1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/genalloc.h>
15
16 #define HL_MMU_DEBUG 0
17
18 /*
19 * The va ranges in context object contain a list with the available chunks of
20 * device virtual memory.
21 * There is one range for host allocations and one for DRAM allocations.
22 *
23 * On initialization each range contains one chunk of all of its available
24 * virtual range which is a half of the total device virtual range.
25 *
26 * On each mapping of physical pages, a suitable virtual range chunk (with a
27 * minimum size) is selected from the list. If the chunk size equals the
28 * requested size, the chunk is returned. Otherwise, the chunk is split into
29 * two chunks - one to return as result and a remainder to stay in the list.
30 *
31 * On each Unmapping of a virtual address, the relevant virtual chunk is
32 * returned to the list. The chunk is added to the list and if its edges match
33 * the edges of the adjacent chunks (means a contiguous chunk can be created),
34 * the chunks are merged.
35 *
36 * On finish, the list is checked to have only one chunk of all the relevant
37 * virtual range (which is a half of the device total virtual range).
38 * If not (means not all mappings were unmapped), a warning is printed.
39 */
40
41 /*
42 * alloc_device_memory - allocate device memory
43 *
44 * @ctx : current context
45 * @args : host parameters containing the requested size
46 * @ret_handle : result handle
47 *
48 * This function does the following:
49 * - Allocate the requested size rounded up to 2MB pages
50 * - Return unique handle
51 */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)52 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
53 u32 *ret_handle)
54 {
55 struct hl_device *hdev = ctx->hdev;
56 struct hl_vm *vm = &hdev->vm;
57 struct hl_vm_phys_pg_pack *phys_pg_pack;
58 u64 paddr = 0, total_size, num_pgs, i;
59 u32 num_curr_pgs, page_size, page_shift;
60 int handle, rc;
61 bool contiguous;
62
63 num_curr_pgs = 0;
64 page_size = hdev->asic_prop.dram_page_size;
65 page_shift = __ffs(page_size);
66 num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
67 total_size = num_pgs << page_shift;
68
69 if (!total_size) {
70 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
71 return -EINVAL;
72 }
73
74 contiguous = args->flags & HL_MEM_CONTIGUOUS;
75
76 if (contiguous) {
77 paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
78 if (!paddr) {
79 dev_err(hdev->dev,
80 "failed to allocate %llu contiguous pages with total size of %llu\n",
81 num_pgs, total_size);
82 return -ENOMEM;
83 }
84 }
85
86 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
87 if (!phys_pg_pack) {
88 rc = -ENOMEM;
89 goto pages_pack_err;
90 }
91
92 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
93 phys_pg_pack->asid = ctx->asid;
94 phys_pg_pack->npages = num_pgs;
95 phys_pg_pack->page_size = page_size;
96 phys_pg_pack->total_size = total_size;
97 phys_pg_pack->flags = args->flags;
98 phys_pg_pack->contiguous = contiguous;
99
100 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
101 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
102 rc = -ENOMEM;
103 goto pages_arr_err;
104 }
105
106 if (phys_pg_pack->contiguous) {
107 for (i = 0 ; i < num_pgs ; i++)
108 phys_pg_pack->pages[i] = paddr + i * page_size;
109 } else {
110 for (i = 0 ; i < num_pgs ; i++) {
111 phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
112 vm->dram_pg_pool,
113 page_size);
114 if (!phys_pg_pack->pages[i]) {
115 dev_err(hdev->dev,
116 "Failed to allocate device memory (out of memory)\n");
117 rc = -ENOMEM;
118 goto page_err;
119 }
120
121 num_curr_pgs++;
122 }
123 }
124
125 spin_lock(&vm->idr_lock);
126 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
127 GFP_ATOMIC);
128 spin_unlock(&vm->idr_lock);
129
130 if (handle < 0) {
131 dev_err(hdev->dev, "Failed to get handle for page\n");
132 rc = -EFAULT;
133 goto idr_err;
134 }
135
136 for (i = 0 ; i < num_pgs ; i++)
137 kref_get(&vm->dram_pg_pool_refcount);
138
139 phys_pg_pack->handle = handle;
140
141 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
142 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
143
144 *ret_handle = handle;
145
146 return 0;
147
148 idr_err:
149 page_err:
150 if (!phys_pg_pack->contiguous)
151 for (i = 0 ; i < num_curr_pgs ; i++)
152 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
153 page_size);
154
155 kvfree(phys_pg_pack->pages);
156 pages_arr_err:
157 kfree(phys_pg_pack);
158 pages_pack_err:
159 if (contiguous)
160 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
161
162 return rc;
163 }
164
165 /*
166 * dma_map_host_va - DMA mapping of the given host virtual address.
167 * @hdev: habanalabs device structure
168 * @addr: the host virtual address of the memory area
169 * @size: the size of the memory area
170 * @p_userptr: pointer to result userptr structure
171 *
172 * This function does the following:
173 * - Allocate userptr structure
174 * - Pin the given host memory using the userptr structure
175 * - Perform DMA mapping to have the DMA addresses of the pages
176 */
dma_map_host_va(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr ** p_userptr)177 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
178 struct hl_userptr **p_userptr)
179 {
180 struct hl_userptr *userptr;
181 int rc;
182
183 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
184 if (!userptr) {
185 rc = -ENOMEM;
186 goto userptr_err;
187 }
188
189 rc = hl_pin_host_memory(hdev, addr, size, userptr);
190 if (rc) {
191 dev_err(hdev->dev, "Failed to pin host memory\n");
192 goto pin_err;
193 }
194
195 rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
196 userptr->sgt->nents, DMA_BIDIRECTIONAL);
197 if (rc) {
198 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
199 goto dma_map_err;
200 }
201
202 userptr->dma_mapped = true;
203 userptr->dir = DMA_BIDIRECTIONAL;
204 userptr->vm_type = VM_TYPE_USERPTR;
205
206 *p_userptr = userptr;
207
208 return 0;
209
210 dma_map_err:
211 hl_unpin_host_memory(hdev, userptr);
212 pin_err:
213 kfree(userptr);
214 userptr_err:
215
216 return rc;
217 }
218
219 /*
220 * dma_unmap_host_va - DMA unmapping of the given host virtual address.
