• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11 
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/genalloc.h>
15 
16 #define HL_MMU_DEBUG	0
17 
18 /*
19  * The va ranges in context object contain a list with the available chunks of
20  * device virtual memory.
21  * There is one range for host allocations and one for DRAM allocations.
22  *
23  * On initialization each range contains one chunk of all of its available
24  * virtual range which is a half of the total device virtual range.
25  *
26  * On each mapping of physical pages, a suitable virtual range chunk (with a
27  * minimum size) is selected from the list. If the chunk size equals the
28  * requested size, the chunk is returned. Otherwise, the chunk is split into
29  * two chunks - one to return as result and a remainder to stay in the list.
30  *
31  * On each Unmapping of a virtual address, the relevant virtual chunk is
32  * returned to the list. The chunk is added to the list and if its edges match
33  * the edges of the adjacent chunks (means a contiguous chunk can be created),
34  * the chunks are merged.
35  *
36  * On finish, the list is checked to have only one chunk of all the relevant
37  * virtual range (which is a half of the device total virtual range).
38  * If not (means not all mappings were unmapped), a warning is printed.
39  */
40 
41 /*
42  * alloc_device_memory - allocate device memory
43  *
44  * @ctx                 : current context
45  * @args                : host parameters containing the requested size
46  * @ret_handle          : result handle
47  *
48  * This function does the following:
49  * - Allocate the requested size rounded up to 2MB pages
50  * - Return unique handle
51  */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)52 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
53 				u32 *ret_handle)
54 {
55 	struct hl_device *hdev = ctx->hdev;
56 	struct hl_vm *vm = &hdev->vm;
57 	struct hl_vm_phys_pg_pack *phys_pg_pack;
58 	u64 paddr = 0, total_size, num_pgs, i;
59 	u32 num_curr_pgs, page_size, page_shift;
60 	int handle, rc;
61 	bool contiguous;
62 
63 	num_curr_pgs = 0;
64 	page_size = hdev->asic_prop.dram_page_size;
65 	page_shift = __ffs(page_size);
66 	num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
67 	total_size = num_pgs << page_shift;
68 
69 	if (!total_size) {
70 		dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
71 		return -EINVAL;
72 	}
73 
74 	contiguous = args->flags & HL_MEM_CONTIGUOUS;
75 
76 	if (contiguous) {
77 		paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
78 		if (!paddr) {
79 			dev_err(hdev->dev,
80 				"failed to allocate %llu contiguous pages with total size of %llu\n",
81 				num_pgs, total_size);
82 			return -ENOMEM;
83 		}
84 	}
85 
86 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
87 	if (!phys_pg_pack) {
88 		rc = -ENOMEM;
89 		goto pages_pack_err;
90 	}
91 
92 	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
93 	phys_pg_pack->asid = ctx->asid;
94 	phys_pg_pack->npages = num_pgs;
95 	phys_pg_pack->page_size = page_size;
96 	phys_pg_pack->total_size = total_size;
97 	phys_pg_pack->flags = args->flags;
98 	phys_pg_pack->contiguous = contiguous;
99 
100 	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
101 	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
102 		rc = -ENOMEM;
103 		goto pages_arr_err;
104 	}
105 
106 	if (phys_pg_pack->contiguous) {
107 		for (i = 0 ; i < num_pgs ; i++)
108 			phys_pg_pack->pages[i] = paddr + i * page_size;
109 	} else {
110 		for (i = 0 ; i < num_pgs ; i++) {
111 			phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
112 							vm->dram_pg_pool,
113 							page_size);
114 			if (!phys_pg_pack->pages[i]) {
115 				dev_err(hdev->dev,
116 					"Failed to allocate device memory (out of memory)\n");
117 				rc = -ENOMEM;
118 				goto page_err;
119 			}
120 
121 			num_curr_pgs++;
122 		}
123 	}
124 
125 	spin_lock(&vm->idr_lock);
126 	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
127 				GFP_ATOMIC);
128 	spin_unlock(&vm->idr_lock);
129 
130 	if (handle < 0) {
131 		dev_err(hdev->dev, "Failed to get handle for page\n");
132 		rc = -EFAULT;
133 		goto idr_err;
134 	}
135 
136 	for (i = 0 ; i < num_pgs ; i++)
137 		kref_get(&vm->dram_pg_pool_refcount);
138 
139 	phys_pg_pack->handle = handle;
140 
141 	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
142 	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
143 
144 	*ret_handle = handle;
145 
146 	return 0;
147 
148 idr_err:
149 page_err:
150 	if (!phys_pg_pack->contiguous)
151 		for (i = 0 ; i < num_curr_pgs ; i++)
152 			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
153 					page_size);
154 
155 	kvfree(phys_pg_pack->pages);
156 pages_arr_err:
157 	kfree(phys_pg_pack);
158 pages_pack_err:
159 	if (contiguous)
160 		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
161 
162 	return rc;
163 }
164 
165 /*
166  * dma_map_host_va - DMA mapping of the given host virtual address.
167  * @hdev: habanalabs device structure
168  * @addr: the host virtual address of the memory area
169  * @size: the size of the memory area
170  * @p_userptr: pointer to result userptr structure
171  *
172  * This function does the following:
173  * - Allocate userptr structure
174  * - Pin the given host memory using the userptr structure
175  * - Perform DMA mapping to have the DMA addresses of the pages
176  */
dma_map_host_va(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr ** p_userptr)177 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
178 				struct hl_userptr **p_userptr)
179 {
180 	struct hl_userptr *userptr;
181 	int rc;
182 
183 	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
184 	if (!userptr) {
185 		rc = -ENOMEM;
186 		goto userptr_err;
187 	}
188 
189 	rc = hl_pin_host_memory(hdev, addr, size, userptr);
190 	if (rc) {
191 		dev_err(hdev->dev, "Failed to pin host memory\n");
192 		goto pin_err;
193 	}
194 
195 	rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
196 					userptr->sgt->nents, DMA_BIDIRECTIONAL);
197 	if (rc) {
198 		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
199 		goto dma_map_err;
200 	}
201 
202 	userptr->dma_mapped = true;
203 	userptr->dir = DMA_BIDIRECTIONAL;
204 	userptr->vm_type = VM_TYPE_USERPTR;
205 
206 	*p_userptr = userptr;
207 
208 	return 0;
209 
210 dma_map_err:
211 	hl_unpin_host_memory(hdev, userptr);
212 pin_err:
213 	kfree(userptr);
214 userptr_err:
215 
216 	return rc;
217 }
218 
219 /*
220  * dma_unmap_host_va - DMA unmapping of the given host virtual address.
