem(iova);
600 }
601 EXPORT_SYMBOL_GPL(put_iova_domain);
602
603 static int
__is_range_overlap(struct rb_node * node,unsigned long pfn_lo,unsigned long pfn_hi)604 __is_range_overlap(struct rb_node *node,
605 unsigned long pfn_lo, unsigned long pfn_hi)
606 {
607 struct iova *iova = rb_entry(node, struct iova, node);
608
609 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
610 return 1;
611 return 0;
612 }
613
614 static inline struct iova *
alloc_and_init_iova(unsigned long pfn_lo,unsigned long pfn_hi)615 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
616 {
617 struct iova *iova;
618
619 iova = alloc_iova_mem();
620 if (iova) {
621 iova->pfn_lo = pfn_lo;
622 iova->pfn_hi = pfn_hi;
623 }
624
625 return iova;
626 }
627
628 static struct iova *
__insert_new_range(struct iova_domain * iovad,unsigned long pfn_lo,unsigned long pfn_hi)629 __insert_new_range(struct iova_domain *iovad,
630 unsigned long pfn_lo, unsigned long pfn_hi)
631 {
632 struct iova *iova;
633
634 iova = alloc_and_init_iova(pfn_lo, pfn_hi);
635 if (iova)
636 iova_insert_rbtree(&iovad->rbroot, iova, NULL);
637
638 return iova;
639 }
640
641 static void
__adjust_overlap_range(struct iova * iova,unsigned long * pfn_lo,unsigned long * pfn_hi)642 __adjust_overlap_range(struct iova *iova,
643 unsigned long *pfn_lo, unsigned long *pfn_hi)
644 {
645 if (*pfn_lo < iova->pfn_lo)
646 iova->pfn_lo = *pfn_lo;
647 if (*pfn_hi > iova->pfn_hi)
648 *pfn_lo = iova->pfn_hi + 1;
649 }
650
651 /**
652 * reserve_iova - reserves an iova in the given range
653 * @iovad: - iova domain pointer
654 * @pfn_lo: - lower page frame address
655 * @pfn_hi:- higher pfn adderss
656 * This function allocates reserves the address range from pfn_lo to pfn_hi so
657 * that this address is not dished out as part of alloc_iova.
658 */
659 struct iova *
reserve_iova(struct iova_domain * iovad,unsigned long pfn_lo,unsigned long pfn_hi)660 reserve_iova(struct iova_domain *iovad,
661 unsigned long pfn_lo, unsigned long pfn_hi)
662 {
663 struct rb_node *node;
664 unsigned long flags;
665 struct iova *iova;
666 unsigned int overlap = 0;
667
668 /* Don't allow nonsensical pfns */
669 if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
670 return NULL;
671
672 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
673 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
674 if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
675 iova = rb_entry(node, struct iova, node);
676 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
677 if ((pfn_lo >= iova->pfn_lo) &&
678 (pfn_hi <= iova->pfn_hi))
679 goto finish;
680 overlap = 1;
681
682 } else if (overlap)
683 break;
684 }
685
686 /* We are here either because this is the first reserver node
687 * or need to insert remaining non overlap addr range
688 */
689 iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
690 finish:
691
692 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
693 return iova;
694 }
695 EXPORT_SYMBOL_GPL(reserve_iova);
696
697 /**
698 * copy_reserved_iova - copies the reserved between domains
699 * @from: - source doamin from where to copy
700 * @to: - destination domin where to copy
701 * This function copies reserved iova's from one doamin to
702 * other.
703 */
704 void
copy_reserved_iova(struct iova_domain * from,struct iova_domain * to)705 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to)
706 {
707 unsigned long flags;
708 struct rb_node *node;
709
710 spin_lock_irqsave(&from->iova_rbtree_lock, flags);
711 for (node = rb_first(&from->rbroot); node; node = rb_next(node)) {
712 struct iova *iova = rb_entry(node, struct iova, node);
713 struct iova *new_iova;
714
715 if (iova->pfn_lo == IOVA_ANCHOR)
716 continue;
717
718 new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi);
719 if (!new_iova)
720 pr_err("Reserve iova range %lx@%lx failed\n",
721 iova->pfn_lo, iova->pfn_lo);
722 }
723 spin_unlock_irqrestore(&from->iova_rbtree_lock, flags);
724 }
725 EXPORT_SYMBOL_GPL(copy_reserved_iova);
726
727 struct iova *
split_and_remove_iova(struct iova_domain * iovad,struct iova * iova,unsigned long pfn_lo,unsigned long pfn_hi)728 split_and_remove_iova(struct iova_domain *iovad, struct iova *iova,
729 unsigned long pfn_lo, unsigned long pfn_hi)
730 {
731 unsigned long flags;
732 struct iova *prev = NULL, *next = NULL;
733
734 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
735 if (iova->pfn_lo < pfn_lo) {
736 prev = alloc_and_init_iova(iova->pfn_lo, pfn_lo - 1);
737 if (prev == NULL)
738 goto error;
739 }
740 if (iova->pfn_hi > pfn_hi) {
741 next = alloc_and_init_iova(pfn_hi + 1, iova->pfn_hi);
742 if (next == NULL)
743 goto error;
744 }
745
746 __cached_rbnode_delete_update(iovad, iova);
747 rb_erase(&iova->node, &iovad->rbroot);
748
749 if (prev) {
750 iova_insert_rbtree(&iovad->rbroot, prev, NULL);
751 iova->pfn_lo = pfn_lo;
752 }
753 if (next) {
754 iova_insert_rbtree(&iovad->rbroot, next, NULL);
755 iova->pfn_hi = pfn_hi;
756 }
757 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
758
759 return iova;
760
761 error:
762 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
763 if (prev)
764 free_iova_mem(prev);
765 return NULL;
766 }
767
768 /*
769 * Magazine caches for IOVA ranges. For an introduction to magazines,
770 * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
771 * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
772 * For simplicity, we use a static magazine size and don't implement the
773 * dynamic size tuning described in the paper.