221 * @hdev: habanalabs device structure
222 * @userptr: userptr to free
223 *
224 * This function does the following:
225 * - Unpins the physical pages
226 * - Frees the userptr structure
227 */
dma_unmap_host_va(struct hl_device * hdev,struct hl_userptr * userptr)228 static void dma_unmap_host_va(struct hl_device *hdev,
229 struct hl_userptr *userptr)
230 {
231 hl_unpin_host_memory(hdev, userptr);
232 kfree(userptr);
233 }
234
235 /*
236 * dram_pg_pool_do_release - free DRAM pages pool
237 *
238 * @ref : pointer to reference object
239 *
240 * This function does the following:
241 * - Frees the idr structure of physical pages handles
242 * - Frees the generic pool of DRAM physical pages
243 */
dram_pg_pool_do_release(struct kref * ref)244 static void dram_pg_pool_do_release(struct kref *ref)
245 {
246 struct hl_vm *vm = container_of(ref, struct hl_vm,
247 dram_pg_pool_refcount);
248
249 /*
250 * free the idr here as only here we know for sure that there are no
251 * allocated physical pages and hence there are no handles in use
252 */
253 idr_destroy(&vm->phys_pg_pack_handles);
254 gen_pool_destroy(vm->dram_pg_pool);
255 }
256
257 /*
258 * free_phys_pg_pack - free physical page pack
259 * @hdev: habanalabs device structure
260 * @phys_pg_pack: physical page pack to free
261 *
262 * This function does the following:
263 * - For DRAM memory only, iterate over the pack and free each physical block
264 * structure by returning it to the general pool
265 * - Free the hl_vm_phys_pg_pack structure
266 */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)267 static void free_phys_pg_pack(struct hl_device *hdev,
268 struct hl_vm_phys_pg_pack *phys_pg_pack)
269 {
270 struct hl_vm *vm = &hdev->vm;
271 u64 i;
272
273 if (!phys_pg_pack->created_from_userptr) {
274 if (phys_pg_pack->contiguous) {
275 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
276 phys_pg_pack->total_size);
277
278 for (i = 0; i < phys_pg_pack->npages ; i++)
279 kref_put(&vm->dram_pg_pool_refcount,
280 dram_pg_pool_do_release);
281 } else {
282 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
283 gen_pool_free(vm->dram_pg_pool,
284 phys_pg_pack->pages[i],
285 phys_pg_pack->page_size);
286 kref_put(&vm->dram_pg_pool_refcount,
287 dram_pg_pool_do_release);
288 }
289 }
290 }
291
292 kvfree(phys_pg_pack->pages);
293 kfree(phys_pg_pack);
294 }
295
296 /*
297 * free_device_memory - free device memory
298 *
299 * @ctx : current context
300 * @handle : handle of the memory chunk to free
301 *
302 * This function does the following:
303 * - Free the device memory related to the given handle
304 */
free_device_memory(struct hl_ctx * ctx,u32 handle)305 static int free_device_memory(struct hl_ctx *ctx, u32 handle)
306 {
307 struct hl_device *hdev = ctx->hdev;
308 struct hl_vm *vm = &hdev->vm;
309 struct hl_vm_phys_pg_pack *phys_pg_pack;
310
311 spin_lock(&vm->idr_lock);
312 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
313 if (phys_pg_pack) {
314 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
315 dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
316 handle);
317 spin_unlock(&vm->idr_lock);
318 return -EINVAL;
319 }
320
321 /*
322 * must remove from idr before the freeing of the physical
323 * pages as the refcount of the pool is also the trigger of the
324 * idr destroy
325 */
326 idr_remove(&vm->phys_pg_pack_handles, handle);
327 spin_unlock(&vm->idr_lock);
328
329 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
330 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
331
332 free_phys_pg_pack(hdev, phys_pg_pack);
333 } else {
334 spin_unlock(&vm->idr_lock);
335 dev_err(hdev->dev,
336 "free device memory failed, no match for handle %u\n",
337 handle);
338 return -EINVAL;
339 }
340
341 return 0;
342 }
343
344 /*
345 * clear_va_list_locked - free virtual addresses list
346 *
347 * @hdev : habanalabs device structure
348 * @va_list : list of virtual addresses to free
349 *
350 * This function does the following:
351 * - Iterate over the list and free each virtual addresses block
352 *
353 * This function should be called only when va_list lock is taken
354 */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)355 static void clear_va_list_locked(struct hl_device *hdev,
356 struct list_head *va_list)
357 {
358 struct hl_vm_va_block *va_block, *tmp;
359
360 list_for_each_entry_safe(va_block, tmp, va_list, node) {
361 list_del(&va_block->node);
362 kfree(va_block);
363 }
364 }
365
366 /*
367 * print_va_list_locked - print virtual addresses list
368 *
369 * @hdev : habanalabs device structure
370 * @va_list : list of virtual addresses to print
371 *
372 * This function does the following:
373 * - Iterate over the list and print each virtual addresses block
374 *
375 * This function should be called only when va_list lock is taken
376 */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)377 static void print_va_list_locked(struct hl_device *hdev,
378 struct list_head *va_list)
379 {
380 #if HL_MMU_DEBUG
381 struct hl_vm_va_block *va_block;
382
383 dev_dbg(hdev->dev, "print va list:\n");
384
385 list_for_each_entry(va_block, va_list, node)
386 dev_dbg(hdev->dev,
387 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
388 va_block->start, va_block->end, va_block->size);
389 #endif
390 }
391
392 /*
393 * merge_va_blocks_locked - merge a virtual block if possible
394 *
395 * @hdev : pointer to the habanalabs device structure
396 * @va_list : pointer to the virtual addresses block list
397 * @va_block : virtual block to merge with adjacent blocks
398 *
399 * This function does the following:
400 * - Merge the given blocks with the adjacent blocks if their virtual ranges
401 * create a contiguous virtual range
402 *
403 * This Function should be called only when va_list lock is taken
404 */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)405 static void merge_va_blocks_locked(struct hl_device *hdev,
406 struct list_head *va_list, struct hl_vm_va_block *va_block)
407 {
408 struct hl_vm_va_block *prev, *next;
409
410 prev = list_prev_entry(va_block, node);
411 if (&prev->node != va_list && prev->end + 1 == va_block->start) {
412 prev->end = va_block->end;
413 prev->size = prev->end - prev->start;
414 list_del(&va_block->node);
415 kfree(va_block);
416 va_block = prev;
417 }
418
419 next = list_next_entry(va_block, node);
420 if (&next->node != va_list && va_block->end + 1 == next->start) {
421 next->start = va_block->start;
422 next->size = next->end - next->start;
423 list_del(&va_block->node);
424 kfree(va_block);
425 }
426 }
427
428 /*
429 * add_va_block_locked - add a virtual block to the virtual addresses list
430 *
431 * @hdev : pointer to the habanalabs device structure
432 * @va_list : pointer to the virtual addresses block list
433 * @start : start virtual address
434 * @end : end virtual address
435 *
436 * This function does the following:
437 * - Add the given block to the virtual blocks list and merge with other
438 * blocks if a contiguous virtual block can be created
439 *
440 * This Function should be called only when va_list lock is taken
441 */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)442 static int add_va_block_locked(struct hl_device *hdev,
443 struct list_head *va_list, u64 start, u64 end)
444 {
445 struct hl_vm_va_block *va_block, *res = NULL;
446 u64 size = end - start;
447
448 print_va_list_locked(hdev, va_list);
449
450 list_for_each_entry(va_block, va_list, node) {
451 /* TODO: remove upon matureness */
452 if (hl_mem_area_crosses_range(start, size, va_block->start,
453 va_block->end)) {
454 dev_err(hdev->dev,
455 "block crossing ranges at start 0x%llx, end 0x%llx\n",
456 va_block->start, va_block->end);
457 return -EINVAL;
458 }
459
460 if (va_block->end < start)
461 res = va_block;
462 }
463
464 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
465 if (!va_block)
466 return -ENOMEM;
467
468 va_block->start = start;
469 va_block->end = end;
470 va_block->size = size;
471
472 if (!res)
473 list_add(&va_block->node, va_list);
474 else
475 list_add(&va_block->node, &res->node);
476
477 merge_va_blocks_locked(hdev, va_list, va_block);
478
479 print_va_list_locked(hdev, va_list);
480
481 return 0;
482 }
483
484 /*
485 * add_va_block - wrapper for add_va_block_locked
486 *
487 * @hdev : pointer to the habanalabs device structure
488 * @va_list : pointer to the virtual addresses block list
489 * @start : start virtual address
490 * @end : end virtual address
491 *
492 * This function does the following:
493 * - Takes the list lock and calls add_va_block_locked
494 */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)495 static inline int add_va_block(struct hl_device *hdev,
496 struct hl_va_range *va_range, u64 start, u64 end)
497 {
498 int rc;
499
500 mutex_lock(&va_range->lock);
501 rc = add_va_block_locked(hdev, &va_range->list, start, end);
502 mutex_unlock(&va_range->lock);
503
504 return rc;
505 }
506
507 /*
508 * get_va_block() - get a virtual block for the given size and alignment.