221  * @hdev: habanalabs device structure
222  * @userptr: userptr to free
223  *
224  * This function does the following:
225  * - Unpins the physical pages
226  * - Frees the userptr structure
227  */
dma_unmap_host_va(struct hl_device * hdev,struct hl_userptr * userptr)228 static void dma_unmap_host_va(struct hl_device *hdev,
229 				struct hl_userptr *userptr)
230 {
231 	hl_unpin_host_memory(hdev, userptr);
232 	kfree(userptr);
233 }
234 
235 /*
236  * dram_pg_pool_do_release - free DRAM pages pool
237  *
238  * @ref                 : pointer to reference object
239  *
240  * This function does the following:
241  * - Frees the idr structure of physical pages handles
242  * - Frees the generic pool of DRAM physical pages
243  */
dram_pg_pool_do_release(struct kref * ref)244 static void dram_pg_pool_do_release(struct kref *ref)
245 {
246 	struct hl_vm *vm = container_of(ref, struct hl_vm,
247 			dram_pg_pool_refcount);
248 
249 	/*
250 	 * free the idr here as only here we know for sure that there are no
251 	 * allocated physical pages and hence there are no handles in use
252 	 */
253 	idr_destroy(&vm->phys_pg_pack_handles);
254 	gen_pool_destroy(vm->dram_pg_pool);
255 }
256 
257 /*
258  * free_phys_pg_pack - free physical page pack
259  * @hdev: habanalabs device structure
260  * @phys_pg_pack: physical page pack to free
261  *
262  * This function does the following:
263  * - For DRAM memory only, iterate over the pack and free each physical block
264  *   structure by returning it to the general pool
265  * - Free the hl_vm_phys_pg_pack structure
266  */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)267 static void free_phys_pg_pack(struct hl_device *hdev,
268 				struct hl_vm_phys_pg_pack *phys_pg_pack)
269 {
270 	struct hl_vm *vm = &hdev->vm;
271 	u64 i;
272 
273 	if (!phys_pg_pack->created_from_userptr) {
274 		if (phys_pg_pack->contiguous) {
275 			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
276 					phys_pg_pack->total_size);
277 
278 			for (i = 0; i < phys_pg_pack->npages ; i++)
279 				kref_put(&vm->dram_pg_pool_refcount,
280 					dram_pg_pool_do_release);
281 		} else {
282 			for (i = 0 ; i < phys_pg_pack->npages ; i++) {
283 				gen_pool_free(vm->dram_pg_pool,
284 						phys_pg_pack->pages[i],
285 						phys_pg_pack->page_size);
286 				kref_put(&vm->dram_pg_pool_refcount,
287 					dram_pg_pool_do_release);
288 			}
289 		}
290 	}
291 
292 	kvfree(phys_pg_pack->pages);
293 	kfree(phys_pg_pack);
294 }
295 
296 /*
297  * free_device_memory - free device memory
298  *
299  * @ctx                  : current context
300  * @handle              : handle of the memory chunk to free
301  *
302  * This function does the following:
303  * - Free the device memory related to the given handle
304  */
free_device_memory(struct hl_ctx * ctx,u32 handle)305 static int free_device_memory(struct hl_ctx *ctx, u32 handle)
306 {
307 	struct hl_device *hdev = ctx->hdev;
308 	struct hl_vm *vm = &hdev->vm;
309 	struct hl_vm_phys_pg_pack *phys_pg_pack;
310 
311 	spin_lock(&vm->idr_lock);
312 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
313 	if (phys_pg_pack) {
314 		if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
315 			dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
316 				handle);
317 			spin_unlock(&vm->idr_lock);
318 			return -EINVAL;
319 		}
320 
321 		/*
322 		 * must remove from idr before the freeing of the physical
323 		 * pages as the refcount of the pool is also the trigger of the
324 		 * idr destroy
325 		 */
326 		idr_remove(&vm->phys_pg_pack_handles, handle);
327 		spin_unlock(&vm->idr_lock);
328 
329 		atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
330 		atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
331 
332 		free_phys_pg_pack(hdev, phys_pg_pack);
333 	} else {
334 		spin_unlock(&vm->idr_lock);
335 		dev_err(hdev->dev,
336 			"free device memory failed, no match for handle %u\n",
337 			handle);
338 		return -EINVAL;
339 	}
340 
341 	return 0;
342 }
343 
344 /*
345  * clear_va_list_locked - free virtual addresses list
346  *
347  * @hdev                : habanalabs device structure
348  * @va_list             : list of virtual addresses to free
349  *
350  * This function does the following:
351  * - Iterate over the list and free each virtual addresses block
352  *
353  * This function should be called only when va_list lock is taken
354  */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)355 static void clear_va_list_locked(struct hl_device *hdev,
356 		struct list_head *va_list)
357 {
358 	struct hl_vm_va_block *va_block, *tmp;
359 
360 	list_for_each_entry_safe(va_block, tmp, va_list, node) {
361 		list_del(&va_block->node);
362 		kfree(va_block);
363 	}
364 }
365 
366 /*
367  * print_va_list_locked    - print virtual addresses list
368  *
369  * @hdev                : habanalabs device structure
370  * @va_list             : list of virtual addresses to print
371  *
372  * This function does the following:
373  * - Iterate over the list and print each virtual addresses block
374  *
375  * This function should be called only when va_list lock is taken
376  */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)377 static void print_va_list_locked(struct hl_device *hdev,
378 		struct list_head *va_list)
379 {
380 #if HL_MMU_DEBUG
381 	struct hl_vm_va_block *va_block;
382 
383 	dev_dbg(hdev->dev, "print va list:\n");
384 
385 	list_for_each_entry(va_block, va_list, node)
386 		dev_dbg(hdev->dev,
387 			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
388 			va_block->start, va_block->end, va_block->size);
389 #endif
390 }
391 
392 /*
393  * merge_va_blocks_locked - merge a virtual block if possible
394  *
395  * @hdev                : pointer to the habanalabs device structure
396  * @va_list             : pointer to the virtual addresses block list
397  * @va_block            : virtual block to merge with adjacent blocks
398  *
399  * This function does the following:
400  * - Merge the given blocks with the adjacent blocks if their virtual ranges
401  *   create a contiguous virtual range
402  *
403  * This Function should be called only when va_list lock is taken
404  */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)405 static void merge_va_blocks_locked(struct hl_device *hdev,
406 		struct list_head *va_list, struct hl_vm_va_block *va_block)
407 {
408 	struct hl_vm_va_block *prev, *next;
409 
410 	prev = list_prev_entry(va_block, node);
411 	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
412 		prev->end = va_block->end;
413 		prev->size = prev->end - prev->start;
414 		list_del(&va_block->node);
415 		kfree(va_block);
416 		va_block = prev;
417 	}
418 
419 	next = list_next_entry(va_block, node);
420 	if (&next->node != va_list && va_block->end + 1 == next->start) {
421 		next->start = va_block->start;
422 		next->size = next->end - next->start;
423 		list_del(&va_block->node);
424 		kfree(va_block);
425 	}
426 }
427 
428 /*
429  * add_va_block_locked - add a virtual block to the virtual addresses list
430  *
431  * @hdev                : pointer to the habanalabs device structure
432  * @va_list             : pointer to the virtual addresses block list
433  * @start               : start virtual address
434  * @end                 : end virtual address
435  *
436  * This function does the following:
437  * - Add the given block to the virtual blocks list and merge with other
438  * blocks if a contiguous virtual block can be created
439  *
440  * This Function should be called only when va_list lock is taken
441  */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)442 static int add_va_block_locked(struct hl_device *hdev,
443 		struct list_head *va_list, u64 start, u64 end)
444 {
445 	struct hl_vm_va_block *va_block, *res = NULL;
446 	u64 size = end - start;
447 
448 	print_va_list_locked(hdev, va_list);
449 
450 	list_for_each_entry(va_block, va_list, node) {
451 		/* TODO: remove upon matureness */
452 		if (hl_mem_area_crosses_range(start, size, va_block->start,
453 				va_block->end)) {
454 			dev_err(hdev->dev,
455 				"block crossing ranges at start 0x%llx, end 0x%llx\n",
456 				va_block->start, va_block->end);
457 			return -EINVAL;
458 		}
459 
460 		if (va_block->end < start)
461 			res = va_block;
462 	}
463 
464 	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
465 	if (!va_block)
466 		return -ENOMEM;
467 
468 	va_block->start = start;
469 	va_block->end = end;
470 	va_block->size = size;
471 
472 	if (!res)
473 		list_add(&va_block->node, va_list);
474 	else
475 		list_add(&va_block->node, &res->node);
476 
477 	merge_va_blocks_locked(hdev, va_list, va_block);
478 
479 	print_va_list_locked(hdev, va_list);
480 
481 	return 0;
482 }
483 
484 /*
485  * add_va_block - wrapper for add_va_block_locked
486  *
487  * @hdev                : pointer to the habanalabs device structure
488  * @va_list             : pointer to the virtual addresses block list
489  * @start               : start virtual address
490  * @end                 : end virtual address
491  *
492  * This function does the following:
493  * - Takes the list lock and calls add_va_block_locked
494  */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)495 static inline int add_va_block(struct hl_device *hdev,
496 		struct hl_va_range *va_range, u64 start, u64 end)
497 {
498 	int rc;
499 
500 	mutex_lock(&va_range->lock);
501 	rc = add_va_block_locked(hdev, &va_range->list, start, end);
502 	mutex_unlock(&va_range->lock);
503 
504 	return rc;
505 }
506 
507 /*
508  * get_va_block() - get a virtual block for the given size and alignment.
