1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_opp.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/consumer.h>
21 #include <linux/slab.h>
22 #include "../jedec_ddr.h"
23 #include "../of_memory.h"
24
25 static int irqmode;
26 module_param(irqmode, int, 0644);
27 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
28
29 #define EXYNOS5_DREXI_TIMINGAREF (0x0030)
30 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
31 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
32 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
33 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
34 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
35 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
36 #define CDREX_PAUSE (0x2091c)
37 #define CDREX_LPDDR3PHY_CON3 (0x20a20)
38 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700)
39 #define EXYNOS5_TIMING_SET_SWI BIT(28)
40 #define USE_MX_MSPLL_TIMINGS (1)
41 #define USE_BPLL_TIMINGS (0)
42 #define EXYNOS5_AREF_NORMAL (0x2e)
43
44 #define DREX_PPCCLKCON (0x0130)
45 #define DREX_PEREV2CONFIG (0x013c)
46 #define DREX_PMNC_PPC (0xE000)
47 #define DREX_CNTENS_PPC (0xE010)
48 #define DREX_CNTENC_PPC (0xE020)
49 #define DREX_INTENS_PPC (0xE030)
50 #define DREX_INTENC_PPC (0xE040)
51 #define DREX_FLAG_PPC (0xE050)
52 #define DREX_PMCNT2_PPC (0xE130)
53
54 /*
55 * A value for register DREX_PMNC_PPC which should be written to reset
56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
57 * CCNT counter.
58 */
59 #define CC_RESET BIT(2)
60
61 /*
62 * A value for register DREX_PMNC_PPC which does the reset of all performance
63 * counters to zero.
64 */
65 #define PPC_COUNTER_RESET BIT(1)
66
67 /*
68 * Enables all configured counters (including cycle counter). The value should
69 * be written to the register DREX_PMNC_PPC.
70 */
71 #define PPC_ENABLE BIT(0)
72
73 /* A value for register DREX_PPCCLKCON which enables performance events clock.
74 * Must be written before first access to the performance counters register
75 * set, otherwise it could crash.
76 */
77 #define PEREV_CLK_EN BIT(0)
78
79 /*
80 * Values which are used to enable counters, interrupts or configure flags of
81 * the performance counters. They configure counter 2 and cycle counter.
82 */
83 #define PERF_CNT2 BIT(2)
84 #define PERF_CCNT BIT(31)
85
86 /*
87 * Performance event types which are used for setting the preferred event
88 * to track in the counters.
89 * There is a set of different types, the values are from range 0 to 0x6f.
90 * These settings should be written to the configuration register which manages
91 * the type of the event (register DREX_PEREV2CONFIG).
92 */
93 #define READ_TRANSFER_CH0 (0x6d)
94 #define READ_TRANSFER_CH1 (0x6f)
95
96 #define PERF_COUNTER_START_VALUE 0xff000000
97 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
98
99 /**
100 * struct dmc_opp_table - Operating level desciption
101 * @freq_hz: target frequency in Hz
102 * @volt_uv: target voltage in uV
103 *
104 * Covers frequency and voltage settings of the DMC operating mode.
105 */
106 struct dmc_opp_table {
107 u32 freq_hz;
108 u32 volt_uv;
109 };
110
111 /**
112 * struct exynos5_dmc - main structure describing DMC device
113 * @dev: DMC device
114 * @df: devfreq device structure returned by devfreq framework
115 * @gov_data: configuration of devfreq governor
116 * @base_drexi0: DREX0 registers mapping
117 * @base_drexi1: DREX1 registers mapping
118 * @clk_regmap: regmap for clock controller registers
119 * @lock: protects curr_rate and frequency/voltage setting section
120 * @curr_rate: current frequency
121 * @curr_volt: current voltage
122 * @opp: OPP table
123 * @opp_count: number of 'opp' elements
124 * @timings_arr_size: number of 'timings' elements
125 * @timing_row: values for timing row register, for each OPP
126 * @timing_data: values for timing data register, for each OPP
127 * @timing_power: balues for timing power register, for each OPP
128 * @timings: DDR memory timings, from device tree
129 * @min_tck: DDR memory minimum timing values, from device tree
130 * @bypass_timing_row: value for timing row register for bypass timings
131 * @bypass_timing_data: value for timing data register for bypass timings
132 * @bypass_timing_power: value for timing power register for bypass
133 * timings
134 * @vdd_mif: Memory interface regulator
135 * @fout_spll: clock: SPLL
136 * @fout_bpll: clock: BPLL
137 * @mout_spll: clock: mux SPLL
138 * @mout_bpll: clock: mux BPLL
139 * @mout_mclk_cdrex: clock: mux mclk_cdrex
140 * @mout_mx_mspll_ccore: clock: mux mx_mspll_ccore
141 * @counter: devfreq events
142 * @num_counters: number of 'counter' elements
143 * @last_overflow_ts: time (in ns) of last overflow of each DREX
144 * @load: utilization in percents
145 * @total: total time between devfreq events
146 * @in_irq_mode: whether running in interrupt mode (true)
147 * or polling (false)
148 *
149 * The main structure for the Dynamic Memory Controller which covers clocks,
150 * memory regions, HW information, parameters and current operating mode.