509 * @hdev: pointer to the habanalabs device structure.
510 * @va_range: pointer to the virtual addresses range.
511 * @size: requested block size.
512 * @hint_addr: hint for requested address by the user.
513 * @va_block_align: required alignment of the virtual block start address.
514 *
515 * This function does the following:
516 * - Iterate on the virtual block list to find a suitable virtual block for the
517 * given size and alignment.
518 * - Reserve the requested block and update the list.
519 * - Return the start address of the virtual block.
520 */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,u32 va_block_align)521 static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range,
522 u64 size, u64 hint_addr, u32 va_block_align)
523 {
524 struct hl_vm_va_block *va_block, *new_va_block = NULL;
525 u64 valid_start, valid_size, prev_start, prev_end, align_mask,
526 res_valid_start = 0, res_valid_size = 0;
527 bool add_prev = false;
528
529 align_mask = ~((u64)va_block_align - 1);
530
531 /* check if hint_addr is aligned */
532 if (hint_addr & (va_block_align - 1))
533 hint_addr = 0;
534
535 mutex_lock(&va_range->lock);
536
537 print_va_list_locked(hdev, &va_range->list);
538
539 list_for_each_entry(va_block, &va_range->list, node) {
540 /* calc the first possible aligned addr */
541 valid_start = va_block->start;
542
543 if (valid_start & (va_block_align - 1)) {
544 valid_start &= align_mask;
545 valid_start += va_block_align;
546 if (valid_start > va_block->end)
547 continue;
548 }
549
550 valid_size = va_block->end - valid_start;
551
552 if (valid_size >= size &&
553 (!new_va_block || valid_size < res_valid_size)) {
554 new_va_block = va_block;
555 res_valid_start = valid_start;
556 res_valid_size = valid_size;
557 }
558
559 if (hint_addr && hint_addr >= valid_start &&
560 ((hint_addr + size) <= va_block->end)) {
561 new_va_block = va_block;
562 res_valid_start = hint_addr;
563 res_valid_size = valid_size;
564 break;
565 }
566 }
567
568 if (!new_va_block) {
569 dev_err(hdev->dev, "no available va block for size %llu\n",
570 size);
571 goto out;
572 }
573
574 if (res_valid_start > new_va_block->start) {
575 prev_start = new_va_block->start;
576 prev_end = res_valid_start - 1;
577
578 new_va_block->start = res_valid_start;
579 new_va_block->size = res_valid_size;
580
581 add_prev = true;
582 }
583
584 if (new_va_block->size > size) {
585 new_va_block->start += size;
586 new_va_block->size = new_va_block->end - new_va_block->start;
587 } else {
588 list_del(&new_va_block->node);
589 kfree(new_va_block);
590 }
591
592 if (add_prev)
593 add_va_block_locked(hdev, &va_range->list, prev_start,
594 prev_end);
595
596 print_va_list_locked(hdev, &va_range->list);
597 out:
598 mutex_unlock(&va_range->lock);
599
600 return res_valid_start;
601 }
602
603 /*
604 * get_sg_info - get number of pages and the DMA address from SG list
605 *
606 * @sg : the SG list
607 * @dma_addr : pointer to DMA address to return
608 *
609 * Calculate the number of consecutive pages described by the SG list. Take the
610 * offset of the address in the first page, add to it the length and round it up
611 * to the number of needed pages.
612 */
get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)613 static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
614 {
615 *dma_addr = sg_dma_address(sg);
616
617 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
618 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
619 }
620
621 /*
622 * init_phys_pg_pack_from_userptr - initialize physical page pack from host
623 * memory
624 * @ctx: current context
625 * @userptr: userptr to initialize from
626 * @pphys_pg_pack: result pointer
627 *
628 * This function does the following:
629 * - Pin the physical pages related to the given virtual block
630 * - Create a physical page pack from the physical pages related to the given
631 * virtual block
632 */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack)633 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
634 struct hl_userptr *userptr,
635 struct hl_vm_phys_pg_pack **pphys_pg_pack)
636 {
637 struct hl_vm_phys_pg_pack *phys_pg_pack;
638 struct scatterlist *sg;
639 dma_addr_t dma_addr;
640 u64 page_mask, total_npages;
641 u32 npages, page_size = PAGE_SIZE,
642 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
643 bool first = true, is_huge_page_opt = true;
644 int rc, i, j;
645 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
646
647 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
648 if (!phys_pg_pack)
649 return -ENOMEM;
650
651 phys_pg_pack->vm_type = userptr->vm_type;
652 phys_pg_pack->created_from_userptr = true;
653 phys_pg_pack->asid = ctx->asid;
654 atomic_set(&phys_pg_pack->mapping_cnt, 1);
655
656 /* Only if all dma_addrs are aligned to 2MB and their
657 * sizes is at least 2MB, we can use huge page mapping.
658 * We limit the 2MB optimization to this condition,
659 * since later on we acquire the related VA range as one
660 * consecutive block.
661 */
662 total_npages = 0;
663 for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
664 npages = get_sg_info(sg, &dma_addr);
665
666 total_npages += npages;
667
668 if ((npages % pgs_in_huge_page) ||
669 (dma_addr & (huge_page_size - 1)))
670 is_huge_page_opt = false;
671 }
672
673 if (is_huge_page_opt) {
674 page_size = huge_page_size;
675 do_div(total_npages, pgs_in_huge_page);
676 }
677
678 page_mask = ~(((u64) page_size) - 1);
679
680 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
681 GFP_KERNEL);
682 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
683 rc = -ENOMEM;
684 goto page_pack_arr_mem_err;
685 }
686
687 phys_pg_pack->npages = total_npages;
688 phys_pg_pack->page_size = page_size;
689 phys_pg_pack->total_size = total_npages * page_size;
690
691 j = 0;
692 for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
693 npages = get_sg_info(sg, &dma_addr);
694
695 /* align down to physical page size and save the offset */
696 if (first) {
697 first = false;
698 phys_pg_pack->offset = dma_addr & (page_size - 1);
699 dma_addr &= page_mask;
700 }
701
702 while (npages) {
703 phys_pg_pack->pages[j++] = dma_addr;
704 dma_addr += page_size;
705
706 if (is_huge_page_opt)
707 npages -= pgs_in_huge_page;
708 else
709 npages--;
710 }
711 }
712
713 *pphys_pg_pack = phys_pg_pack;
714
715 return 0;
716
717 page_pack_arr_mem_err:
718 kfree(phys_pg_pack);
719
720 return rc;
721 }
722
723 /*
724 * map_phys_pg_pack - maps the physical page pack.