509  * @hdev: pointer to the habanalabs device structure.
510  * @va_range: pointer to the virtual addresses range.
511  * @size: requested block size.
512  * @hint_addr: hint for requested address by the user.
513  * @va_block_align: required alignment of the virtual block start address.
514  *
515  * This function does the following:
516  * - Iterate on the virtual block list to find a suitable virtual block for the
517  *   given size and alignment.
518  * - Reserve the requested block and update the list.
519  * - Return the start address of the virtual block.
520  */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,u32 va_block_align)521 static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range,
522 			u64 size, u64 hint_addr, u32 va_block_align)
523 {
524 	struct hl_vm_va_block *va_block, *new_va_block = NULL;
525 	u64 valid_start, valid_size, prev_start, prev_end, align_mask,
526 		res_valid_start = 0, res_valid_size = 0;
527 	bool add_prev = false;
528 
529 	align_mask = ~((u64)va_block_align - 1);
530 
531 	/* check if hint_addr is aligned */
532 	if (hint_addr & (va_block_align - 1))
533 		hint_addr = 0;
534 
535 	mutex_lock(&va_range->lock);
536 
537 	print_va_list_locked(hdev, &va_range->list);
538 
539 	list_for_each_entry(va_block, &va_range->list, node) {
540 		/* calc the first possible aligned addr */
541 		valid_start = va_block->start;
542 
543 		if (valid_start & (va_block_align - 1)) {
544 			valid_start &= align_mask;
545 			valid_start += va_block_align;
546 			if (valid_start > va_block->end)
547 				continue;
548 		}
549 
550 		valid_size = va_block->end - valid_start;
551 
552 		if (valid_size >= size &&
553 			(!new_va_block || valid_size < res_valid_size)) {
554 			new_va_block = va_block;
555 			res_valid_start = valid_start;
556 			res_valid_size = valid_size;
557 		}
558 
559 		if (hint_addr && hint_addr >= valid_start &&
560 				((hint_addr + size) <= va_block->end)) {
561 			new_va_block = va_block;
562 			res_valid_start = hint_addr;
563 			res_valid_size = valid_size;
564 			break;
565 		}
566 	}
567 
568 	if (!new_va_block) {
569 		dev_err(hdev->dev, "no available va block for size %llu\n",
570 				size);
571 		goto out;
572 	}
573 
574 	if (res_valid_start > new_va_block->start) {
575 		prev_start = new_va_block->start;
576 		prev_end = res_valid_start - 1;
577 
578 		new_va_block->start = res_valid_start;
579 		new_va_block->size = res_valid_size;
580 
581 		add_prev = true;
582 	}
583 
584 	if (new_va_block->size > size) {
585 		new_va_block->start += size;
586 		new_va_block->size = new_va_block->end - new_va_block->start;
587 	} else {
588 		list_del(&new_va_block->node);
589 		kfree(new_va_block);
590 	}
591 
592 	if (add_prev)
593 		add_va_block_locked(hdev, &va_range->list, prev_start,
594 				prev_end);
595 
596 	print_va_list_locked(hdev, &va_range->list);
597 out:
598 	mutex_unlock(&va_range->lock);
599 
600 	return res_valid_start;
601 }
602 
603 /*
604  * get_sg_info - get number of pages and the DMA address from SG list
605  *
606  * @sg                 : the SG list
607  * @dma_addr           : pointer to DMA address to return
608  *
609  * Calculate the number of consecutive pages described by the SG list. Take the
610  * offset of the address in the first page, add to it the length and round it up
611  * to the number of needed pages.
612  */
get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)613 static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
614 {
615 	*dma_addr = sg_dma_address(sg);
616 
617 	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
618 			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
619 }
620 
621 /*
622  * init_phys_pg_pack_from_userptr - initialize physical page pack from host
623  *                                  memory
624  * @ctx: current context
625  * @userptr: userptr to initialize from
626  * @pphys_pg_pack: result pointer
627  *
628  * This function does the following:
629  * - Pin the physical pages related to the given virtual block
630  * - Create a physical page pack from the physical pages related to the given
631  *   virtual block
632  */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack)633 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
634 				struct hl_userptr *userptr,
635 				struct hl_vm_phys_pg_pack **pphys_pg_pack)
636 {
637 	struct hl_vm_phys_pg_pack *phys_pg_pack;
638 	struct scatterlist *sg;
639 	dma_addr_t dma_addr;
640 	u64 page_mask, total_npages;
641 	u32 npages, page_size = PAGE_SIZE,
642 		huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
643 	bool first = true, is_huge_page_opt = true;
644 	int rc, i, j;
645 	u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
646 
647 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
648 	if (!phys_pg_pack)
649 		return -ENOMEM;
650 
651 	phys_pg_pack->vm_type = userptr->vm_type;
652 	phys_pg_pack->created_from_userptr = true;
653 	phys_pg_pack->asid = ctx->asid;
654 	atomic_set(&phys_pg_pack->mapping_cnt, 1);
655 
656 	/* Only if all dma_addrs are aligned to 2MB and their
657 	 * sizes is at least 2MB, we can use huge page mapping.
658 	 * We limit the 2MB optimization to this condition,
659 	 * since later on we acquire the related VA range as one
660 	 * consecutive block.
661 	 */
662 	total_npages = 0;
663 	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
664 		npages = get_sg_info(sg, &dma_addr);
665 
666 		total_npages += npages;
667 
668 		if ((npages % pgs_in_huge_page) ||
669 					(dma_addr & (huge_page_size - 1)))
670 			is_huge_page_opt = false;
671 	}
672 
673 	if (is_huge_page_opt) {
674 		page_size = huge_page_size;
675 		do_div(total_npages, pgs_in_huge_page);
676 	}
677 
678 	page_mask = ~(((u64) page_size) - 1);
679 
680 	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
681 						GFP_KERNEL);
682 	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
683 		rc = -ENOMEM;
684 		goto page_pack_arr_mem_err;
685 	}
686 
687 	phys_pg_pack->npages = total_npages;
688 	phys_pg_pack->page_size = page_size;
689 	phys_pg_pack->total_size = total_npages * page_size;
690 
691 	j = 0;
692 	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
693 		npages = get_sg_info(sg, &dma_addr);
694 
695 		/* align down to physical page size and save the offset */
696 		if (first) {
697 			first = false;
698 			phys_pg_pack->offset = dma_addr & (page_size - 1);
699 			dma_addr &= page_mask;
700 		}
701 
702 		while (npages) {
703 			phys_pg_pack->pages[j++] = dma_addr;
704 			dma_addr += page_size;
705 
706 			if (is_huge_page_opt)
707 				npages -= pgs_in_huge_page;
708 			else
709 				npages--;
710 		}
711 	}
712 
713 	*pphys_pg_pack = phys_pg_pack;
714 
715 	return 0;
716 
717 page_pack_arr_mem_err:
718 	kfree(phys_pg_pack);
719 
720 	return rc;
721 }
722 
723 /*
724  * map_phys_pg_pack - maps the physical page pack.