774 */
775
776 #define IOVA_MAG_SIZE 128
777
778 struct iova_magazine {
779 unsigned long size;
780 unsigned long pfns[IOVA_MAG_SIZE];
781 };
782
783 struct iova_cpu_rcache {
784 spinlock_t lock;
785 struct iova_magazine *loaded;
786 struct iova_magazine *prev;
787 };
788
iova_magazine_alloc(gfp_t flags)789 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
790 {
791 return kzalloc(sizeof(struct iova_magazine), flags);
792 }
793
iova_magazine_free(struct iova_magazine * mag)794 static void iova_magazine_free(struct iova_magazine *mag)
795 {
796 kfree(mag);
797 }
798
799 static void
iova_magazine_free_pfns(struct iova_magazine * mag,struct iova_domain * iovad)800 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
801 {
802 unsigned long flags;
803 int i;
804
805 if (!mag)
806 return;
807
808 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
809
810 for (i = 0 ; i < mag->size; ++i) {
811 struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
812
813 if (WARN_ON(!iova))
814 continue;
815
816 private_free_iova(iovad, iova);
817 }
818
819 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
820
821 mag->size = 0;
822 }
823
iova_magazine_full(struct iova_magazine * mag)824 static bool iova_magazine_full(struct iova_magazine *mag)
825 {
826 return (mag && mag->size == IOVA_MAG_SIZE);
827 }
828
iova_magazine_empty(struct iova_magazine * mag)829 static bool iova_magazine_empty(struct iova_magazine *mag)
830 {
831 return (!mag || mag->size == 0);
832 }
833
iova_magazine_pop(struct iova_magazine * mag,unsigned long limit_pfn)834 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
835 unsigned long limit_pfn)
836 {
837 int i;
838 unsigned long pfn;
839
840 BUG_ON(iova_magazine_empty(mag));
841
842 /* Only fall back to the rbtree if we have no suitable pfns at all */
843 for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
844 if (i == 0)
845 return 0;
846
847 /* Swap it to pop it */
848 pfn = mag->pfns[i];
849 mag->pfns[i] = mag->pfns[--mag->size];
850
851 return pfn;
852 }
853
iova_magazine_push(struct iova_magazine * mag,unsigned long pfn)854 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
855 {
856 BUG_ON(iova_magazine_full(mag));
857
858 mag->pfns[mag->size++] = pfn;
859 }
860
init_iova_rcaches(struct iova_domain * iovad)861 static void init_iova_rcaches(struct iova_domain *iovad)
862 {
863 struct iova_cpu_rcache *cpu_rcache;
864 struct iova_rcache *rcache;
865 unsigned int cpu;
866 int i;
867
868 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
869 rcache = &iovad->rcaches[i];
870 spin_lock_init(&rcache->lock);
871 rcache->depot_size = 0;
872 rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size());
873 if (WARN_ON(!rcache->cpu_rcaches))
874 continue;
875 for_each_possible_cpu(cpu) {
876 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
877 spin_lock_init(&cpu_rcache->lock);
878 cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
879 cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
880 }
881 }
882 }
883
884 /*
885 * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
886 * return true on success. Can fail if rcache is full and we can't free
887 * space, and free_iova() (our only caller) will then return the IOVA
888 * range to the rbtree instead.
