• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
75 
76 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
77 				  (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
79 
80 /*
81  * The defaults come from config options but can be overriden by module
82  * or bootarg options.
83  */
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85 
86 /*
87  * We've only got one major, so number of mmcblk devices is
88  * limited to (1 << 20) / number of minors per device.  It is also
89  * limited by the MAX_DEVICES below.
90  */
91 static int max_devices;
92 
93 #define MAX_DEVICES 256
94 
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
97 
98 /*
99  * There is one mmc_blk_data per slot.
100  */
101 struct mmc_blk_data {
102 	struct device	*parent;
103 	struct gendisk	*disk;
104 	struct mmc_queue queue;
105 	struct list_head part;
106 	struct list_head rpmbs;
107 
108 	unsigned int	flags;
109 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
110 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
111 
112 	unsigned int	usage;
113 	unsigned int	read_only;
114 	unsigned int	part_type;
115 	unsigned int	reset_done;
116 #define MMC_BLK_READ		BIT(0)
117 #define MMC_BLK_WRITE		BIT(1)
118 #define MMC_BLK_DISCARD		BIT(2)
119 #define MMC_BLK_SECDISCARD	BIT(3)
120 #define MMC_BLK_CQE_RECOVERY	BIT(4)
121 
122 	/*
123 	 * Only set in main mmc_blk_data associated
124 	 * with mmc_card with dev_set_drvdata, and keeps
125 	 * track of the current selected device partition.
126 	 */
127 	unsigned int	part_curr;
128 	struct device_attribute force_ro;
129 	struct device_attribute power_ro_lock;
130 	int	area_type;
131 
132 	/* debugfs files (only in main mmc_blk_data) */
133 	struct dentry *status_dentry;
134 	struct dentry *ext_csd_dentry;
135 };
136 
137 /* Device type for RPMB character devices */
138 static dev_t mmc_rpmb_devt;
139 
140 /* Bus type for RPMB character devices */
141 static struct bus_type mmc_rpmb_bus_type = {
142 	.name = "mmc_rpmb",
143 };
144 
145 /**
146  * struct mmc_rpmb_data - special RPMB device type for these areas
147  * @dev: the device for the RPMB area
148  * @chrdev: character device for the RPMB area
149  * @id: unique device ID number
150  * @part_index: partition index (0 on first)
151  * @md: parent MMC block device
152  * @node: list item, so we can put this device on a list
153  */
154 struct mmc_rpmb_data {
155 	struct device dev;
156 	struct cdev chrdev;
157 	int id;
158 	unsigned int part_index;
159 	struct mmc_blk_data *md;
160 	struct list_head node;
161 };
162 
163 static DEFINE_MUTEX(open_lock);
164 
165 module_param(perdev_minors, int, 0444);
166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
167 
168 static inline int mmc_blk_part_switch(struct mmc_card *card,
169 				      unsigned int part_type);
170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 			       struct mmc_card *card,
172 			       int disable_multi,
173 			       struct mmc_queue *mq);
174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
175 
mmc_blk_get(struct gendisk * disk)176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
177 {
178 	struct mmc_blk_data *md;
179 
180 	mutex_lock(&open_lock);
181 	md = disk->private_data;
182 	if (md && md->usage == 0)
183 		md = NULL;
184 	if (md)
185 		md->usage++;
186 	mutex_unlock(&open_lock);
187 
188 	return md;
189 }
190 
mmc_get_devidx(struct gendisk * disk)191 static inline int mmc_get_devidx(struct gendisk *disk)
192 {
193 	int devidx = disk->first_minor / perdev_minors;
194 	return devidx;
195 }
196 
mmc_blk_put(struct mmc_blk_data * md)197 static void mmc_blk_put(struct mmc_blk_data *md)
198 {
199 	mutex_lock(&open_lock);
200 	md->usage--;
201 	if (md->usage == 0) {
202 		int devidx = mmc_get_devidx(md->disk);
203 		blk_put_queue(md->queue.queue);
204 		ida_simple_remove(&mmc_blk_ida, devidx);
205 		put_disk(md->disk);
206 		kfree(md);
207 	}
208 	mutex_unlock(&open_lock);
209 }
210 
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)211 static ssize_t power_ro_lock_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	int ret;
215 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 	struct mmc_card *card = md->queue.card;