725  * @ctx: current context
726  * @vaddr: start address of the virtual area to map from
727  * @phys_pg_pack: the pack of physical pages to map to
728  *
729  * This function does the following:
730  * - Maps each chunk of virtual memory to matching physical chunk
731  * - Stores number of successful mappings in the given argument
732  * - Returns 0 on success, error code otherwise
733  */
map_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)734 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
735 				struct hl_vm_phys_pg_pack *phys_pg_pack)
736 {
737 	struct hl_device *hdev = ctx->hdev;
738 	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
739 	u32 page_size = phys_pg_pack->page_size;
740 	int rc = 0;
741 
742 	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
743 		paddr = phys_pg_pack->pages[i];
744 
745 		rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size,
746 				(i + 1) == phys_pg_pack->npages);
747 		if (rc) {
748 			dev_err(hdev->dev,
749 				"map failed for handle %u, npages: %llu, mapped: %llu",
750 				phys_pg_pack->handle, phys_pg_pack->npages,
751 				mapped_pg_cnt);
752 			goto err;
753 		}
754 
755 		mapped_pg_cnt++;
756 		next_vaddr += page_size;
757 	}
758 
759 	return 0;
760 
761 err:
762 	next_vaddr = vaddr;
763 	for (i = 0 ; i < mapped_pg_cnt ; i++) {
764 		if (hl_mmu_unmap(ctx, next_vaddr, page_size,
765 					(i + 1) == mapped_pg_cnt))
766 			dev_warn_ratelimited(hdev->dev,
767 				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
768 					phys_pg_pack->handle, next_vaddr,
769 					phys_pg_pack->pages[i], page_size);
770 
771 		next_vaddr += page_size;
772 	}
773 
774 	return rc;
775 }
776 
777 /*
778  * unmap_phys_pg_pack - unmaps the physical page pack
779  * @ctx: current context
780  * @vaddr: start address of the virtual area to unmap
781  * @phys_pg_pack: the pack of physical pages to unmap
782  */
unmap_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)783 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
784 				struct hl_vm_phys_pg_pack *phys_pg_pack)
785 {
786 	struct hl_device *hdev = ctx->hdev;
787 	u64 next_vaddr, i;
788 	u32 page_size;
789 
790 	page_size = phys_pg_pack->page_size;
791 	next_vaddr = vaddr;
792 
793 	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
794 		if (hl_mmu_unmap(ctx, next_vaddr, page_size,
795 				       (i + 1) == phys_pg_pack->npages))
796 			dev_warn_ratelimited(hdev->dev,
797 			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
798 
799 		/*
800 		 * unmapping on Palladium can be really long, so avoid a CPU
801 		 * soft lockup bug by sleeping a little between unmapping pages
802 		 */
803 		if (hdev->pldm)
804 			usleep_range(500, 1000);
805 	}
806 }
807 
get_paddr_from_handle(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * paddr)808 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
809 				u64 *paddr)
810 {
811 	struct hl_device *hdev = ctx->hdev;
812 	struct hl_vm *vm = &hdev->vm;
813 	struct hl_vm_phys_pg_pack *phys_pg_pack;
814 	u32 handle;
815 
816 	handle = lower_32_bits(args->map_device.handle);
817 	spin_lock(&vm->idr_lock);
818 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
819 	if (!phys_pg_pack) {
820 		spin_unlock(&vm->idr_lock);
821 		dev_err(hdev->dev, "no match for handle %u\n", handle);
822 		return -EINVAL;
823 	}
824 
825 	*paddr = phys_pg_pack->pages[0];
826 
827 	spin_unlock(&vm->idr_lock);
828 
829 	return 0;
830 }
831 
832 /*
833  * map_device_va - map the given memory
834  *
835  * @ctx	         : current context
836  * @args         : host parameters with handle/host virtual address
837  * @device_addr	 : pointer to result device virtual address
838  *
839  * This function does the following:
840  * - If given a physical device memory handle, map to a device virtual block
841  *   and return the start address of this block
842  * - If given a host virtual address and size, find the related physical pages,
843  *   map a device virtual block to this pages and return the start address of
844  *   this block
845  */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)846 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
847 		u64 *device_addr)
848 {
849 	struct hl_device *hdev = ctx->hdev;
850 	struct hl_vm *vm = &hdev->vm;
851 	struct hl_vm_phys_pg_pack *phys_pg_pack;
852 	struct hl_userptr *userptr = NULL;
853 	struct hl_vm_hash_node *hnode;
854 	struct hl_va_range *va_range;
855 	enum vm_type_t *vm_type;
856 	u64 ret_vaddr, hint_addr;
857 	u32 handle = 0, va_block_align;
858 	int rc;
859 	bool is_userptr = args->flags & HL_MEM_USERPTR;
860 
861 	/* Assume failure */
862 	*device_addr = 0;
863 
864 	if (is_userptr) {
865 		u64 addr = args->map_host.host_virt_addr,
866 			size = args->map_host.mem_size;
867 		u32 page_size = hdev->asic_prop.pmmu.page_size,
868 			huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
869 
870 		rc = dma_map_host_va(hdev, addr, size, &userptr);
871 		if (rc) {
872 			dev_err(hdev->dev, "failed to get userptr from va\n");
873 			return rc;
874 		}
875 
876 		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
877 				&phys_pg_pack);
878 		if (rc) {
879 			dev_err(hdev->dev,
880 				"unable to init page pack for vaddr 0x%llx\n",
881 				addr);
882 			goto init_page_pack_err;
883 		}
884 
885 		vm_type = (enum vm_type_t *) userptr;
886 		hint_addr = args->map_host.hint_addr;
887 		handle = phys_pg_pack->handle;
888 
889 		/* get required alignment */
890 		if (phys_pg_pack->page_size == page_size) {
891 			va_range = ctx->host_va_range;
892 
893 			/*
894 			 * huge page alignment may be needed in case of regular
895 			 * page mapping, depending on the host VA alignment
896 			 */
897 			if (addr & (huge_page_size - 1))
898 				va_block_align = page_size;
899 			else
900 				va_block_align = huge_page_size;
901 		} else {
902 			/*
903 			 * huge page alignment is needed in case of huge page
904 			 * mapping
905 			 */
906 			va_range = ctx->host_huge_va_range;
907 			va_block_align = huge_page_size;
908 		}
909 	} else {
910 		handle = lower_32_bits(args->map_device.handle);
911 
912 		spin_lock(&vm->idr_lock);
913 		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
914 		if (!phys_pg_pack) {
915 			spin_unlock(&vm->idr_lock);
916 			dev_err(hdev->dev,
917 				"no match for handle %u\n", handle);
918 			return -EINVAL;
919 		}
920 
921 		/* increment now to avoid freeing device memory while mapping */
922 		atomic_inc(&phys_pg_pack->mapping_cnt);
923 
924 		spin_unlock(&vm->idr_lock);
925 
926 		vm_type = (enum vm_type_t *) phys_pg_pack;
927 
928 		hint_addr = args->map_device.hint_addr;
929 
930 		/* DRAM VA alignment is the same as the DRAM page size */
931 		va_range = ctx->dram_va_range;
932 		va_block_align = hdev->asic_prop.dmmu.page_size;
933 	}
934 
935 	/*
936 	 * relevant for mapping device physical memory only, as host memory is
937 	 * implicitly shared
938 	 */
939 	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
940 			phys_pg_pack->asid != ctx->asid) {
941 		dev_err(hdev->dev,
942 			"Failed to map memory, handle %u is not shared\n",
943 			handle);
944 		rc = -EPERM;
945 		goto shared_err;
946 	}
947 
948 	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
949 	if (!hnode) {
950 		rc = -ENOMEM;
951 		goto hnode_err;
952 	}
953 
954 	ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
955 					hint_addr, va_block_align);
956 	if (!ret_vaddr) {
957 		dev_err(hdev->dev, "no available va block for handle %u\n",
958 				handle);
959 		rc = -ENOMEM;
960 		goto va_block_err;
961 	}
962 
963 	mutex_lock(&ctx->mmu_lock);
964 
965 	rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
966 	if (rc) {
967 		mutex_unlock(&ctx->mmu_lock);
968 		dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
969 				handle);
970 		goto map_err;
971 	}
972 
973 	rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, false, *vm_type);
974 
975 	mutex_unlock(&ctx->mmu_lock);
976 
977 	if (rc) {
978 		dev_err(hdev->dev,
979 			"mapping handle %u failed due to MMU cache invalidation\n",
980 			handle);
981 		goto map_err;
982 	}
983 
984 	ret_vaddr += phys_pg_pack->offset;
985 
986 	hnode->ptr = vm_type;
987 	hnode->vaddr = ret_vaddr;
988 
989 	mutex_lock(&ctx->mem_hash_lock);
990 	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
991 	mutex_unlock(&ctx->mem_hash_lock);
992 
993 	*device_addr = ret_vaddr;
994 
995 	if (is_userptr)
996 		free_phys_pg_pack(hdev, phys_pg_pack);
997 
998 	return 0;
999 
1000 map_err:
1001 	if (add_va_block(hdev, va_range, ret_vaddr,
1002 				ret_vaddr + phys_pg_pack->total_size - 1))
1003 		dev_warn(hdev->dev,
1004 			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1005 				handle, ret_vaddr);
1006 
1007 va_block_err:
1008 	kfree(hnode);
1009 hnode_err:
1010 shared_err:
1011 	atomic_dec(&phys_pg_pack->mapping_cnt);
1012 	if (is_userptr)
1013 		free_phys_pg_pack(hdev, phys_pg_pack);
1014 init_page_pack_err:
1015 	if (is_userptr)
1016 		dma_unmap_host_va(hdev, userptr);
1017 
1018 	return rc;
1019 }
1020 
1021 /*
1022  * unmap_device_va      - unmap the given device virtual address
1023  *
1024  * @ctx                 : current context
1025  * @vaddr               : device virtual address to unmap
1026  * @ctx_free            : true if in context free flow, false otherwise.