889 */
__iova_rcache_insert(struct iova_domain * iovad,struct iova_rcache * rcache,unsigned long iova_pfn)890 static bool __iova_rcache_insert(struct iova_domain *iovad,
891 struct iova_rcache *rcache,
892 unsigned long iova_pfn)
893 {
894 struct iova_magazine *mag_to_free = NULL;
895 struct iova_cpu_rcache *cpu_rcache;
896 bool can_insert = false;
897 unsigned long flags;
898
899 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
900 spin_lock_irqsave(&cpu_rcache->lock, flags);
901
902 if (!iova_magazine_full(cpu_rcache->loaded)) {
903 can_insert = true;
904 } else if (!iova_magazine_full(cpu_rcache->prev)) {
905 swap(cpu_rcache->prev, cpu_rcache->loaded);
906 can_insert = true;
907 } else {
908 struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
909
910 if (new_mag) {
911 spin_lock(&rcache->lock);
912 if (rcache->depot_size < MAX_GLOBAL_MAGS) {
913 rcache->depot[rcache->depot_size++] =
914 cpu_rcache->loaded;
915 } else {
916 mag_to_free = cpu_rcache->loaded;
917 }
918 spin_unlock(&rcache->lock);
919
920 cpu_rcache->loaded = new_mag;
921 can_insert = true;
922 }
923 }
924
925 if (can_insert)
926 iova_magazine_push(cpu_rcache->loaded, iova_pfn);
927
928 spin_unlock_irqrestore(&cpu_rcache->lock, flags);
929
930 if (mag_to_free) {
931 iova_magazine_free_pfns(mag_to_free, iovad);
932 iova_magazine_free(mag_to_free);
933 }
934
935 return can_insert;
936 }
937
iova_rcache_insert(struct iova_domain * iovad,unsigned long pfn,unsigned long size)938 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
939 unsigned long size)
940 {
941 unsigned int log_size = order_base_2(size);
942
943 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
944 return false;
945
946 return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
947 }
948
949 /*
950 * Caller wants to allocate a new IOVA range from 'rcache'. If we can
951 * satisfy the request, return a matching non-NULL range and remove
952 * it from the 'rcache'.
953 */
__iova_rcache_get(struct iova_rcache * rcache,unsigned long limit_pfn)954 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
955 unsigned long limit_pfn)
956 {
957 struct iova_cpu_rcache *cpu_rcache;
958 unsigned long iova_pfn = 0;
959 bool has_pfn = false;
960 unsigned long flags;
961
962 cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
963 spin_lock_irqsave(&cpu_rcache->lock, flags);
964
965 if (!iova_magazine_empty(cpu_rcache->loaded)) {
966 has_pfn = true;
967 } else if (!iova_magazine_empty(cpu_rcache->prev)) {
968 swap(cpu_rcache->prev, cpu_rcache->loaded);
969 has_pfn = true;
970 } else {
971 spin_lock(&rcache->lock);
972 if (rcache->depot_size > 0) {
973 iova_magazine_free(cpu_rcache->loaded);
974 cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
975 has_pfn = true;
976 }
977 spin_unlock(&rcache->lock);
978 }
979
980 if (has_pfn)
981 iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
982
983 spin_unlock_irqrestore(&cpu_rcache->lock, flags);
984
985 return iova_pfn;
986 }
987
988 /*
989 * Try to satisfy IOVA allocation range from rcache. Fail if requested
990 * size is too big or the DMA limit we are given isn't satisfied by the
991 * top element in the magazine.
992 */
iova_rcache_get(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn)993 static unsigned long iova_rcache_get(struct iova_domain *iovad,
994 unsigned long size,
995 unsigned long limit_pfn)
996 {
997 unsigned int log_size = order_base_2(size);
998
999 if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
1000 return 0;
1001
1002 return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
1003 }
1004
1005 /*
1006 * free rcache data structures.
1007 */
free_iova_rcaches(struct iova_domain * iovad)1008 static void free_iova_rcaches(struct iova_domain *iovad)
1009 {
1010 struct iova_rcache *rcache;
1011 struct iova_cpu_rcache *cpu_rcache;
1012 unsigned int cpu;
1013 int i, j;
1014
1015 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1016 rcache = &iovad->rcaches[i];
1017 for_each_possible_cpu(cpu) {
1018 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1019 iova_magazine_free(cpu_rcache->loaded);
1020 iova_magazine_free(cpu_rcache->prev);
1021 }
1022 free_percpu(rcache->cpu_rcaches);
1023 for (j = 0; j < rcache->depot_size; ++j)
1024 iova_magazine_free(rcache->depot[j]);
1025 }
1026 }
1027
1028 /*
1029 * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
1030 */
free_cpu_cached_iovas(unsigned int cpu,struct iova_domain * iovad)1031 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
1032 {
1033 struct iova_cpu_rcache *cpu_rcache;
1034 struct iova_rcache *rcache;
1035 unsigned long flags;
1036 int i;
1037
1038 for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1039 rcache = &iovad->rcaches[i];
1040 cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1041 spin_lock_irqsave(&cpu_rcache->lock, flags);
1042 iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1043 iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1044 spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1045 }
1046 }
1047
1048 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1049 MODULE_LICENSE("GPL");
1050