151 */
152 struct exynos5_dmc {
153 struct device *dev;
154 struct devfreq *df;
155 struct devfreq_simple_ondemand_data gov_data;
156 void __iomem *base_drexi0;
157 void __iomem *base_drexi1;
158 struct regmap *clk_regmap;
159 /* Protects curr_rate and frequency/voltage setting section */
160 struct mutex lock;
161 unsigned long curr_rate;
162 unsigned long curr_volt;
163 struct dmc_opp_table *opp;
164 int opp_count;
165 u32 timings_arr_size;
166 u32 *timing_row;
167 u32 *timing_data;
168 u32 *timing_power;
169 const struct lpddr3_timings *timings;
170 const struct lpddr3_min_tck *min_tck;
171 u32 bypass_timing_row;
172 u32 bypass_timing_data;
173 u32 bypass_timing_power;
174 struct regulator *vdd_mif;
175 struct clk *fout_spll;
176 struct clk *fout_bpll;
177 struct clk *mout_spll;
178 struct clk *mout_bpll;
179 struct clk *mout_mclk_cdrex;
180 struct clk *mout_mx_mspll_ccore;
181 struct devfreq_event_dev **counter;
182 int num_counters;
183 u64 last_overflow_ts[2];
184 unsigned long load;
185 unsigned long total;
186 bool in_irq_mode;
187 };
188
189 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
190 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
191
192 #define TIMING_VAL2REG(timing, t_val) \
193 ({ \
194 u32 __val; \
195 __val = (t_val) << (timing)->bit_beg; \
196 __val; \
197 })
198
199 struct timing_reg {
200 char *name;
201 int bit_beg;
202 int bit_end;
203 unsigned int val;
204 };
205
206 static const struct timing_reg timing_row_reg_fields[] = {
207 TIMING_FIELD("tRFC", 24, 31),
208 TIMING_FIELD("tRRD", 20, 23),
209 TIMING_FIELD("tRP", 16, 19),
210 TIMING_FIELD("tRCD", 12, 15),
211 TIMING_FIELD("tRC", 6, 11),
212 TIMING_FIELD("tRAS", 0, 5),
213 };
214
215 static const struct timing_reg timing_data_reg_fields[] = {
216 TIMING_FIELD("tWTR", 28, 31),
217 TIMING_FIELD("tWR", 24, 27),
218 TIMING_FIELD("tRTP", 20, 23),
219 TIMING_FIELD("tW2W-C2C", 14, 14),
220 TIMING_FIELD("tR2R-C2C", 12, 12),
221 TIMING_FIELD("WL", 8, 11),
222 TIMING_FIELD("tDQSCK", 4, 7),
223 TIMING_FIELD("RL", 0, 3),
224 };
225
226 static const struct timing_reg timing_power_reg_fields[] = {
227 TIMING_FIELD("tFAW", 26, 31),
228 TIMING_FIELD("tXSR", 16, 25),
229 TIMING_FIELD("tXP", 8, 15),
230 TIMING_FIELD("tCKE", 4, 7),
231 TIMING_FIELD("tMRD", 0, 3),
232 };
233
234 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
235 ARRAY_SIZE(timing_data_reg_fields) + \
236 ARRAY_SIZE(timing_power_reg_fields))
237
exynos5_counters_set_event(struct exynos5_dmc * dmc)238 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
239 {
240 int i, ret;
241
242 for (i = 0; i < dmc->num_counters; i++) {
243 if (!dmc->counter[i])
244 continue;
245 ret = devfreq_event_set_event(dmc->counter[i]);
246 if (ret < 0)
247 return ret;
248 }
249 return 0;
250 }
251
exynos5_counters_enable_edev(struct exynos5_dmc * dmc)252 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
253 {
254 int i, ret;
255
256 for (i = 0; i < dmc->num_counters; i++) {
257 if (!dmc->counter[i])
258 continue;
259 ret = devfreq_event_enable_edev(dmc->counter[i]);
260 if (ret < 0)
261 return ret;
262 }
263 return 0;
264 }
265
exynos5_counters_disable_edev(struct exynos5_dmc * dmc)266 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
267 {
268 int i, ret;
269
270 for (i = 0; i < dmc->num_counters; i++) {
271 if (!dmc->counter[i])
272 continue;
273 ret = devfreq_event_disable_edev(dmc->counter[i]);
274 if (ret < 0)
275 return ret;
276 }
277 return 0;
278 }
279
280 /**
281 * find_target_freq_id() - Finds requested frequency in local DMC configuration
282 * @dmc: device for which the information is checked
283 * @target_rate: requested frequency in KHz
284 *
285 * Seeks in the local DMC driver structure for the requested frequency value
286 * and returns index or error value.
287 */
find_target_freq_idx(struct exynos5_dmc * dmc,unsigned long target_rate)288 static int find_target_freq_idx(struct exynos5_dmc *dmc,
289 unsigned long target_rate)
290 {
291 int i;
292
293 for (i = dmc->opp_count - 1; i >= 0; i--)
294 if (dmc->opp[i].freq_hz <= target_rate)
295 return i;
296
297 return -EINVAL;
298 }
299
300 /**
301 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
302 * @dmc: device for which the new settings is going to be applied
303 * @set: boolean variable passing set value
304 *
305 * Changes the register set, which holds timing parameters.
306 * There is two register sets: 0 and 1. The register set 0
307 * is used in normal operation when the clock is provided from main PLL.
308 * The bank register set 1 is used when the main PLL frequency is going to be
309 * changed and the clock is taken from alternative, stable source.
310 * This function switches between these banks according to the
311 * currently used clock source.
312 */
exynos5_switch_timing_regs(struct exynos5_dmc * dmc,bool set)313 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
314 {
315 unsigned int reg;
316 int ret;
317
318 ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, ®);
319 if (ret)
320 return ret;
321
322 if (set)
323 reg |= EXYNOS5_TIMING_SET_SWI;
324 else
325 reg &= ~EXYNOS5_TIMING_SET_SWI;
326
327 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
328
329 return 0;
330 }
331
332 /**
333 * exynos5_init_freq_table() - Initialized PM OPP framework
334 * @dmc: DMC device for which the frequencies are used for OPP init
335 * @profile: devfreq device's profile
336 *
337 * Populate the devfreq device's OPP table based on current frequency, voltage.
338 */
exynos5_init_freq_table(struct exynos5_dmc * dmc,struct devfreq_dev_profile * profile)339 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
340 struct devfreq_dev_profile *profile)
341 {
342 int i, ret;
343 int idx;
344 unsigned long freq;
345
346 ret = dev_pm_opp_of_add_table(dmc->dev);
347 if (ret < 0) {
348 dev_err(dmc->dev, "Failed to get OPP table\n");
349 return ret;
350 }
351
352 dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
353
354 dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
355 sizeof(struct dmc_opp_table), GFP_KERNEL);
356 if (!dmc->opp)
357 goto err_opp;
358
359 idx = dmc->opp_count - 1;
360 for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
361 struct dev_pm_opp *opp;
362
363 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
364 if (IS_ERR(opp))
365 goto err_opp;
366
367 dmc->opp[idx - i].freq_hz = freq;
368 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
369
370 dev_pm_opp_put(opp);
371 }
372
373 return 0;
374
375 err_opp:
376 dev_pm_opp_of_remove_table(dmc->dev);
377
378 return -EINVAL;
379 }
380
381 /**
382 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
383 * @dmc: device for which the new settings is going to be applied
384 *
385 * Low-level function for changing timings for DRAM memory clocking from
386 * 'bypass' clock source (fixed frequency @400MHz).