1027  *
1028  * This function does the following:
1029  * - Unmap the physical pages related to the given virtual address
1030  * - return the device virtual block to the virtual block list
1031  */
unmap_device_va(struct hl_ctx * ctx,u64 vaddr,bool ctx_free)1032 static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
1033 {
1034 	struct hl_device *hdev = ctx->hdev;
1035 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1036 	struct hl_vm_hash_node *hnode = NULL;
1037 	struct hl_userptr *userptr = NULL;
1038 	struct hl_va_range *va_range;
1039 	enum vm_type_t *vm_type;
1040 	bool is_userptr;
1041 	int rc = 0;
1042 
1043 	/* protect from double entrance */
1044 	mutex_lock(&ctx->mem_hash_lock);
1045 	hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1046 		if (vaddr == hnode->vaddr)
1047 			break;
1048 
1049 	if (!hnode) {
1050 		mutex_unlock(&ctx->mem_hash_lock);
1051 		dev_err(hdev->dev,
1052 			"unmap failed, no mem hnode for vaddr 0x%llx\n",
1053 			vaddr);
1054 		return -EINVAL;
1055 	}
1056 
1057 	hash_del(&hnode->node);
1058 	mutex_unlock(&ctx->mem_hash_lock);
1059 
1060 	vm_type = hnode->ptr;
1061 
1062 	if (*vm_type == VM_TYPE_USERPTR) {
1063 		is_userptr = true;
1064 		userptr = hnode->ptr;
1065 		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1066 							&phys_pg_pack);
1067 		if (rc) {
1068 			dev_err(hdev->dev,
1069 				"unable to init page pack for vaddr 0x%llx\n",
1070 				vaddr);
1071 			goto vm_type_err;
1072 		}
1073 
1074 		if (phys_pg_pack->page_size ==
1075 					hdev->asic_prop.pmmu.page_size)
1076 			va_range = ctx->host_va_range;
1077 		else
1078 			va_range = ctx->host_huge_va_range;
1079 	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1080 		is_userptr = false;
1081 		va_range = ctx->dram_va_range;
1082 		phys_pg_pack = hnode->ptr;
1083 	} else {
1084 		dev_warn(hdev->dev,
1085 			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1086 				vaddr);
1087 		rc = -EFAULT;
1088 		goto vm_type_err;
1089 	}
1090 
1091 	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1092 		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1093 		rc = -EINVAL;
1094 		goto mapping_cnt_err;
1095 	}
1096 
1097 	vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1098 
1099 	mutex_lock(&ctx->mmu_lock);
1100 
1101 	unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1102 
1103 	/*
1104 	 * During context free this function is called in a loop to clean all
1105 	 * the context mappings. Hence the cache invalidation can be called once
1106 	 * at the loop end rather than for each iteration
1107 	 */
1108 	if (!ctx_free)
1109 		rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, true,
1110 								*vm_type);
1111 
1112 	mutex_unlock(&ctx->mmu_lock);
1113 
1114 	/*
1115 	 * If the context is closing we don't need to check for the MMU cache
1116 	 * invalidation return code and update the VA free list as in this flow
1117 	 * we invalidate the MMU cache outside of this unmap function and the VA
1118 	 * free list will be freed anyway.
1119 	 */
1120 	if (!ctx_free) {
1121 		int tmp_rc;
1122 
1123 		if (rc)
1124 			dev_err(hdev->dev,
1125 				"unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
1126 				vaddr);
1127 
1128 		tmp_rc = add_va_block(hdev, va_range, vaddr,
1129 					vaddr + phys_pg_pack->total_size - 1);
1130 		if (tmp_rc) {
1131 			dev_warn(hdev->dev,
1132 					"add va block failed for vaddr: 0x%llx\n",
1133 					vaddr);
1134 			if (!rc)
1135 				rc = tmp_rc;
1136 		}
1137 	}
1138 
1139 	atomic_dec(&phys_pg_pack->mapping_cnt);
1140 	kfree(hnode);
1141 
1142 	if (is_userptr) {
1143 		free_phys_pg_pack(hdev, phys_pg_pack);
1144 		dma_unmap_host_va(hdev, userptr);
1145 	}
1146 
1147 	return rc;
1148 
1149 mapping_cnt_err:
1150 	if (is_userptr)
1151 		free_phys_pg_pack(hdev, phys_pg_pack);
1152 vm_type_err:
1153 	mutex_lock(&ctx->mem_hash_lock);
1154 	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1155 	mutex_unlock(&ctx->mem_hash_lock);
1156 
1157 	return rc;
1158 }
1159 
mem_ioctl_no_mmu(struct hl_fpriv * hpriv,union hl_mem_args * args)1160 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1161 {
1162 	struct hl_device *hdev = hpriv->hdev;
1163 	struct hl_ctx *ctx = hpriv->ctx;
1164 	u64 device_addr = 0;
1165 	u32 handle = 0;
1166 	int rc;
1167 
1168 	switch (args->in.op) {
1169 	case HL_MEM_OP_ALLOC:
1170 		if (args->in.alloc.mem_size == 0) {
1171 			dev_err(hdev->dev,
1172 				"alloc size must be larger than 0\n");
1173 			rc = -EINVAL;
1174 			goto out;
1175 		}
1176 
1177 		/* Force contiguous as there are no real MMU
1178 		 * translations to overcome physical memory gaps
1179 		 */
1180 		args->in.flags |= HL_MEM_CONTIGUOUS;
1181 		rc = alloc_device_memory(ctx, &args->in, &handle);
1182 
1183 		memset(args, 0, sizeof(*args));
1184 		args->out.handle = (__u64) handle;
1185 		break;
1186 
1187 	case HL_MEM_OP_FREE:
1188 		rc = free_device_memory(ctx, args->in.free.handle);
1189 		break;
1190 
1191 	case HL_MEM_OP_MAP:
1192 		if (args->in.flags & HL_MEM_USERPTR) {
1193 			device_addr = args->in.map_host.host_virt_addr;
1194 			rc = 0;
1195 		} else {
1196 			rc = get_paddr_from_handle(ctx, &args->in,
1197 					&device_addr);
1198 		}
1199 
1200 		memset(args, 0, sizeof(*args));
1201 		args->out.device_virt_addr = device_addr;
1202 		break;
1203 
1204 	case HL_MEM_OP_UNMAP:
1205 		rc = 0;
1206 		break;
1207 
1208 	default:
1209 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1210 		rc = -ENOTTY;
1211 		break;
1212 	}
1213 
1214 out:
1215 	return rc;
1216 }
1217 
hl_mem_ioctl(struct hl_fpriv * hpriv,void * data)1218 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1219 {
1220 	union hl_mem_args *args = data;
1221 	struct hl_device *hdev = hpriv->hdev;
1222 	struct hl_ctx *ctx = hpriv->ctx;
1223 	u64 device_addr = 0;
1224 	u32 handle = 0;
1225 	int rc;
1226 
1227 	if (hl_device_disabled_or_in_reset(hdev)) {
1228 		dev_warn_ratelimited(hdev->dev,
1229 			"Device is %s. Can't execute MEMORY IOCTL\n",
1230 			atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
1231 		return -EBUSY;
1232 	}
1233 
1234 	if (!hdev->mmu_enable)
1235 		return mem_ioctl_no_mmu(hpriv, args);
1236 
1237 	switch (args->in.op) {
1238 	case HL_MEM_OP_ALLOC:
1239 		if (!hdev->dram_supports_virtual_memory) {
1240 			dev_err(hdev->dev, "DRAM alloc is not supported\n");
1241 			rc = -EINVAL;
1242 			goto out;
1243 		}
1244 
1245 		if (args->in.alloc.mem_size == 0) {
1246 			dev_err(hdev->dev,
1247 				"alloc size must be larger than 0\n");
1248 			rc = -EINVAL;
1249 			goto out;
1250 		}
1251 		rc = alloc_device_memory(ctx, &args->in, &handle);
1252 
1253 		memset(args, 0, sizeof(*args));
1254 		args->out.handle = (__u64) handle;
1255 		break;
1256 
1257 	case HL_MEM_OP_FREE:
1258 		rc = free_device_memory(ctx, args->in.free.handle);
1259 		break;
1260 
1261 	case HL_MEM_OP_MAP:
1262 		rc = map_device_va(ctx, &args->in, &device_addr);
1263 
1264 		memset(args, 0, sizeof(*args));
1265 		args->out.device_virt_addr = device_addr;
1266 		break;
1267 
1268 	case HL_MEM_OP_UNMAP:
1269 		rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr,
1270 					false);
1271 		break;
1272 
1273 	default:
1274 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1275 		rc = -ENOTTY;
1276 		break;
1277 	}
1278 
1279 out:
1280 	return rc;
1281 }
1282 
get_user_memory(struct hl_device * hdev,u64 addr,u64 size,u32 npages,u64 start,u32 offset,struct hl_userptr * userptr)1283 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
1284 				u32 npages, u64 start, u32 offset,
1285 				struct hl_userptr *userptr)
1286 {
1287 	int rc;
1288 
1289 	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1290 		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1291 		return -EFAULT;
1292 	}
1293 
1294 	userptr->vec = frame_vector_create(npages);
1295 	if (!userptr->vec) {
1296 		dev_err(hdev->dev, "Failed to create frame vector\n");
1297 		return -ENOMEM;
1298 	}
1299 
1300 	rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1301 				userptr->vec);
1302 
1303 	if (rc != npages) {
1304 		dev_err(hdev->dev,
1305 			"Failed to map host memory, user ptr probably wrong\n");
1306 		if (rc < 0)
1307 			goto destroy_framevec;
1308 		rc = -EFAULT;
1309 		goto put_framevec;
1310 	}
1311 
1312 	if (frame_vector_to_pages(userptr->vec) < 0) {
1313 		dev_err(hdev->dev,
1314 			"Failed to translate frame vector to pages\n");
1315 		rc = -EFAULT;
1316 		goto put_framevec;
1317 	}
1318 
1319 	rc = sg_alloc_table_from_pages(userptr->sgt,
1320 					frame_vector_pages(userptr->vec),
1321 					npages, offset, size, GFP_ATOMIC);
1322 	if (rc < 0) {
1323 		dev_err(hdev->dev, "failed to create SG table from pages\n");
1324 		goto put_framevec;
1325 	}
1326 
1327 	return 0;
1328 
1329 put_framevec:
1330 	put_vaddr_frames(userptr->vec);
1331 destroy_framevec:
1332 	frame_vector_destroy(userptr->vec);
1333 	return rc;
1334 }
1335 
1336 /*
1337  * hl_pin_host_memory - pins a chunk of host memory.
1338  * @hdev: pointer to the habanalabs device structure
1339  * @addr: the host virtual address of the memory area
1340  * @size: the size of the memory area
1341  * @userptr: pointer to hl_userptr structure
1342  *
1343  * This function does the following:
1344  * - Pins the physical pages
1345  * - Create an SG list from those pages
1346  */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)1347 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1348 					struct hl_userptr *userptr)
1349 {
1350 	u64 start, end;
1351 	u32 npages, offset;
1352 	int rc;
1353 
1354 	if (!size) {
1355 		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1356 		return -EINVAL;
1357 	}
1358 
1359 	/*
1360 	 * If the combination of the address and size requested for this memory
1361 	 * region causes an integer overflow, return error.
1362 	 */
1363 	if (((addr + size) < addr) ||
1364 			PAGE_ALIGN(addr + size) < (addr + size)) {
1365 		dev_err(hdev->dev,
1366 			"user pointer 0x%llx + %llu causes integer overflow\n",
1367 			addr, size);
1368 		return -EINVAL;
1369 	}
1370 
1371 	/*
1372 	 * This function can be called also from data path, hence use atomic
1373 	 * always as it is not a big allocation.
1374 	 */
1375 	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1376 	if (!userptr->sgt)
1377 		return -ENOMEM;
1378 
1379 	start = addr & PAGE_MASK;
1380 	offset = addr & ~PAGE_MASK;
1381 	end = PAGE_ALIGN(addr + size);
1382 	npages = (end - start) >> PAGE_SHIFT;
1383 
1384 	userptr->size = size;
1385 	userptr->addr = addr;
1386 	userptr->dma_mapped = false;
1387 	INIT_LIST_HEAD(&userptr->job_node);
1388 
1389 	rc = get_user_memory(hdev, addr, size, npages, start, offset,
1390 				userptr);
1391 	if (rc) {
1392 		dev_err(hdev->dev,
1393 			"failed to get user memory for address 0x%llx\n",
1394 			addr);
1395 		goto free_sgt;
1396 	}
1397 
1398 	hl_debugfs_add_userptr(hdev, userptr);
1399 
1400 	return 0;
1401 
1402 free_sgt:
1403 	kfree(userptr->sgt);
1404 	return rc;
1405 }
1406 
1407 /*
1408  * hl_unpin_host_memory - unpins a chunk of host memory.
1409  * @hdev: pointer to the habanalabs device structure
1410  * @userptr: pointer to hl_userptr structure
1411  *
1412  * This function does the following:
1413  * - Unpins the physical pages related to the host memory
1414  * - Free the SG list
1415  */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)1416 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1417 {
1418 	struct page **pages;
1419 
1420 	hl_debugfs_remove_userptr(hdev, userptr);
1421 
1422 	if (userptr->dma_mapped)
1423 		hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
1424 							userptr->sgt->nents,
1425 							userptr->dir);
1426 
1427 	pages = frame_vector_pages(userptr->vec);
1428 	if (!IS_ERR(pages)) {
1429 		int i;
1430 
1431 		for (i = 0; i < frame_vector_count(userptr->vec); i++)
1432 			set_page_dirty_lock(pages[i]);
1433 	}
1434 	put_vaddr_frames(userptr->vec);
1435 	frame_vector_destroy(userptr->vec);
1436 
1437 	list_del(&userptr->job_node);
1438 
1439 	sg_free_table(userptr->sgt);
1440 	kfree(userptr->sgt);
1441 }
1442 
1443 /*
1444  * hl_userptr_delete_list - clear userptr list
1445  *
1446  * @hdev                : pointer to the habanalabs device structure
1447  * @userptr_list        : pointer to the list to clear
1448  *
1449  * This function does the following:
1450  * - Iterates over the list and unpins the host memory and frees the userptr
1451  *   structure.