725 * @ctx: current context
726 * @vaddr: start address of the virtual area to map from
727 * @phys_pg_pack: the pack of physical pages to map to
728 *
729 * This function does the following:
730 * - Maps each chunk of virtual memory to matching physical chunk
731 * - Stores number of successful mappings in the given argument
732 * - Returns 0 on success, error code otherwise
733 */
map_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)734 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
735 struct hl_vm_phys_pg_pack *phys_pg_pack)
736 {
737 struct hl_device *hdev = ctx->hdev;
738 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
739 u32 page_size = phys_pg_pack->page_size;
740 int rc = 0;
741
742 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
743 paddr = phys_pg_pack->pages[i];
744
745 rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size,
746 (i + 1) == phys_pg_pack->npages);
747 if (rc) {
748 dev_err(hdev->dev,
749 "map failed for handle %u, npages: %llu, mapped: %llu",
750 phys_pg_pack->handle, phys_pg_pack->npages,
751 mapped_pg_cnt);
752 goto err;
753 }
754
755 mapped_pg_cnt++;
756 next_vaddr += page_size;
757 }
758
759 return 0;
760
761 err:
762 next_vaddr = vaddr;
763 for (i = 0 ; i < mapped_pg_cnt ; i++) {
764 if (hl_mmu_unmap(ctx, next_vaddr, page_size,
765 (i + 1) == mapped_pg_cnt))
766 dev_warn_ratelimited(hdev->dev,
767 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
768 phys_pg_pack->handle, next_vaddr,
769 phys_pg_pack->pages[i], page_size);
770
771 next_vaddr += page_size;
772 }
773
774 return rc;
775 }
776
777 /*
778 * unmap_phys_pg_pack - unmaps the physical page pack
779 * @ctx: current context
780 * @vaddr: start address of the virtual area to unmap
781 * @phys_pg_pack: the pack of physical pages to unmap
782 */
unmap_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)783 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
784 struct hl_vm_phys_pg_pack *phys_pg_pack)
785 {
786 struct hl_device *hdev = ctx->hdev;
787 u64 next_vaddr, i;
788 u32 page_size;
789
790 page_size = phys_pg_pack->page_size;
791 next_vaddr = vaddr;
792
793 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
794 if (hl_mmu_unmap(ctx, next_vaddr, page_size,
795 (i + 1) == phys_pg_pack->npages))
796 dev_warn_ratelimited(hdev->dev,
797 "unmap failed for vaddr: 0x%llx\n", next_vaddr);
798
799 /*
800 * unmapping on Palladium can be really long, so avoid a CPU
801 * soft lockup bug by sleeping a little between unmapping pages
802 */
803 if (hdev->pldm)
804 usleep_range(500, 1000);
805 }
806 }
807
get_paddr_from_handle(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * paddr)808 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
809 u64 *paddr)
810 {
811 struct hl_device *hdev = ctx->hdev;
812 struct hl_vm *vm = &hdev->vm;
813 struct hl_vm_phys_pg_pack *phys_pg_pack;
814 u32 handle;
815
816 handle = lower_32_bits(args->map_device.handle);
817 spin_lock(&vm->idr_lock);
818 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
819 if (!phys_pg_pack) {
820 spin_unlock(&vm->idr_lock);
821 dev_err(hdev->dev, "no match for handle %u\n", handle);
822 return -EINVAL;
823 }
824
825 *paddr = phys_pg_pack->pages[0];
826
827 spin_unlock(&vm->idr_lock);
828
829 return 0;
830 }
831
832 /*
833 * map_device_va - map the given memory
834 *
835 * @ctx : current context
836 * @args : host parameters with handle/host virtual address
837 * @device_addr : pointer to result device virtual address
838 *
839 * This function does the following:
840 * - If given a physical device memory handle, map to a device virtual block
841 * and return the start address of this block
842 * - If given a host virtual address and size, find the related physical pages,
843 * map a device virtual block to this pages and return the start address of
844 * this block
845 */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)846 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
847 u64 *device_addr)
848 {
849 struct hl_device *hdev = ctx->hdev;
850 struct hl_vm *vm = &hdev->vm;
851 struct hl_vm_phys_pg_pack *phys_pg_pack;
852 struct hl_userptr *userptr = NULL;
853 struct hl_vm_hash_node *hnode;
854 struct hl_va_range *va_range;
855 enum vm_type_t *vm_type;
856 u64 ret_vaddr, hint_addr;
857 u32 handle = 0, va_block_align;
858 int rc;
859 bool is_userptr = args->flags & HL_MEM_USERPTR;
860
861 /* Assume failure */
862 *device_addr = 0;
863
864 if (is_userptr) {
865 u64 addr = args->map_host.host_virt_addr,
866 size = args->map_host.mem_size;
867 u32 page_size = hdev->asic_prop.pmmu.page_size,
868 huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
869
870 rc = dma_map_host_va(hdev, addr, size, &userptr);
871 if (rc) {
872 dev_err(hdev->dev, "failed to get userptr from va\n");
873 return rc;
874 }
875
876 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
877 &phys_pg_pack);
878 if (rc) {
879 dev_err(hdev->dev,
880 "unable to init page pack for vaddr 0x%llx\n",
881 addr);
882 goto init_page_pack_err;
883 }
884
885 vm_type = (enum vm_type_t *) userptr;
886 hint_addr = args->map_host.hint_addr;
887 handle = phys_pg_pack->handle;
888
889 /* get required alignment */
890 if (phys_pg_pack->page_size == page_size) {
891 va_range = ctx->host_va_range;
892
893 /*
894 * huge page alignment may be needed in case of regular
895 * page mapping, depending on the host VA alignment
896 */
897 if (addr & (huge_page_size - 1))
898 va_block_align = page_size;
899 else
900 va_block_align = huge_page_size;
901 } else {
902 /*
903 * huge page alignment is needed in case of huge page
904 * mapping
905 */
906 va_range = ctx->host_huge_va_range;
907 va_block_align = huge_page_size;
908 }
909 } else {
910 handle = lower_32_bits(args->map_device.handle);
911
912 spin_lock(&vm->idr_lock);
913 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
914 if (!phys_pg_pack) {
915 spin_unlock(&vm->idr_lock);
916 dev_err(hdev->dev,
917 "no match for handle %u\n", handle);
918 return -EINVAL;
919 }
920
921 /* increment now to avoid freeing device memory while mapping */
922 atomic_inc(&phys_pg_pack->mapping_cnt);
923
924 spin_unlock(&vm->idr_lock);
925
926 vm_type = (enum vm_type_t *) phys_pg_pack;
927
928 hint_addr = args->map_device.hint_addr;
929
930 /* DRAM VA alignment is the same as the DRAM page size */
931 va_range = ctx->dram_va_range;
932 va_block_align = hdev->asic_prop.dmmu.page_size;
933 }
934
935 /*
936 * relevant for mapping device physical memory only, as host memory is
937 * implicitly shared
938 */
939 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
940 phys_pg_pack->asid != ctx->asid) {
941 dev_err(hdev->dev,
942 "Failed to map memory, handle %u is not shared\n",
943 handle);
944 rc = -EPERM;
945 goto shared_err;
946 }
947
948 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
949 if (!hnode) {
950 rc = -ENOMEM;
951 goto hnode_err;
952 }
953
954 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
955 hint_addr, va_block_align);
956 if (!ret_vaddr) {
957 dev_err(hdev->dev, "no available va block for handle %u\n",
958 handle);
959 rc = -ENOMEM;
960 goto va_block_err;
961 }
962
963 mutex_lock(&ctx->mmu_lock);
964
965 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
966 if (rc) {
967 mutex_unlock(&ctx->mmu_lock);
968 dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
969 handle);
970 goto map_err;
971 }
972
973 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, false, *vm_type);
974
975 mutex_unlock(&ctx->mmu_lock);
976
977 if (rc) {
978 dev_err(hdev->dev,
979 "mapping handle %u failed due to MMU cache invalidation\n",
980 handle);
981 goto map_err;
982 }
983
984 ret_vaddr += phys_pg_pack->offset;
985
986 hnode->ptr = vm_type;
987 hnode->vaddr = ret_vaddr;
988
989 mutex_lock(&ctx->mem_hash_lock);
990 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
991 mutex_unlock(&ctx->mem_hash_lock);
992
993 *device_addr = ret_vaddr;
994
995 if (is_userptr)
996 free_phys_pg_pack(hdev, phys_pg_pack);
997
998 return 0;
999
1000 map_err:
1001 if (add_va_block(hdev, va_range, ret_vaddr,
1002 ret_vaddr + phys_pg_pack->total_size - 1))
1003 dev_warn(hdev->dev,
1004 "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1005 handle, ret_vaddr);
1006
1007 va_block_err:
1008 kfree(hnode);
1009 hnode_err:
1010 shared_err:
1011 atomic_dec(&phys_pg_pack->mapping_cnt);
1012 if (is_userptr)
1013 free_phys_pg_pack(hdev, phys_pg_pack);
1014 init_page_pack_err:
1015 if (is_userptr)
1016 dma_unmap_host_va(hdev, userptr);
1017
1018 return rc;
1019 }
1020
1021 /*
1022 * unmap_device_va - unmap the given device virtual address
1023 *
1024 * @ctx : current context
1025 * @vaddr : device virtual address to unmap
1026 * @ctx_free : true if in context free flow, false otherwise.