387 * It uses timing bank registers set 1.
388 */
exynos5_set_bypass_dram_timings(struct exynos5_dmc * dmc)389 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
390 {
391 writel(EXYNOS5_AREF_NORMAL,
392 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
393
394 writel(dmc->bypass_timing_row,
395 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
396 writel(dmc->bypass_timing_row,
397 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
398 writel(dmc->bypass_timing_data,
399 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
400 writel(dmc->bypass_timing_data,
401 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
402 writel(dmc->bypass_timing_power,
403 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
404 writel(dmc->bypass_timing_power,
405 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
406 }
407
408 /**
409 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
410 * @dmc: device for which the new settings is going to be applied
411 * @target_rate: target frequency of the DMC
412 *
413 * Low-level function for changing timings for DRAM memory operating from main
414 * clock source (BPLL), which can have different frequencies. Thus, each
415 * frequency must have corresponding timings register values in order to keep
416 * the needed delays.
417 * It uses timing bank registers set 0.
418 */
exynos5_dram_change_timings(struct exynos5_dmc * dmc,unsigned long target_rate)419 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
420 unsigned long target_rate)
421 {
422 int idx;
423
424 for (idx = dmc->opp_count - 1; idx >= 0; idx--)
425 if (dmc->opp[idx].freq_hz <= target_rate)
426 break;
427
428 if (idx < 0)
429 return -EINVAL;
430
431 writel(EXYNOS5_AREF_NORMAL,
432 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
433
434 writel(dmc->timing_row[idx],
435 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
436 writel(dmc->timing_row[idx],
437 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
438 writel(dmc->timing_data[idx],
439 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
440 writel(dmc->timing_data[idx],
441 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
442 writel(dmc->timing_power[idx],
443 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
444 writel(dmc->timing_power[idx],
445 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
446
447 return 0;
448 }
449
450 /**
451 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
452 * @dmc: device for which it is going to be set
453 * @target_volt: new voltage which is chosen to be final
454 *
455 * Function tries to align voltage to the safe level for 'normal' mode.
456 * It checks the need of higher voltage and changes the value. The target
457 * voltage might be lower that currently set and still the system will be
458 * stable.
459 */
exynos5_dmc_align_target_voltage(struct exynos5_dmc * dmc,unsigned long target_volt)460 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
461 unsigned long target_volt)
462 {
463 int ret = 0;
464
465 if (dmc->curr_volt <= target_volt)
466 return 0;
467
468 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
469 target_volt);
470 if (!ret)
471 dmc->curr_volt = target_volt;
472
473 return ret;
474 }
475
476 /**
477 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
478 * @dmc: device for which it is going to be set
479 * @target_volt: new voltage which is chosen to be final
480 *
481 * Function tries to align voltage to the safe level for the 'bypass' mode.
482 * It checks the need of higher voltage and changes the value.
483 * The target voltage must not be less than currently needed, because
484 * for current frequency the device might become unstable.
485 */
exynos5_dmc_align_bypass_voltage(struct exynos5_dmc * dmc,unsigned long target_volt)486 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
487 unsigned long target_volt)
488 {
489 int ret = 0;
490
491 if (dmc->curr_volt >= target_volt)
492 return 0;
493
494 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
495 target_volt);
496 if (!ret)
497 dmc->curr_volt = target_volt;
498
499 return ret;
500 }
501
502 /**
503 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
504 * @dmc: device for which it is going to be set
505 * @target_rate: new frequency which is chosen to be final
506 *
507 * Function changes the DRAM timings for the temporary 'bypass' mode.
508 */
exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc * dmc,unsigned long target_rate)509 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
510 unsigned long target_rate)
511 {
512 int idx = find_target_freq_idx(dmc, target_rate);
513
514 if (idx < 0)
515 return -EINVAL;
516
517 exynos5_set_bypass_dram_timings(dmc);
518
519 return 0;
520 }
521
522 /**
523 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
524 * @dmc: DMC device for which the switching is going to happen
525 * @target_rate: new frequency which is going to be set as a final
526 * @target_volt: new voltage which is going to be set as a final
527 *
528 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
529 * This mode is used only temporary but if required, changes voltage and timings
530 * for DRAM chips. It switches the main clock to stable clock source for the
531 * period of the main PLL reconfiguration.
532 */
533 static int
exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc * dmc,unsigned long target_rate,unsigned long target_volt)534 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
535 unsigned long target_rate,
536 unsigned long target_volt)
537 {
538 int ret;
539
540 /*
541 * Having higher voltage for a particular frequency does not harm
542 * the chip. Use it for the temporary frequency change when one
543 * voltage manipulation might be avoided.
544 */
545 ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
546 if (ret)
547 return ret;
548
549 /*
550 * Longer delays for DRAM does not cause crash, the opposite does.
551 */
552 ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
553 if (ret)
554 return ret;
555
556 /*
557 * Delays are long enough, so use them for the new coming clock.
558 */
559 ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
560
561 return ret;
562 }
563
564 /**
565 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
566 * using safe procedure
567 * @dmc: device for which the frequency is going to be changed
568 * @target_rate: requested new frequency
569 * @target_volt: requested voltage which corresponds to the new frequency
570 *
571 * The DMC frequency change procedure requires a few steps.
572 * The main requirement is to change the clock source in the clk mux
573 * for the time of main clock PLL locking. The assumption is that the
574 * alternative clock source set as parent is stable.
575 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
576 * clock. This requires alignment in DRAM timing parameters for the new
577 * T-period. There is two bank sets for keeping DRAM
578 * timings: set 0 and set 1. The set 0 is used when main clock source is
579 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
580 * the two bank sets is part of the process.
581 * The voltage must also be aligned to the minimum required level. There is
582 * this intermediate step with switching to 'bypass' parent clock source.
583 * if the old voltage is lower, it requires an increase of the voltage level.
584 * The complexity of the voltage manipulation is hidden in low level function.
585 * In this function there is last alignment of the voltage level at the end.