1452  */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)1453 void hl_userptr_delete_list(struct hl_device *hdev,
1454 				struct list_head *userptr_list)
1455 {
1456 	struct hl_userptr *userptr, *tmp;
1457 
1458 	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1459 		hl_unpin_host_memory(hdev, userptr);
1460 		kfree(userptr);
1461 	}
1462 
1463 	INIT_LIST_HEAD(userptr_list);
1464 }
1465 
1466 /*
1467  * hl_userptr_is_pinned - returns whether the given userptr is pinned
1468  *
1469  * @hdev                : pointer to the habanalabs device structure
1470  * @userptr_list        : pointer to the list to clear
1471  * @userptr             : pointer to userptr to check
1472  *
1473  * This function does the following:
1474  * - Iterates over the list and checks if the given userptr is in it, means is
1475  *   pinned. If so, returns true, otherwise returns false.
1476  */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)1477 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1478 				u32 size, struct list_head *userptr_list,
1479 				struct hl_userptr **userptr)
1480 {
1481 	list_for_each_entry((*userptr), userptr_list, job_node) {
1482 		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1483 			return true;
1484 	}
1485 
1486 	return false;
1487 }
1488 
1489 /*
1490  * va_range_init - initialize virtual addresses range
1491  * @hdev: pointer to the habanalabs device structure
1492  * @va_range: pointer to the range to initialize
1493  * @start: range start address
1494  * @end: range end address
1495  *
1496  * This function does the following:
1497  * - Initializes the virtual addresses list of the given range with the given
1498  *   addresses.
1499  */
va_range_init(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)1500 static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
1501 				u64 start, u64 end)
1502 {
1503 	int rc;
1504 
1505 	INIT_LIST_HEAD(&va_range->list);
1506 
1507 	/* PAGE_SIZE alignment */
1508 
1509 	if (start & (PAGE_SIZE - 1)) {
1510 		start &= PAGE_MASK;
1511 		start += PAGE_SIZE;
1512 	}
1513 
1514 	if (end & (PAGE_SIZE - 1))
1515 		end &= PAGE_MASK;
1516 
1517 	if (start >= end) {
1518 		dev_err(hdev->dev, "too small vm range for va list\n");
1519 		return -EFAULT;
1520 	}
1521 
1522 	rc = add_va_block(hdev, va_range, start, end);
1523 
1524 	if (rc) {
1525 		dev_err(hdev->dev, "Failed to init host va list\n");
1526 		return rc;
1527 	}
1528 
1529 	va_range->start_addr = start;
1530 	va_range->end_addr = end;
1531 
1532 	return 0;
1533 }
1534 
1535 /*
1536  * va_range_fini() - clear a virtual addresses range
1537  * @hdev: pointer to the habanalabs structure
1538  * va_range: pointer to virtual addresses range
1539  *
1540  * This function does the following:
1541  * - Frees the virtual addresses block list and its lock
1542  */
va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)1543 static void va_range_fini(struct hl_device *hdev,
1544 		struct hl_va_range *va_range)
1545 {
1546 	mutex_lock(&va_range->lock);
1547 	clear_va_list_locked(hdev, &va_range->list);
1548 	mutex_unlock(&va_range->lock);
1549 
1550 	mutex_destroy(&va_range->lock);
1551 	kfree(va_range);
1552 }
1553 
1554 /*
1555  * vm_ctx_init_with_ranges() - initialize virtual memory for context
1556  * @ctx: pointer to the habanalabs context structure
1557  * @host_range_start: host virtual addresses range start.
1558  * @host_range_end: host virtual addresses range end.
1559  * @host_huge_range_start: host virtual addresses range start for memory
1560  *                          allocated with huge pages.
1561  * @host_huge_range_end: host virtual addresses range end for memory allocated
1562  *                        with huge pages.
1563  * @dram_range_start: dram virtual addresses range start.
1564  * @dram_range_end: dram virtual addresses range end.
1565  *
1566  * This function initializes the following:
1567  * - MMU for context
1568  * - Virtual address to area descriptor hashtable
1569  * - Virtual block list of available virtual memory
1570  */
vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u64 host_huge_range_start,u64 host_huge_range_end,u64 dram_range_start,u64 dram_range_end)1571 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
1572 					u64 host_range_start,
1573 					u64 host_range_end,
1574 					u64 host_huge_range_start,
1575 					u64 host_huge_range_end,
1576 					u64 dram_range_start,
1577 					u64 dram_range_end)
1578 {
1579 	struct hl_device *hdev = ctx->hdev;
1580 	int rc;
1581 
1582 	ctx->host_va_range = kzalloc(sizeof(*ctx->host_va_range), GFP_KERNEL);
1583 	if (!ctx->host_va_range)
1584 		return -ENOMEM;
1585 
1586 	ctx->host_huge_va_range = kzalloc(sizeof(*ctx->host_huge_va_range),
1587 						GFP_KERNEL);
1588 	if (!ctx->host_huge_va_range) {
1589 		rc =  -ENOMEM;
1590 		goto host_huge_va_range_err;
1591 	}
1592 
1593 	ctx->dram_va_range = kzalloc(sizeof(*ctx->dram_va_range), GFP_KERNEL);
1594 	if (!ctx->dram_va_range) {
1595 		rc = -ENOMEM;
1596 		goto dram_va_range_err;
1597 	}
1598 
1599 	rc = hl_mmu_ctx_init(ctx);
1600 	if (rc) {
1601 		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1602 		goto mmu_ctx_err;
1603 	}
1604 
1605 	mutex_init(&ctx->mem_hash_lock);
1606 	hash_init(ctx->mem_hash);
1607 
1608 	mutex_init(&ctx->host_va_range->lock);
1609 
1610 	rc = va_range_init(hdev, ctx->host_va_range, host_range_start,
1611 				host_range_end);
1612 	if (rc) {
1613 		dev_err(hdev->dev, "failed to init host vm range\n");
1614 		goto host_page_range_err;
1615 	}
1616 
1617 	if (hdev->pmmu_huge_range) {
1618 		mutex_init(&ctx->host_huge_va_range->lock);
1619 
1620 		rc = va_range_init(hdev, ctx->host_huge_va_range,
1621 					host_huge_range_start,
1622 					host_huge_range_end);
1623 		if (rc) {
1624 			dev_err(hdev->dev,
1625 				"failed to init host huge vm range\n");
1626 			goto host_hpage_range_err;
1627 		}
1628 	} else {
1629 		kfree(ctx->host_huge_va_range);
1630 		ctx->host_huge_va_range = ctx->host_va_range;
1631 	}
1632 
1633 	mutex_init(&ctx->dram_va_range->lock);
1634 
1635 	rc = va_range_init(hdev, ctx->dram_va_range, dram_range_start,
1636 			dram_range_end);
1637 	if (rc) {
1638 		dev_err(hdev->dev, "failed to init dram vm range\n");
1639 		goto dram_vm_err;
1640 	}
1641 
1642 	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
1643 
1644 	return 0;
1645 
1646 dram_vm_err:
1647 	mutex_destroy(&ctx->dram_va_range->lock);
1648 
1649 	if (hdev->pmmu_huge_range) {
1650 		mutex_lock(&ctx->host_huge_va_range->lock);
1651 		clear_va_list_locked(hdev, &ctx->host_huge_va_range->list);
1652 		mutex_unlock(&ctx->host_huge_va_range->lock);
1653 	}
1654 host_hpage_range_err:
1655 	if (hdev->pmmu_huge_range)
1656 		mutex_destroy(&ctx->host_huge_va_range->lock);
1657 	mutex_lock(&ctx->host_va_range->lock);
1658 	clear_va_list_locked(hdev, &ctx->host_va_range->list);
1659 	mutex_unlock(&ctx->host_va_range->lock);
1660 host_page_range_err:
1661 	mutex_destroy(&ctx->host_va_range->lock);
1662 	mutex_destroy(&ctx->mem_hash_lock);
1663 	hl_mmu_ctx_fini(ctx);
1664 mmu_ctx_err:
1665 	kfree(ctx->dram_va_range);
1666 dram_va_range_err:
1667 	kfree(ctx->host_huge_va_range);
1668 host_huge_va_range_err:
1669 	kfree(ctx->host_va_range);
1670 
1671 	return rc;
1672 }
1673 
hl_vm_ctx_init(struct hl_ctx * ctx)1674 int hl_vm_ctx_init(struct hl_ctx *ctx)
1675 {
1676 	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1677 	u64 host_range_start, host_range_end, host_huge_range_start,
1678 		host_huge_range_end, dram_range_start, dram_range_end;
1679 
1680 	atomic64_set(&ctx->dram_phys_mem, 0);
1681 
1682 	/*
1683 	 * - If MMU is enabled, init the ranges as usual.