1027 *
1028 * This function does the following:
1029 * - Unmap the physical pages related to the given virtual address
1030 * - return the device virtual block to the virtual block list
1031 */
unmap_device_va(struct hl_ctx * ctx,u64 vaddr,bool ctx_free)1032 static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
1033 {
1034 struct hl_device *hdev = ctx->hdev;
1035 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1036 struct hl_vm_hash_node *hnode = NULL;
1037 struct hl_userptr *userptr = NULL;
1038 struct hl_va_range *va_range;
1039 enum vm_type_t *vm_type;
1040 bool is_userptr;
1041 int rc = 0;
1042
1043 /* protect from double entrance */
1044 mutex_lock(&ctx->mem_hash_lock);
1045 hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1046 if (vaddr == hnode->vaddr)
1047 break;
1048
1049 if (!hnode) {
1050 mutex_unlock(&ctx->mem_hash_lock);
1051 dev_err(hdev->dev,
1052 "unmap failed, no mem hnode for vaddr 0x%llx\n",
1053 vaddr);
1054 return -EINVAL;
1055 }
1056
1057 hash_del(&hnode->node);
1058 mutex_unlock(&ctx->mem_hash_lock);
1059
1060 vm_type = hnode->ptr;
1061
1062 if (*vm_type == VM_TYPE_USERPTR) {
1063 is_userptr = true;
1064 userptr = hnode->ptr;
1065 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1066 &phys_pg_pack);
1067 if (rc) {
1068 dev_err(hdev->dev,
1069 "unable to init page pack for vaddr 0x%llx\n",
1070 vaddr);
1071 goto vm_type_err;
1072 }
1073
1074 if (phys_pg_pack->page_size ==
1075 hdev->asic_prop.pmmu.page_size)
1076 va_range = ctx->host_va_range;
1077 else
1078 va_range = ctx->host_huge_va_range;
1079 } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1080 is_userptr = false;
1081 va_range = ctx->dram_va_range;
1082 phys_pg_pack = hnode->ptr;
1083 } else {
1084 dev_warn(hdev->dev,
1085 "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1086 vaddr);
1087 rc = -EFAULT;
1088 goto vm_type_err;
1089 }
1090
1091 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1092 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1093 rc = -EINVAL;
1094 goto mapping_cnt_err;
1095 }
1096
1097 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1098
1099 mutex_lock(&ctx->mmu_lock);
1100
1101 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1102
1103 /*
1104 * During context free this function is called in a loop to clean all
1105 * the context mappings. Hence the cache invalidation can be called once
1106 * at the loop end rather than for each iteration
1107 */
1108 if (!ctx_free)
1109 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, true,
1110 *vm_type);
1111
1112 mutex_unlock(&ctx->mmu_lock);
1113
1114 /*
1115 * If the context is closing we don't need to check for the MMU cache
1116 * invalidation return code and update the VA free list as in this flow
1117 * we invalidate the MMU cache outside of this unmap function and the VA
1118 * free list will be freed anyway.
1119 */
1120 if (!ctx_free) {
1121 int tmp_rc;
1122
1123 if (rc)
1124 dev_err(hdev->dev,
1125 "unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
1126 vaddr);
1127
1128 tmp_rc = add_va_block(hdev, va_range, vaddr,
1129 vaddr + phys_pg_pack->total_size - 1);
1130 if (tmp_rc) {
1131 dev_warn(hdev->dev,
1132 "add va block failed for vaddr: 0x%llx\n",
1133 vaddr);
1134 if (!rc)
1135 rc = tmp_rc;
1136 }
1137 }
1138
1139 atomic_dec(&phys_pg_pack->mapping_cnt);
1140 kfree(hnode);
1141
1142 if (is_userptr) {
1143 free_phys_pg_pack(hdev, phys_pg_pack);
1144 dma_unmap_host_va(hdev, userptr);
1145 }
1146
1147 return rc;
1148
1149 mapping_cnt_err:
1150 if (is_userptr)
1151 free_phys_pg_pack(hdev, phys_pg_pack);
1152 vm_type_err:
1153 mutex_lock(&ctx->mem_hash_lock);
1154 hash_add(ctx->mem_hash, &hnode->node, vaddr);
1155 mutex_unlock(&ctx->mem_hash_lock);
1156
1157 return rc;
1158 }
1159
mem_ioctl_no_mmu(struct hl_fpriv * hpriv,union hl_mem_args * args)1160 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1161 {
1162 struct hl_device *hdev = hpriv->hdev;
1163 struct hl_ctx *ctx = hpriv->ctx;
1164 u64 device_addr = 0;
1165 u32 handle = 0;
1166 int rc;
1167
1168 switch (args->in.op) {
1169 case HL_MEM_OP_ALLOC:
1170 if (args->in.alloc.mem_size == 0) {
1171 dev_err(hdev->dev,
1172 "alloc size must be larger than 0\n");
1173 rc = -EINVAL;
1174 goto out;
1175 }
1176
1177 /* Force contiguous as there are no real MMU
1178 * translations to overcome physical memory gaps
1179 */
1180 args->in.flags |= HL_MEM_CONTIGUOUS;
1181 rc = alloc_device_memory(ctx, &args->in, &handle);
1182
1183 memset(args, 0, sizeof(*args));
1184 args->out.handle = (__u64) handle;
1185 break;
1186
1187 case HL_MEM_OP_FREE:
1188 rc = free_device_memory(ctx, args->in.free.handle);
1189 break;
1190
1191 case HL_MEM_OP_MAP:
1192 if (args->in.flags & HL_MEM_USERPTR) {
1193 device_addr = args->in.map_host.host_virt_addr;
1194 rc = 0;
1195 } else {
1196 rc = get_paddr_from_handle(ctx, &args->in,
1197 &device_addr);
1198 }
1199
1200 memset(args, 0, sizeof(*args));
1201 args->out.device_virt_addr = device_addr;
1202 break;
1203
1204 case HL_MEM_OP_UNMAP:
1205 rc = 0;
1206 break;
1207
1208 default:
1209 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1210 rc = -ENOTTY;
1211 break;
1212 }
1213
1214 out:
1215 return rc;
1216 }
1217
hl_mem_ioctl(struct hl_fpriv * hpriv,void * data)1218 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1219 {
1220 union hl_mem_args *args = data;
1221 struct hl_device *hdev = hpriv->hdev;
1222 struct hl_ctx *ctx = hpriv->ctx;
1223 u64 device_addr = 0;
1224 u32 handle = 0;
1225 int rc;
1226
1227 if (hl_device_disabled_or_in_reset(hdev)) {
1228 dev_warn_ratelimited(hdev->dev,
1229 "Device is %s. Can't execute MEMORY IOCTL\n",
1230 atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
1231 return -EBUSY;
1232 }
1233
1234 if (!hdev->mmu_enable)
1235 return mem_ioctl_no_mmu(hpriv, args);
1236
1237 switch (args->in.op) {
1238 case HL_MEM_OP_ALLOC:
1239 if (!hdev->dram_supports_virtual_memory) {
1240 dev_err(hdev->dev, "DRAM alloc is not supported\n");
1241 rc = -EINVAL;
1242 goto out;
1243 }
1244
1245 if (args->in.alloc.mem_size == 0) {
1246 dev_err(hdev->dev,
1247 "alloc size must be larger than 0\n");
1248 rc = -EINVAL;
1249 goto out;
1250 }
1251 rc = alloc_device_memory(ctx, &args->in, &handle);
1252
1253 memset(args, 0, sizeof(*args));
1254 args->out.handle = (__u64) handle;
1255 break;
1256
1257 case HL_MEM_OP_FREE:
1258 rc = free_device_memory(ctx, args->in.free.handle);
1259 break;
1260
1261 case HL_MEM_OP_MAP:
1262 rc = map_device_va(ctx, &args->in, &device_addr);
1263
1264 memset(args, 0, sizeof(*args));
1265 args->out.device_virt_addr = device_addr;
1266 break;
1267
1268 case HL_MEM_OP_UNMAP:
1269 rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr,
1270 false);
1271 break;
1272
1273 default:
1274 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1275 rc = -ENOTTY;
1276 break;
1277 }
1278
1279 out:
1280 return rc;
1281 }
1282
get_user_memory(struct hl_device * hdev,u64 addr,u64 size,u32 npages,u64 start,u32 offset,struct hl_userptr * userptr)1283 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
1284 u32 npages, u64 start, u32 offset,
1285 struct hl_userptr *userptr)
1286 {
1287 int rc;
1288
1289 if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1290 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1291 return -EFAULT;
1292 }
1293
1294 userptr->vec = frame_vector_create(npages);
1295 if (!userptr->vec) {
1296 dev_err(hdev->dev, "Failed to create frame vector\n");
1297 return -ENOMEM;
1298 }
1299
1300 rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1301 userptr->vec);
1302
1303 if (rc != npages) {
1304 dev_err(hdev->dev,
1305 "Failed to map host memory, user ptr probably wrong\n");
1306 if (rc < 0)
1307 goto destroy_framevec;
1308 rc = -EFAULT;
1309 goto put_framevec;
1310 }
1311
1312 if (frame_vector_to_pages(userptr->vec) < 0) {
1313 dev_err(hdev->dev,
1314 "Failed to translate frame vector to pages\n");
1315 rc = -EFAULT;
1316 goto put_framevec;
1317 }
1318
1319 rc = sg_alloc_table_from_pages(userptr->sgt,
1320 frame_vector_pages(userptr->vec),
1321 npages, offset, size, GFP_ATOMIC);
1322 if (rc < 0) {
1323 dev_err(hdev->dev, "failed to create SG table from pages\n");
1324 goto put_framevec;
1325 }
1326
1327 return 0;
1328
1329 put_framevec:
1330 put_vaddr_frames(userptr->vec);
1331 destroy_framevec:
1332 frame_vector_destroy(userptr->vec);
1333 return rc;
1334 }
1335
1336 /*
1337 * hl_pin_host_memory - pins a chunk of host memory.
1338 * @hdev: pointer to the habanalabs device structure
1339 * @addr: the host virtual address of the memory area
1340 * @size: the size of the memory area
1341 * @userptr: pointer to hl_userptr structure
1342 *
1343 * This function does the following:
1344 * - Pins the physical pages
1345 * - Create an SG list from those pages
1346 */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)1347 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1348 struct hl_userptr *userptr)
1349 {
1350 u64 start, end;
1351 u32 npages, offset;
1352 int rc;
1353
1354 if (!size) {
1355 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1356 return -EINVAL;
1357 }
1358
1359 /*
1360 * If the combination of the address and size requested for this memory
1361 * region causes an integer overflow, return error.
1362 */
1363 if (((addr + size) < addr) ||
1364 PAGE_ALIGN(addr + size) < (addr + size)) {
1365 dev_err(hdev->dev,
1366 "user pointer 0x%llx + %llu causes integer overflow\n",
1367 addr, size);
1368 return -EINVAL;
1369 }
1370
1371 /*
1372 * This function can be called also from data path, hence use atomic
1373 * always as it is not a big allocation.
1374 */
1375 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1376 if (!userptr->sgt)
1377 return -ENOMEM;
1378
1379 start = addr & PAGE_MASK;
1380 offset = addr & ~PAGE_MASK;
1381 end = PAGE_ALIGN(addr + size);
1382 npages = (end - start) >> PAGE_SHIFT;
1383
1384 userptr->size = size;
1385 userptr->addr = addr;
1386 userptr->dma_mapped = false;
1387 INIT_LIST_HEAD(&userptr->job_node);
1388
1389 rc = get_user_memory(hdev, addr, size, npages, start, offset,
1390 userptr);
1391 if (rc) {
1392 dev_err(hdev->dev,
1393 "failed to get user memory for address 0x%llx\n",
1394 addr);
1395 goto free_sgt;
1396 }
1397
1398 hl_debugfs_add_userptr(hdev, userptr);
1399
1400 return 0;
1401
1402 free_sgt:
1403 kfree(userptr->sgt);
1404 return rc;
1405 }
1406
1407 /*
1408 * hl_unpin_host_memory - unpins a chunk of host memory.
1409 * @hdev: pointer to the habanalabs device structure
1410 * @userptr: pointer to hl_userptr structure
1411 *
1412 * This function does the following:
1413 * - Unpins the physical pages related to the host memory
1414 * - Free the SG list
1415 */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)1416 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1417 {
1418 struct page **pages;
1419
1420 hl_debugfs_remove_userptr(hdev, userptr);
1421
1422 if (userptr->dma_mapped)
1423 hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
1424 userptr->sgt->nents,
1425 userptr->dir);
1426
1427 pages = frame_vector_pages(userptr->vec);
1428 if (!IS_ERR(pages)) {
1429 int i;
1430
1431 for (i = 0; i < frame_vector_count(userptr->vec); i++)
1432 set_page_dirty_lock(pages[i]);
1433 }
1434 put_vaddr_frames(userptr->vec);
1435 frame_vector_destroy(userptr->vec);
1436
1437 list_del(&userptr->job_node);
1438
1439 sg_free_table(userptr->sgt);
1440 kfree(userptr->sgt);
1441 }
1442
1443 /*
1444 * hl_userptr_delete_list - clear userptr list
1445 *
1446 * @hdev : pointer to the habanalabs device structure
1447 * @userptr_list : pointer to the list to clear
1448 *
1449 * This function does the following:
1450 * - Iterates over the list and unpins the host memory and frees the userptr
1451 * structure.