586 */
587 static int
exynos5_dmc_change_freq_and_volt(struct exynos5_dmc * dmc,unsigned long target_rate,unsigned long target_volt)588 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
589 unsigned long target_rate,
590 unsigned long target_volt)
591 {
592 int ret;
593
594 ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
595 target_volt);
596 if (ret)
597 return ret;
598
599 /*
600 * Voltage is set at least to a level needed for this frequency,
601 * so switching clock source is safe now.
602 */
603 clk_prepare_enable(dmc->fout_spll);
604 clk_prepare_enable(dmc->mout_spll);
605 clk_prepare_enable(dmc->mout_mx_mspll_ccore);
606
607 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
608 if (ret)
609 goto disable_clocks;
610
611 /*
612 * We are safe to increase the timings for current bypass frequency.
613 * Thanks to this the settings will be ready for the upcoming clock
614 * source change.
615 */
616 exynos5_dram_change_timings(dmc, target_rate);
617
618 clk_set_rate(dmc->fout_bpll, target_rate);
619
620 ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
621 if (ret)
622 goto disable_clocks;
623
624 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
625 if (ret)
626 goto disable_clocks;
627
628 /*
629 * Make sure if the voltage is not from 'bypass' settings and align to
630 * the right level for power efficiency.
631 */
632 ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
633
634 disable_clocks:
635 clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
636 clk_disable_unprepare(dmc->mout_spll);
637 clk_disable_unprepare(dmc->fout_spll);
638
639 return ret;
640 }
641
642 /**
643 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
644 * table.
645 * @dmc: device for which the frequency is going to be changed
646 * @freq: requested frequency in KHz
647 * @target_rate: returned frequency which is the same or lower than
648 * requested
649 * @target_volt: returned voltage which corresponds to the returned
650 * frequency
651 * @flags: devfreq flags provided for this frequency change request
652 *
653 * Function gets requested frequency and checks OPP framework for needed
654 * frequency and voltage. It populates the values 'target_rate' and
655 * 'target_volt' or returns error value when OPP framework fails.
656 */
exynos5_dmc_get_volt_freq(struct exynos5_dmc * dmc,unsigned long * freq,unsigned long * target_rate,unsigned long * target_volt,u32 flags)657 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
658 unsigned long *freq,
659 unsigned long *target_rate,
660 unsigned long *target_volt, u32 flags)
661 {
662 struct dev_pm_opp *opp;
663
664 opp = devfreq_recommended_opp(dmc->dev, freq, flags);
665 if (IS_ERR(opp))
666 return PTR_ERR(opp);
667
668 *target_rate = dev_pm_opp_get_freq(opp);
669 *target_volt = dev_pm_opp_get_voltage(opp);
670 dev_pm_opp_put(opp);
671
672 return 0;
673 }
674
675 /**
676 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
677 * @dev: device for which the frequency is going to be changed
678 * @freq: requested frequency in KHz
679 * @flags: flags provided for this frequency change request
680 *
681 * An entry function provided to the devfreq framework which provides frequency
682 * change of the DMC. The function gets the possible rate from OPP table based
683 * on requested frequency. It calls the next function responsible for the
684 * frequency and voltage change. In case of failure, does not set 'curr_rate'
685 * and returns error value to the framework.
686 */
exynos5_dmc_target(struct device * dev,unsigned long * freq,u32 flags)687 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
688 u32 flags)
689 {
690 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
691 unsigned long target_rate = 0;
692 unsigned long target_volt = 0;
693 int ret;
694
695 ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
696 flags);
697
698 if (ret)
699 return ret;
700
701 if (target_rate == dmc->curr_rate)
702 return 0;
703
704 mutex_lock(&dmc->lock);
705
706 ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
707
708 if (ret) {
709 mutex_unlock(&dmc->lock);
710 return ret;
711 }
712
713 dmc->curr_rate = target_rate;
714
715 mutex_unlock(&dmc->lock);
716 return 0;
717 }
718
719 /**
720 * exynos5_counters_get() - Gets the performance counters values.
721 * @dmc: device for which the counters are going to be checked
722 * @load_count: variable which is populated with counter value
723 * @total_count: variable which is used as 'wall clock' reference
724 *
725 * Function which provides performance counters values. It sums up counters for
726 * two DMC channels. The 'total_count' is used as a reference and max value.
727 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
728 */
exynos5_counters_get(struct exynos5_dmc * dmc,unsigned long * load_count,unsigned long * total_count)729 static int exynos5_counters_get(struct exynos5_dmc *dmc,
730 unsigned long *load_count,
731 unsigned long *total_count)
732 {
733 unsigned long total = 0;
734 struct devfreq_event_data event;
735 int ret, i;
736
737 *load_count = 0;
738
739 /* Take into account only read+write counters, but stop all */
740 for (i = 0; i < dmc->num_counters; i++) {
741 if (!dmc->counter[i])
742 continue;
743
744 ret = devfreq_event_get_event(dmc->counter[i], &event);
745 if (ret < 0)
746 return ret;
747
748 *load_count += event.load_count;
749
750 if (total < event.total_count)
751 total = event.total_count;
752 }
753
754 *total_count = total;
755
756 return 0;
757 }
758
759 /**
760 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
761 * @dmc: device for which the counters are going to be checked
762 * @beg_value: initial value for the counter
763 *
764 * Function which enables needed counters, interrupts and sets initial values
765 * then starts the counters.
766 */
exynos5_dmc_start_perf_events(struct exynos5_dmc * dmc,u32 beg_value)767 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
768 u32 beg_value)
769 {
770 /* Enable interrupts for counter 2 */
771 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
772 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
773
774 /* Enable counter 2 and CCNT */
775 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
776 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
777
778 /* Clear overflow flag for all counters */
779 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
780 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
781
782 /* Reset all counters */
783 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
784 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
785
786 /*
787 * Set start value for the counters, the number of samples that
788 * will be gathered is calculated as: 0xffffffff - beg_value
789 */
790 writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
791 writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
792
793 /* Start all counters */
794 writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
795 writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
796 }
797
798 /**
799 * exynos5_dmc_perf_events_calc() - Calculate utilization
800 * @dmc: device for which the counters are going to be checked
801 * @diff_ts: time between last interrupt and current one
802 *
803 * Function which calculates needed utilization for the devfreq governor.
804 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
805 * between interrupts, which approximates utilization.
806 */
exynos5_dmc_perf_events_calc(struct exynos5_dmc * dmc,u64 diff_ts)807 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
808 {
809 /*
810 * This is a simple algorithm for managing traffic on DMC.