1684 	 * - If MMU is disabled, in case of host mapping, the returned address
1685 	 *   is the given one.
1686 	 *   In case of DRAM mapping, the returned address is the physical
1687 	 *   address of the memory related to the given handle.
1688 	 */
1689 	if (ctx->hdev->mmu_enable) {
1690 		dram_range_start = prop->dmmu.start_addr;
1691 		dram_range_end = prop->dmmu.end_addr;
1692 		host_range_start = prop->pmmu.start_addr;
1693 		host_range_end = prop->pmmu.end_addr;
1694 		host_huge_range_start = prop->pmmu_huge.start_addr;
1695 		host_huge_range_end = prop->pmmu_huge.end_addr;
1696 	} else {
1697 		dram_range_start = prop->dram_user_base_address;
1698 		dram_range_end = prop->dram_end_address;
1699 		host_range_start = prop->dram_user_base_address;
1700 		host_range_end = prop->dram_end_address;
1701 		host_huge_range_start = prop->dram_user_base_address;
1702 		host_huge_range_end = prop->dram_end_address;
1703 	}
1704 
1705 	return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1706 					host_huge_range_start,
1707 					host_huge_range_end,
1708 					dram_range_start,
1709 					dram_range_end);
1710 }
1711 
1712 /*
1713  * hl_vm_ctx_fini       - virtual memory teardown of context
1714  *
1715  * @ctx                 : pointer to the habanalabs context structure
1716  *
1717  * This function perform teardown the following:
1718  * - Virtual block list of available virtual memory
1719  * - Virtual address to area descriptor hashtable
1720  * - MMU for context
1721  *
1722  * In addition this function does the following:
1723  * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1724  *   hashtable should be empty as no valid mappings should exist at this
1725  *   point.
1726  * - Frees any existing physical page list from the idr which relates to the
1727  *   current context asid.
1728  * - This function checks the virtual block list for correctness. At this point
1729  *   the list should contain one element which describes the whole virtual
1730  *   memory range of the context. Otherwise, a warning is printed.
1731  */
hl_vm_ctx_fini(struct hl_ctx * ctx)1732 void hl_vm_ctx_fini(struct hl_ctx *ctx)
1733 {
1734 	struct hl_device *hdev = ctx->hdev;
1735 	struct hl_vm *vm = &hdev->vm;
1736 	struct hl_vm_phys_pg_pack *phys_pg_list;
1737 	struct hl_vm_hash_node *hnode;
1738 	struct hlist_node *tmp_node;
1739 	int i;
1740 
1741 	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
1742 
1743 	/*
1744 	 * Clearly something went wrong on hard reset so no point in printing
1745 	 * another side effect error
1746 	 */
1747 	if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
1748 		dev_notice(hdev->dev,
1749 			"user released device without removing its memory mappings\n");
1750 
1751 	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1752 		dev_dbg(hdev->dev,
1753 			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1754 			hnode->vaddr, ctx->asid);
1755 		unmap_device_va(ctx, hnode->vaddr, true);
1756 	}
1757 
1758 	/* invalidate the cache once after the unmapping loop */
1759 	hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
1760 	hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
1761 
1762 	spin_lock(&vm->idr_lock);
1763 	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1764 		if (phys_pg_list->asid == ctx->asid) {
1765 			dev_dbg(hdev->dev,
1766 				"page list 0x%px of asid %d is still alive\n",
1767 				phys_pg_list, ctx->asid);
1768 			atomic64_sub(phys_pg_list->total_size,
1769 					&hdev->dram_used_mem);
1770 			free_phys_pg_pack(hdev, phys_pg_list);
1771 			idr_remove(&vm->phys_pg_pack_handles, i);
1772 		}
1773 	spin_unlock(&vm->idr_lock);
1774 
1775 	va_range_fini(hdev, ctx->dram_va_range);
1776 	if (hdev->pmmu_huge_range)
1777 		va_range_fini(hdev, ctx->host_huge_va_range);
1778 	va_range_fini(hdev, ctx->host_va_range);
1779 
1780 	mutex_destroy(&ctx->mem_hash_lock);
1781 	hl_mmu_ctx_fini(ctx);
1782 }
1783 
1784 /*
1785  * hl_vm_init           - initialize virtual memory module
1786  *
1787  * @hdev                : pointer to the habanalabs device structure
1788  *
1789  * This function initializes the following:
1790  * - MMU module
1791  * - DRAM physical pages pool of 2MB
1792  * - Idr for device memory allocation handles
1793  */
hl_vm_init(struct hl_device * hdev)1794 int hl_vm_init(struct hl_device *hdev)
1795 {
1796 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1797 	struct hl_vm *vm = &hdev->vm;
1798 	int rc;
1799 
1800 	vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1801 	if (!vm->dram_pg_pool) {
1802 		dev_err(hdev->dev, "Failed to create dram page pool\n");
1803 		return -ENOMEM;
1804 	}
1805 
1806 	kref_init(&vm->dram_pg_pool_refcount);
1807 
1808 	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1809 			prop->dram_end_address - prop->dram_user_base_address,
1810 			-1);
1811 
1812 	if (rc) {
1813 		dev_err(hdev->dev,
1814 			"Failed to add memory to dram page pool %d\n", rc);
1815 		goto pool_add_err;
1816 	}
1817 
1818 	spin_lock_init(&vm->idr_lock);
1819 	idr_init(&vm->phys_pg_pack_handles);
1820 
1821 	atomic64_set(&hdev->dram_used_mem, 0);
1822 
1823 	vm->init_done = true;
1824 
1825 	return 0;
1826 
1827 pool_add_err:
1828 	gen_pool_destroy(vm->dram_pg_pool);
1829 
1830 	return rc;
1831 }
1832 
1833 /*
1834  * hl_vm_fini           - virtual memory module teardown
1835  *
1836  * @hdev                : pointer to the habanalabs device structure
1837  *
1838  * This function perform teardown to the following:
1839  * - Idr for device memory allocation handles
1840  * - DRAM physical pages pool of 2MB
1841  * - MMU module
1842  */
hl_vm_fini(struct hl_device * hdev)1843 void hl_vm_fini(struct hl_device *hdev)
1844 {
1845 	struct hl_vm *vm = &hdev->vm;
1846 
1847 	if (!vm->init_done)
1848 		return;
1849 
1850 	/*
1851 	 * At this point all the contexts should be freed and hence no DRAM
1852 	 * memory should be in use. Hence the DRAM pool should be freed here.
1853 	 */
1854 	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1855 		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1856 				__func__);
1857 
1858 	vm->init_done = false;
1859 }
1860