1452 */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)1453 void hl_userptr_delete_list(struct hl_device *hdev,
1454 struct list_head *userptr_list)
1455 {
1456 struct hl_userptr *userptr, *tmp;
1457
1458 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1459 hl_unpin_host_memory(hdev, userptr);
1460 kfree(userptr);
1461 }
1462
1463 INIT_LIST_HEAD(userptr_list);
1464 }
1465
1466 /*
1467 * hl_userptr_is_pinned - returns whether the given userptr is pinned
1468 *
1469 * @hdev : pointer to the habanalabs device structure
1470 * @userptr_list : pointer to the list to clear
1471 * @userptr : pointer to userptr to check
1472 *
1473 * This function does the following:
1474 * - Iterates over the list and checks if the given userptr is in it, means is
1475 * pinned. If so, returns true, otherwise returns false.
1476 */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)1477 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1478 u32 size, struct list_head *userptr_list,
1479 struct hl_userptr **userptr)
1480 {
1481 list_for_each_entry((*userptr), userptr_list, job_node) {
1482 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1483 return true;
1484 }
1485
1486 return false;
1487 }
1488
1489 /*
1490 * va_range_init - initialize virtual addresses range
1491 * @hdev: pointer to the habanalabs device structure
1492 * @va_range: pointer to the range to initialize
1493 * @start: range start address
1494 * @end: range end address
1495 *
1496 * This function does the following:
1497 * - Initializes the virtual addresses list of the given range with the given
1498 * addresses.
1499 */
va_range_init(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)1500 static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
1501 u64 start, u64 end)
1502 {
1503 int rc;
1504
1505 INIT_LIST_HEAD(&va_range->list);
1506
1507 /* PAGE_SIZE alignment */
1508
1509 if (start & (PAGE_SIZE - 1)) {
1510 start &= PAGE_MASK;
1511 start += PAGE_SIZE;
1512 }
1513
1514 if (end & (PAGE_SIZE - 1))
1515 end &= PAGE_MASK;
1516
1517 if (start >= end) {
1518 dev_err(hdev->dev, "too small vm range for va list\n");
1519 return -EFAULT;
1520 }
1521
1522 rc = add_va_block(hdev, va_range, start, end);
1523
1524 if (rc) {
1525 dev_err(hdev->dev, "Failed to init host va list\n");
1526 return rc;
1527 }
1528
1529 va_range->start_addr = start;
1530 va_range->end_addr = end;
1531
1532 return 0;
1533 }
1534
1535 /*
1536 * va_range_fini() - clear a virtual addresses range
1537 * @hdev: pointer to the habanalabs structure
1538 * va_range: pointer to virtual addresses range
1539 *
1540 * This function does the following:
1541 * - Frees the virtual addresses block list and its lock
1542 */
va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)1543 static void va_range_fini(struct hl_device *hdev,
1544 struct hl_va_range *va_range)
1545 {
1546 mutex_lock(&va_range->lock);
1547 clear_va_list_locked(hdev, &va_range->list);
1548 mutex_unlock(&va_range->lock);
1549
1550 mutex_destroy(&va_range->lock);
1551 kfree(va_range);
1552 }
1553
1554 /*
1555 * vm_ctx_init_with_ranges() - initialize virtual memory for context
1556 * @ctx: pointer to the habanalabs context structure
1557 * @host_range_start: host virtual addresses range start.
1558 * @host_range_end: host virtual addresses range end.
1559 * @host_huge_range_start: host virtual addresses range start for memory
1560 * allocated with huge pages.
1561 * @host_huge_range_end: host virtual addresses range end for memory allocated
1562 * with huge pages.
1563 * @dram_range_start: dram virtual addresses range start.
1564 * @dram_range_end: dram virtual addresses range end.
1565 *
1566 * This function initializes the following:
1567 * - MMU for context
1568 * - Virtual address to area descriptor hashtable
1569 * - Virtual block list of available virtual memory
1570 */
vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u64 host_huge_range_start,u64 host_huge_range_end,u64 dram_range_start,u64 dram_range_end)1571 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
1572 u64 host_range_start,
1573 u64 host_range_end,
1574 u64 host_huge_range_start,
1575 u64 host_huge_range_end,
1576 u64 dram_range_start,
1577 u64 dram_range_end)
1578 {
1579 struct hl_device *hdev = ctx->hdev;
1580 int rc;
1581
1582 ctx->host_va_range = kzalloc(sizeof(*ctx->host_va_range), GFP_KERNEL);
1583 if (!ctx->host_va_range)
1584 return -ENOMEM;
1585
1586 ctx->host_huge_va_range = kzalloc(sizeof(*ctx->host_huge_va_range),
1587 GFP_KERNEL);
1588 if (!ctx->host_huge_va_range) {
1589 rc = -ENOMEM;
1590 goto host_huge_va_range_err;
1591 }
1592
1593 ctx->dram_va_range = kzalloc(sizeof(*ctx->dram_va_range), GFP_KERNEL);
1594 if (!ctx->dram_va_range) {
1595 rc = -ENOMEM;
1596 goto dram_va_range_err;
1597 }
1598
1599 rc = hl_mmu_ctx_init(ctx);
1600 if (rc) {
1601 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1602 goto mmu_ctx_err;
1603 }
1604
1605 mutex_init(&ctx->mem_hash_lock);
1606 hash_init(ctx->mem_hash);
1607
1608 mutex_init(&ctx->host_va_range->lock);
1609
1610 rc = va_range_init(hdev, ctx->host_va_range, host_range_start,
1611 host_range_end);
1612 if (rc) {
1613 dev_err(hdev->dev, "failed to init host vm range\n");
1614 goto host_page_range_err;
1615 }
1616
1617 if (hdev->pmmu_huge_range) {
1618 mutex_init(&ctx->host_huge_va_range->lock);
1619
1620 rc = va_range_init(hdev, ctx->host_huge_va_range,
1621 host_huge_range_start,
1622 host_huge_range_end);
1623 if (rc) {
1624 dev_err(hdev->dev,
1625 "failed to init host huge vm range\n");
1626 goto host_hpage_range_err;
1627 }
1628 } else {
1629 kfree(ctx->host_huge_va_range);
1630 ctx->host_huge_va_range = ctx->host_va_range;
1631 }
1632
1633 mutex_init(&ctx->dram_va_range->lock);
1634
1635 rc = va_range_init(hdev, ctx->dram_va_range, dram_range_start,
1636 dram_range_end);
1637 if (rc) {
1638 dev_err(hdev->dev, "failed to init dram vm range\n");
1639 goto dram_vm_err;
1640 }
1641
1642 hl_debugfs_add_ctx_mem_hash(hdev, ctx);
1643
1644 return 0;
1645
1646 dram_vm_err:
1647 mutex_destroy(&ctx->dram_va_range->lock);
1648
1649 if (hdev->pmmu_huge_range) {
1650 mutex_lock(&ctx->host_huge_va_range->lock);
1651 clear_va_list_locked(hdev, &ctx->host_huge_va_range->list);
1652 mutex_unlock(&ctx->host_huge_va_range->lock);
1653 }
1654 host_hpage_range_err:
1655 if (hdev->pmmu_huge_range)
1656 mutex_destroy(&ctx->host_huge_va_range->lock);
1657 mutex_lock(&ctx->host_va_range->lock);
1658 clear_va_list_locked(hdev, &ctx->host_va_range->list);
1659 mutex_unlock(&ctx->host_va_range->lock);
1660 host_page_range_err:
1661 mutex_destroy(&ctx->host_va_range->lock);
1662 mutex_destroy(&ctx->mem_hash_lock);
1663 hl_mmu_ctx_fini(ctx);
1664 mmu_ctx_err:
1665 kfree(ctx->dram_va_range);
1666 dram_va_range_err:
1667 kfree(ctx->host_huge_va_range);
1668 host_huge_va_range_err:
1669 kfree(ctx->host_va_range);
1670
1671 return rc;
1672 }
1673
hl_vm_ctx_init(struct hl_ctx * ctx)1674 int hl_vm_ctx_init(struct hl_ctx *ctx)
1675 {
1676 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1677 u64 host_range_start, host_range_end, host_huge_range_start,
1678 host_huge_range_end, dram_range_start, dram_range_end;
1679
1680 atomic64_set(&ctx->dram_phys_mem, 0);
1681
1682 /*
1683 * - If MMU is enabled, init the ranges as usual.