811 * When there is almost no load the counters overflow every 4s,
812 * no mater the DMC frequency.
813 * The high load might be approximated using linear function.
814 * Knowing that, simple calculation can provide 'busy_time' and
815 * 'total_time' to the devfreq governor which picks up target
816 * frequency.
817 * We want a fast ramp up and slow decay in frequency change function.
818 */
819 if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
820 /*
821 * Set higher utilization for the simple_ondemand governor.
822 * The governor should increase the frequency of the DMC.
823 */
824 dmc->load = 70;
825 dmc->total = 100;
826 } else {
827 /*
828 * Set low utilization for the simple_ondemand governor.
829 * The governor should decrease the frequency of the DMC.
830 */
831 dmc->load = 35;
832 dmc->total = 100;
833 }
834
835 dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
836 }
837
838 /**
839 * exynos5_dmc_perf_events_check() - Checks the status of the counters
840 * @dmc: device for which the counters are going to be checked
841 *
842 * Function which is called from threaded IRQ to check the counters state
843 * and to call approximation for the needed utilization.
844 */
exynos5_dmc_perf_events_check(struct exynos5_dmc * dmc)845 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
846 {
847 u32 val;
848 u64 diff_ts, ts;
849
850 ts = ktime_get_ns();
851
852 /* Stop all counters */
853 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
854 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
855
856 /* Check the source in interrupt flag registers (which channel) */
857 val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
858 if (val) {
859 diff_ts = ts - dmc->last_overflow_ts[0];
860 dmc->last_overflow_ts[0] = ts;
861 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val);
862 } else {
863 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
864 diff_ts = ts - dmc->last_overflow_ts[1];
865 dmc->last_overflow_ts[1] = ts;
866 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val);
867 }
868
869 exynos5_dmc_perf_events_calc(dmc, diff_ts);
870
871 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
872 }
873
874 /**
875 * exynos5_dmc_enable_perf_events() - Enable performance events
876 * @dmc: device for which the counters are going to be checked
877 *
878 * Function which is setup needed environment and enables counters.
879 */
exynos5_dmc_enable_perf_events(struct exynos5_dmc * dmc)880 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
881 {
882 u64 ts;
883
884 /* Enable Performance Event Clock */
885 writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
886 writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
887
888 /* Select read transfers as performance event2 */
889 writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
890 writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
891
892 ts = ktime_get_ns();
893 dmc->last_overflow_ts[0] = ts;
894 dmc->last_overflow_ts[1] = ts;
895
896 /* Devfreq shouldn't be faster than initialization, play safe though. */
897 dmc->load = 99;
898 dmc->total = 100;
899 }
900
901 /**
902 * exynos5_dmc_disable_perf_events() - Disable performance events
903 * @dmc: device for which the counters are going to be checked
904 *
905 * Function which stops, disables performance event counters and interrupts.
906 */
exynos5_dmc_disable_perf_events(struct exynos5_dmc * dmc)907 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
908 {
909 /* Stop all counters */
910 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
911 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
912
913 /* Disable interrupts for counter 2 */
914 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
915 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
916
917 /* Disable counter 2 and CCNT */
918 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
919 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
920
921 /* Clear overflow flag for all counters */
922 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
923 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
924 }
925
926 /**
927 * exynos5_dmc_get_status() - Read current DMC performance statistics.
928 * @dev: device for which the statistics are requested
929 * @stat: structure which has statistic fields
930 *
931 * Function reads the DMC performance counters and calculates 'busy_time'
932 * and 'total_time'. To protect from overflow, the values are shifted right
933 * by 10. After read out the counters are setup to count again.
934 */
exynos5_dmc_get_status(struct device * dev,struct devfreq_dev_status * stat)935 static int exynos5_dmc_get_status(struct device *dev,
936 struct devfreq_dev_status *stat)
937 {
938 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
939 unsigned long load, total;
940 int ret;
941
942 if (dmc->in_irq_mode) {
943 mutex_lock(&dmc->lock);
944 stat->current_frequency = dmc->curr_rate;
945 mutex_unlock(&dmc->lock);
946
947 stat->busy_time = dmc->load;
948 stat->total_time = dmc->total;
949 } else {
950 ret = exynos5_counters_get(dmc, &load, &total);
951 if (ret < 0)
952 return -EINVAL;
953
954 /* To protect from overflow, divide by 1024 */
955 stat->busy_time = load >> 10;
956 stat->total_time = total >> 10;
957
958 ret = exynos5_counters_set_event(dmc);
959 if (ret < 0) {
960 dev_err(dev, "could not set event counter\n");
961 return ret;
962 }
963 }
964
965 return 0;
966 }
967
968 /**
969 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
970 * @dev: device for which the framework checks operating frequency
971 * @freq: returned frequency value
972 *
973 * It returns the currently used frequency of the DMC. The real operating
974 * frequency might be lower when the clock source value could not be divided
975 * to the requested value.
976 */
exynos5_dmc_get_cur_freq(struct device * dev,unsigned long * freq)977 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
978 {
979 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
980
981 mutex_lock(&dmc->lock);
982 *freq = dmc->curr_rate;
983 mutex_unlock(&dmc->lock);
984
985 return 0;
986 }
987
988 /*
989 * exynos5_dmc_df_profile - Devfreq governor's profile structure
990 *
991 * It provides to the devfreq framework needed functions and polling period.
992 */
993 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
994 .timer = DEVFREQ_TIMER_DELAYED,
995 .target = exynos5_dmc_target,
996 .get_dev_status = exynos5_dmc_get_status,
997 .get_cur_freq = exynos5_dmc_get_cur_freq,
998 };
999
1000 /**
1001 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
1002 * @dmc: device for which the frequency is going to be set
1003 * @bootloader_init_freq: initial frequency set by the bootloader in KHz
1004 *
1005 * The initial bootloader frequency, which is present during boot, might be
1006 * different that supported frequency values in the driver. It is possible
1007 * due to different PLL settings or used PLL as a source.
1008 * This function provides the 'initial_freq' for the devfreq framework
1009 * statistics engine which supports only registered values. Thus, some alignment
1010 * must be made.