1684 * - If MMU is disabled, in case of host mapping, the returned address
1685 * is the given one.
1686 * In case of DRAM mapping, the returned address is the physical
1687 * address of the memory related to the given handle.
1688 */
1689 if (ctx->hdev->mmu_enable) {
1690 dram_range_start = prop->dmmu.start_addr;
1691 dram_range_end = prop->dmmu.end_addr;
1692 host_range_start = prop->pmmu.start_addr;
1693 host_range_end = prop->pmmu.end_addr;
1694 host_huge_range_start = prop->pmmu_huge.start_addr;
1695 host_huge_range_end = prop->pmmu_huge.end_addr;
1696 } else {
1697 dram_range_start = prop->dram_user_base_address;
1698 dram_range_end = prop->dram_end_address;
1699 host_range_start = prop->dram_user_base_address;
1700 host_range_end = prop->dram_end_address;
1701 host_huge_range_start = prop->dram_user_base_address;
1702 host_huge_range_end = prop->dram_end_address;
1703 }
1704
1705 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1706 host_huge_range_start,
1707 host_huge_range_end,
1708 dram_range_start,
1709 dram_range_end);
1710 }
1711
1712 /*
1713 * hl_vm_ctx_fini - virtual memory teardown of context
1714 *
1715 * @ctx : pointer to the habanalabs context structure
1716 *
1717 * This function perform teardown the following:
1718 * - Virtual block list of available virtual memory
1719 * - Virtual address to area descriptor hashtable
1720 * - MMU for context
1721 *
1722 * In addition this function does the following:
1723 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1724 * hashtable should be empty as no valid mappings should exist at this
1725 * point.
1726 * - Frees any existing physical page list from the idr which relates to the
1727 * current context asid.
1728 * - This function checks the virtual block list for correctness. At this point
1729 * the list should contain one element which describes the whole virtual
1730 * memory range of the context. Otherwise, a warning is printed.
1731 */
hl_vm_ctx_fini(struct hl_ctx * ctx)1732 void hl_vm_ctx_fini(struct hl_ctx *ctx)
1733 {
1734 struct hl_device *hdev = ctx->hdev;
1735 struct hl_vm *vm = &hdev->vm;
1736 struct hl_vm_phys_pg_pack *phys_pg_list;
1737 struct hl_vm_hash_node *hnode;
1738 struct hlist_node *tmp_node;
1739 int i;
1740
1741 hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
1742
1743 /*
1744 * Clearly something went wrong on hard reset so no point in printing
1745 * another side effect error
1746 */
1747 if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
1748 dev_notice(hdev->dev,
1749 "user released device without removing its memory mappings\n");
1750
1751 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1752 dev_dbg(hdev->dev,
1753 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1754 hnode->vaddr, ctx->asid);
1755 unmap_device_va(ctx, hnode->vaddr, true);
1756 }
1757
1758 /* invalidate the cache once after the unmapping loop */
1759 hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
1760 hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
1761
1762 spin_lock(&vm->idr_lock);
1763 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1764 if (phys_pg_list->asid == ctx->asid) {
1765 dev_dbg(hdev->dev,
1766 "page list 0x%px of asid %d is still alive\n",
1767 phys_pg_list, ctx->asid);
1768 atomic64_sub(phys_pg_list->total_size,
1769 &hdev->dram_used_mem);
1770 free_phys_pg_pack(hdev, phys_pg_list);
1771 idr_remove(&vm->phys_pg_pack_handles, i);
1772 }
1773 spin_unlock(&vm->idr_lock);
1774
1775 va_range_fini(hdev, ctx->dram_va_range);
1776 if (hdev->pmmu_huge_range)
1777 va_range_fini(hdev, ctx->host_huge_va_range);
1778 va_range_fini(hdev, ctx->host_va_range);
1779
1780 mutex_destroy(&ctx->mem_hash_lock);
1781 hl_mmu_ctx_fini(ctx);
1782 }
1783
1784 /*
1785 * hl_vm_init - initialize virtual memory module
1786 *
1787 * @hdev : pointer to the habanalabs device structure
1788 *
1789 * This function initializes the following:
1790 * - MMU module
1791 * - DRAM physical pages pool of 2MB
1792 * - Idr for device memory allocation handles
1793 */
hl_vm_init(struct hl_device * hdev)1794 int hl_vm_init(struct hl_device *hdev)
1795 {
1796 struct asic_fixed_properties *prop = &hdev->asic_prop;
1797 struct hl_vm *vm = &hdev->vm;
1798 int rc;
1799
1800 vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1801 if (!vm->dram_pg_pool) {
1802 dev_err(hdev->dev, "Failed to create dram page pool\n");
1803 return -ENOMEM;
1804 }
1805
1806 kref_init(&vm->dram_pg_pool_refcount);
1807
1808 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1809 prop->dram_end_address - prop->dram_user_base_address,
1810 -1);
1811
1812 if (rc) {
1813 dev_err(hdev->dev,
1814 "Failed to add memory to dram page pool %d\n", rc);
1815 goto pool_add_err;
1816 }
1817
1818 spin_lock_init(&vm->idr_lock);
1819 idr_init(&vm->phys_pg_pack_handles);
1820
1821 atomic64_set(&hdev->dram_used_mem, 0);
1822
1823 vm->init_done = true;
1824
1825 return 0;
1826
1827 pool_add_err:
1828 gen_pool_destroy(vm->dram_pg_pool);
1829
1830 return rc;
1831 }
1832
1833 /*
1834 * hl_vm_fini - virtual memory module teardown
1835 *
1836 * @hdev : pointer to the habanalabs device structure
1837 *
1838 * This function perform teardown to the following:
1839 * - Idr for device memory allocation handles
1840 * - DRAM physical pages pool of 2MB
1841 * - MMU module
1842 */
hl_vm_fini(struct hl_device * hdev)1843 void hl_vm_fini(struct hl_device *hdev)
1844 {
1845 struct hl_vm *vm = &hdev->vm;
1846
1847 if (!vm->init_done)
1848 return;
1849
1850 /*
1851 * At this point all the contexts should be freed and hence no DRAM
1852 * memory should be in use. Hence the DRAM pool should be freed here.
1853 */
1854 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1855 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1856 __func__);
1857
1858 vm->init_done = false;
1859 }
1860