1011 */
1012 static unsigned long
exynos5_dmc_align_init_freq(struct exynos5_dmc * dmc,unsigned long bootloader_init_freq)1013 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1014 unsigned long bootloader_init_freq)
1015 {
1016 unsigned long aligned_freq;
1017 int idx;
1018
1019 idx = find_target_freq_idx(dmc, bootloader_init_freq);
1020 if (idx >= 0)
1021 aligned_freq = dmc->opp[idx].freq_hz;
1022 else
1023 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1024
1025 return aligned_freq;
1026 }
1027
1028 /**
1029 * create_timings_aligned() - Create register values and align with standard
1030 * @dmc: device for which the frequency is going to be set
1031 * @reg_timing_row: array to fill with values for timing row register
1032 * @reg_timing_data: array to fill with values for timing data register
1033 * @reg_timing_power: array to fill with values for timing power register
1034 * @clk_period_ps: the period of the clock, known as tCK
1035 *
1036 * The function calculates timings and creates a register value ready for
1037 * a frequency transition. The register contains a few timings. They are
1038 * shifted by a known offset. The timing value is calculated based on memory
1039 * specyfication: minimal time required and minimal cycles required.
1040 */
create_timings_aligned(struct exynos5_dmc * dmc,u32 * reg_timing_row,u32 * reg_timing_data,u32 * reg_timing_power,u32 clk_period_ps)1041 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1042 u32 *reg_timing_data, u32 *reg_timing_power,
1043 u32 clk_period_ps)
1044 {
1045 u32 val;
1046 const struct timing_reg *reg;
1047
1048 if (clk_period_ps == 0)
1049 return -EINVAL;
1050
1051 *reg_timing_row = 0;
1052 *reg_timing_data = 0;
1053 *reg_timing_power = 0;
1054
1055 val = dmc->timings->tRFC / clk_period_ps;
1056 val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1057 val = max(val, dmc->min_tck->tRFC);
1058 reg = &timing_row_reg_fields[0];
1059 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1060
1061 val = dmc->timings->tRRD / clk_period_ps;
1062 val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1063 val = max(val, dmc->min_tck->tRRD);
1064 reg = &timing_row_reg_fields[1];
1065 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1066
1067 val = dmc->timings->tRPab / clk_period_ps;
1068 val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1069 val = max(val, dmc->min_tck->tRPab);
1070 reg = &timing_row_reg_fields[2];
1071 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1072
1073 val = dmc->timings->tRCD / clk_period_ps;
1074 val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1075 val = max(val, dmc->min_tck->tRCD);
1076 reg = &timing_row_reg_fields[3];
1077 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1078
1079 val = dmc->timings->tRC / clk_period_ps;
1080 val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1081 val = max(val, dmc->min_tck->tRC);
1082 reg = &timing_row_reg_fields[4];
1083 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1084
1085 val = dmc->timings->tRAS / clk_period_ps;
1086 val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1087 val = max(val, dmc->min_tck->tRAS);
1088 reg = &timing_row_reg_fields[5];
1089 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1090
1091 /* data related timings */
1092 val = dmc->timings->tWTR / clk_period_ps;
1093 val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1094 val = max(val, dmc->min_tck->tWTR);
1095 reg = &timing_data_reg_fields[0];
1096 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1097
1098 val = dmc->timings->tWR / clk_period_ps;
1099 val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1100 val = max(val, dmc->min_tck->tWR);
1101 reg = &timing_data_reg_fields[1];
1102 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1103
1104 val = dmc->timings->tRTP / clk_period_ps;
1105 val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1106 val = max(val, dmc->min_tck->tRTP);
1107 reg = &timing_data_reg_fields[2];
1108 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1109
1110 val = dmc->timings->tW2W_C2C / clk_period_ps;
1111 val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1112 val = max(val, dmc->min_tck->tW2W_C2C);
1113 reg = &timing_data_reg_fields[3];
1114 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1115
1116 val = dmc->timings->tR2R_C2C / clk_period_ps;
1117 val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1118 val = max(val, dmc->min_tck->tR2R_C2C);
1119 reg = &timing_data_reg_fields[4];
1120 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1121
1122 val = dmc->timings->tWL / clk_period_ps;
1123 val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1124 val = max(val, dmc->min_tck->tWL);
1125 reg = &timing_data_reg_fields[5];
1126 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1127
1128 val = dmc->timings->tDQSCK / clk_period_ps;
1129 val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1130 val = max(val, dmc->min_tck->tDQSCK);
1131 reg = &timing_data_reg_fields[6];
1132 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1133
1134 val = dmc->timings->tRL / clk_period_ps;
1135 val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1136 val = max(val, dmc->min_tck->tRL);
1137 reg = &timing_data_reg_fields[7];
1138 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1139
1140 /* power related timings */
1141 val = dmc->timings->tFAW / clk_period_ps;
1142 val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1143 val = max(val, dmc->min_tck->tFAW);
1144 reg = &timing_power_reg_fields[0];
1145 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1146
1147 val = dmc->timings->tXSR / clk_period_ps;
1148 val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1149 val = max(val, dmc->min_tck->tXSR);
1150 reg = &timing_power_reg_fields[1];
1151 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1152
1153 val = dmc->timings->tXP / clk_period_ps;
1154 val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1155 val = max(val, dmc->min_tck->tXP);
1156 reg = &timing_power_reg_fields[2];
1157 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1158
1159 val = dmc->timings->tCKE / clk_period_ps;
1160 val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1161 val = max(val, dmc->min_tck->tCKE);
1162 reg = &timing_power_reg_fields[3];
1163 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1164
1165 val = dmc->timings->tMRD / clk_period_ps;
1166 val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1167 val = max(val, dmc->min_tck->tMRD);
1168 reg = &timing_power_reg_fields[4];
1169 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1170
1171 return 0;
1172 }
1173
1174 /**
1175 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1176 * @dmc: device for which the frequency is going to be set
1177 *
1178 * The function parses DT entries with DRAM information.
1179 */
of_get_dram_timings(struct exynos5_dmc * dmc)1180 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1181 {
1182 int ret = 0;
1183 int idx;
1184 struct device_node *np_ddr;
1185 u32 freq_mhz, clk_period_ps;
1186
1187 np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1188 if (!np_ddr) {
1189 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1190 return -EINVAL;
1191 }
1192
1193 dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1194 sizeof(u32), GFP_KERNEL);
1195 if (!dmc->timing_row)
1196 return -ENOMEM;
1197
1198 dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1199 sizeof(u32), GFP_KERNEL);
1200 if (!dmc->timing_data)
1201 return -ENOMEM;
1202
1203 dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1204 sizeof(u32), GFP_KERNEL);
1205 if (!dmc->timing_power)
1206 return -ENOMEM;
1207
1208 dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1209 DDR_TYPE_LPDDR3,
1210 &dmc->timings_arr_size);
1211 if (!dmc->timings) {
1212 of_node_put(np_ddr);
1213 dev_warn(dmc->dev, "could not get timings from DT\n");
1214 return -EINVAL;
1215 }
1216
1217 dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1218 if (!dmc->min_tck) {
1219 of_node_put(np_ddr);
1220 dev_warn(dmc->dev, "could not get tck from DT\n");
1221 return -EINVAL;
1222 }
1223
1224 /* Sorted array of OPPs with frequency ascending */
1225 for (idx = 0; idx < dmc->opp_count; idx++) {
1226 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1227 clk_period_ps = 1000000 / freq_mhz;
1228
1229 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1230 &dmc->timing_data[idx],
1231 &dmc->timing_power[idx],
1232 clk_period_ps);
1233 }
1234
1235 of_node_put(np_ddr);
1236
1237 /* Take the highest frequency's timings as 'bypass' */
1238 dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1239 dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1240 dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1241
1242 return ret;
1243 }
1244
1245 /**
1246 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1247 * @dmc: DMC structure containing needed fields
1248 *
1249 * Get the needed clocks defined in DT device, enable and set the right parents.
1250 * Read current frequency and initialize the initial rate for governor.
1251 */
exynos5_dmc_init_clks(struct exynos5_dmc * dmc)1252 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1253 {
1254 int ret;
1255 unsigned long target_volt = 0;
1256 unsigned long target_rate = 0;
1257 unsigned int tmp;
1258
1259 dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1260 if (IS_ERR(dmc->fout_spll))
1261 return PTR_ERR(dmc->fout_spll);
1262
1263 dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1264 if (IS_ERR(dmc->fout_bpll))
1265 return PTR_ERR(dmc->fout_bpll);
1266
1267 dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1268 if (IS_ERR(dmc->mout_mclk_cdrex))
1269 return PTR_ERR(dmc->mout_mclk_cdrex);
1270
1271 dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1272 if (IS_ERR(dmc->mout_bpll))
1273 return PTR_ERR(dmc->mout_bpll);
1274
1275 dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1276 "mout_mx_mspll_ccore");
1277 if (IS_ERR(dmc->mout_mx_mspll_ccore))
1278 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1279
1280 dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1281 if (IS_ERR(dmc->mout_spll)) {
1282 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1283 if (IS_ERR(dmc->mout_spll))
1284 return PTR_ERR(dmc->mout_spll);
1285 }
1286
1287 /*
1288 * Convert frequency to KHz values and set it for the governor.
1289 */
1290 dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1291 dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1292 exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1293
1294 ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1295 &target_volt, 0);
1296 if (ret)
1297 return ret;
1298
1299 dmc->curr_volt = target_volt;
1300
1301 ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1302 if (ret)
1303 return ret;
1304
1305 clk_prepare_enable(dmc->fout_bpll);
1306 clk_prepare_enable(dmc->mout_bpll);
1307
1308 /*
1309 * Some bootloaders do not set clock routes correctly.
1310 * Stop one path in clocks to PHY.
1311 */
1312 regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1313 tmp &= ~(BIT(1) | BIT(0));
1314 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1321 * @dmc: DMC for which it does the setup
1322 *
1323 * Initialization of performance counters in DMC for estimating usage.
1324 * The counter's values are used for calculation of a memory bandwidth and based
1325 * on that the governor changes the frequency.
1326 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1327 */
exynos5_performance_counters_init(struct exynos5_dmc * dmc)1328 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1329 {
1330 int counters_size;
1331 int ret, i;
1332
1333 dmc->num_counters = devfreq_event_get_edev_count(dmc->dev,
1334 "devfreq-events");
1335 if (dmc->num_counters < 0) {
1336 dev_err(dmc->dev, "could not get devfreq-event counters\n");
1337 return dmc->num_counters;
1338 }
1339
1340 counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1341 dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1342 if (!dmc->counter)
1343 return -ENOMEM;
1344
1345 for (i = 0; i < dmc->num_counters; i++) {
1346 dmc->counter[i] =
1347 devfreq_event_get_edev_by_phandle(dmc->dev,
1348 "devfreq-events", i);
1349 if (IS_ERR_OR_NULL(dmc->counter[i]))
1350 return -EPROBE_DEFER;
1351 }
1352
1353 ret = exynos5_counters_enable_edev(dmc);
1354 if (ret < 0) {
1355 dev_err(dmc->dev, "could not enable event counter\n");
1356 return ret;
1357 }
1358
1359 ret = exynos5_counters_set_event(dmc);
1360 if (ret < 0) {
1361 exynos5_counters_disable_edev(dmc);
1362 dev_err(dmc->dev, "could not set event counter\n");
1363 return ret;
1364 }
1365
1366 return 0;
1367 }
1368
1369 /**
1370 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1371 * @dmc: device which is used for changing this feature
1372 *
1373 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1374 * changes its configuration. In such situation access to the memory is blocked
1375 * in DMC automatically. This feature is used when clock frequency change
1376 * request appears and touches clock tree.
1377 */
exynos5_dmc_set_pause_on_switching(struct exynos5_dmc * dmc)1378 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1379 {
1380 unsigned int val;
1381 int ret;
1382
1383 ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1384 if (ret)
1385 return ret;
1386
1387 val |= 1UL;
1388 regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1389
1390 return 0;
1391 }
1392
dmc_irq_thread(int irq,void * priv)1393 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1394 {
1395 int res;
1396 struct exynos5_dmc *dmc = priv;
1397
1398 mutex_lock(&dmc->df->lock);
1399 exynos5_dmc_perf_events_check(dmc);
1400 res = update_devfreq(dmc->df);
1401 mutex_unlock(&dmc->df->lock);
1402
1403 if (res)
1404 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1405
1406 return IRQ_HANDLED;
1407 }
1408
1409 /**
1410 * exynos5_dmc_probe() - Probe function for the DMC driver
1411 * @pdev: platform device for which the driver is going to be initialized
1412 *
1413 * Initialize basic components: clocks, regulators, performance counters, etc.
1414 * Read out product version and based on the information setup
1415 * internal structures for the controller (frequency and voltage) and for DRAM
1416 * memory parameters: timings for each operating frequency.
1417 * Register new devfreq device for controlling DVFS of the DMC.
1418 */
exynos5_dmc_probe(struct platform_device * pdev)1419 static int exynos5_dmc_probe(struct platform_device *pdev)
1420 {
1421 int ret = 0;
1422 struct device *dev = &pdev->dev;
1423 struct device_node *np = dev->of_node;
1424 struct exynos5_dmc *dmc;
1425 int irq[2];
1426
1427 dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1428 if (!dmc)
1429 return -ENOMEM;
1430
1431 mutex_init(&dmc->lock);
1432
1433 dmc->dev = dev;
1434 platform_set_drvdata(pdev, dmc);
1435
1436 dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1437 if (IS_ERR(dmc->base_drexi0))
1438 return PTR_ERR(dmc->base_drexi0);
1439
1440 dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1441 if (IS_ERR(dmc->base_drexi1))
1442 return PTR_ERR(dmc->base_drexi1);
1443
1444 dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1445 "samsung,syscon-clk");
1446 if (IS_ERR(dmc->clk_regmap))
1447 return PTR_ERR(dmc->clk_regmap);
1448
1449 ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1450 if (ret) {
1451 dev_warn(dev, "couldn't initialize frequency settings\n");
1452 return ret;
1453 }
1454
1455 dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1456 if (IS_ERR(dmc->vdd_mif)) {
1457 ret = PTR_ERR(dmc->vdd_mif);
1458 return ret;
1459 }
1460
1461 ret = exynos5_dmc_init_clks(dmc);
1462 if (ret)
1463 return ret;
1464
1465 ret = of_get_dram_timings(dmc);
1466 if (ret) {
1467 dev_warn(dev, "couldn't initialize timings settings\n");
1468 goto remove_clocks;
1469 }
1470
1471 ret = exynos5_dmc_set_pause_on_switching(dmc);
1472 if (ret) {
1473 dev_warn(dev, "couldn't get access to PAUSE register\n");
1474 goto remove_clocks;
1475 }
1476
1477 /* There is two modes in which the driver works: polling or IRQ */
1478 irq[0] = platform_get_irq_byname(pdev, "drex_0");
1479 irq[1] = platform_get_irq_byname(pdev, "drex_1");
1480 if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1481 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1482 dmc_irq_thread, IRQF_ONESHOT,
1483 dev_name(dev), dmc);
1484 if (ret) {
1485 dev_err(dev, "couldn't grab IRQ\n");
1486 goto remove_clocks;
1487 }
1488
1489 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1490 dmc_irq_thread, IRQF_ONESHOT,
1491 dev_name(dev), dmc);
1492 if (ret) {
1493 dev_err(dev, "couldn't grab IRQ\n");
1494 goto remove_clocks;
1495 }
1496
1497 /*
1498 * Setup default thresholds for the devfreq governor.
1499 * The values are chosen based on experiments.
1500 */
1501 dmc->gov_data.upthreshold = 55;
1502 dmc->gov_data.downdifferential = 5;
1503
1504 exynos5_dmc_enable_perf_events(dmc);
1505
1506 dmc->in_irq_mode = 1;
1507 } else {
1508 ret = exynos5_performance_counters_init(dmc);
1509 if (ret) {
1510 dev_warn(dev, "couldn't probe performance counters\n");
1511 goto remove_clocks;
1512 }
1513
1514 /*
1515 * Setup default thresholds for the devfreq governor.
1516 * The values are chosen based on experiments.
1517 */
1518 dmc->gov_data.upthreshold = 10;
1519 dmc->gov_data.downdifferential = 5;
1520
1521 exynos5_dmc_df_profile.polling_ms = 100;
1522 }
1523
1524 dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1525 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1526 &dmc->gov_data);
1527
1528 if (IS_ERR(dmc->df)) {
1529 ret = PTR_ERR(dmc->df);
1530 goto err_devfreq_add;
1531 }
1532
1533 if (dmc->in_irq_mode)
1534 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1535
1536 dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1537
1538 return 0;
1539
1540 err_devfreq_add:
1541 if (dmc->in_irq_mode)
1542 exynos5_dmc_disable_perf_events(dmc);
1543 else
1544 exynos5_counters_disable_edev(dmc);
1545 remove_clocks:
1546 clk_disable_unprepare(dmc->mout_bpll);
1547 clk_disable_unprepare(dmc->fout_bpll);
1548
1549 return ret;
1550 }
1551
1552 /**
1553 * exynos5_dmc_remove() - Remove function for the platform device
1554 * @pdev: platform device which is going to be removed
1555 *
1556 * The function relies on 'devm' framework function which automatically
1557 * clean the device's resources. It just calls explicitly disable function for
1558 * the performance counters.
1559 */
exynos5_dmc_remove(struct platform_device * pdev)1560 static int exynos5_dmc_remove(struct platform_device *pdev)
1561 {
1562 struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1563
1564 if (dmc->in_irq_mode)
1565 exynos5_dmc_disable_perf_events(dmc);
1566 else
1567 exynos5_counters_disable_edev(dmc);
1568
1569 clk_disable_unprepare(dmc->mout_bpll);
1570 clk_disable_unprepare(dmc->fout_bpll);
1571
1572 dev_pm_opp_remove_table(dmc->dev);
1573
1574 return 0;
1575 }
1576
1577 static const struct of_device_id exynos5_dmc_of_match[] = {
1578 { .compatible = "samsung,exynos5422-dmc", },
1579 { },
1580 };
1581 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1582
1583 static struct platform_driver exynos5_dmc_platdrv = {
1584 .probe = exynos5_dmc_probe,
1585 .remove = exynos5_dmc_remove,
1586 .driver = {
1587 .name = "exynos5-dmc",
1588 .of_match_table = exynos5_dmc_of_match,
1589 },
1590 };
1591 module_platform_driver(exynos5_dmc_platdrv);
1592 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1593 MODULE_LICENSE("GPL v2");
1594 MODULE_AUTHOR("Lukasz Luba");
1595