217 	int locked = 0;
218 
219 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 		locked = 2;
221 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 		locked = 1;
223 
224 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
225 
226 	mmc_blk_put(md);
227 
228 	return ret;
229 }
230 
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)231 static ssize_t power_ro_lock_store(struct device *dev,
232 		struct device_attribute *attr, const char *buf, size_t count)
233 {
234 	int ret;
235 	struct mmc_blk_data *md, *part_md;
236 	struct mmc_queue *mq;
237 	struct request *req;
238 	unsigned long set;
239 
240 	if (kstrtoul(buf, 0, &set))
241 		return -EINVAL;
242 
243 	if (set != 1)
244 		return count;
245 
246 	md = mmc_blk_get(dev_to_disk(dev));
247 	mq = &md->queue;
248 
249 	/* Dispatch locking to the block layer */
250 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 	if (IS_ERR(req)) {
252 		count = PTR_ERR(req);
253 		goto out_put;
254 	}
255 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 	blk_execute_rq(mq->queue, NULL, req, 0);
257 	ret = req_to_mmc_queue_req(req)->drv_op_result;
258 	blk_put_request(req);
259 
260 	if (!ret) {
261 		pr_info("%s: Locking boot partition ro until next power on\n",
262 			md->disk->disk_name);
263 		set_disk_ro(md->disk, 1);
264 
265 		list_for_each_entry(part_md, &md->part, part)
266 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
267 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
268 				set_disk_ro(part_md->disk, 1);
269 			}
270 	}
271 out_put:
272 	mmc_blk_put(md);
273 	return count;
274 }
275 
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
277 			     char *buf)
278 {
279 	int ret;
280 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
281 
282 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
283 		       get_disk_ro(dev_to_disk(dev)) ^
284 		       md->read_only);
285 	mmc_blk_put(md);
286 	return ret;
287 }
288 
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
290 			      const char *buf, size_t count)
291 {
292 	int ret;
293 	char *end;
294 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 	unsigned long set = simple_strtoul(buf, &end, 0);
296 	if (end == buf) {
297 		ret = -EINVAL;
298 		goto out;
299 	}
300 
301 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
302 	ret = count;
303 out:
304 	mmc_blk_put(md);
305 	return ret;
306 }
307 
mmc_blk_open(struct block_device * bdev,fmode_t mode)308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
309 {
310 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
311 	int ret = -ENXIO;
312 
313 	mutex_lock(&block_mutex);
314 	if (md) {
315 		ret = 0;
316 		if ((mode & FMODE_WRITE) && md->read_only) {
317 			mmc_blk_put(md);
318 			ret = -EROFS;
319 		}
320 	}
321 	mutex_unlock(&block_mutex);
322 
323 	return ret;
324 }
325 
mmc_blk_release(struct gendisk * disk,fmode_t mode)326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 {
328 	struct mmc_blk_data *md = disk->private_data;
329 
330 	mutex_lock(&block_mutex);
331 	mmc_blk_put(md);
332 	mutex_unlock(&block_mutex);
333 }
334 
335 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 {
338 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 	geo->heads = 4;
340 	geo->sectors = 16;
341 	return 0;
342 }
343 
344 struct mmc_blk_ioc_data {
345 	struct mmc_ioc_cmd ic;
346 	unsigned char *buf;
347 	u64 buf_bytes;
348 	struct mmc_rpmb_data *rpmb;
349 };
350 
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 	struct mmc_ioc_cmd __user *user)
353 {
354 	struct mmc_blk_ioc_data *idata;
355 	int err;
356 
357 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 	if (!idata) {
359 		err = -ENOMEM;
360 		goto out;
361 	}
362 
363 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 		err = -EFAULT;
365 		goto idata_err;
366 	}
367 
368 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 		err = -EOVERFLOW;
371 		goto idata_err;
372 	}
373 
374 	if (!idata->buf_bytes) {
375 		idata->buf = NULL;
376 		return idata;
377 	}
378 
379 	idata->buf = memdup_user((void __user *)(unsigned long)
380 				 idata->ic.data_ptr, idata->buf_bytes);
381 	if (IS_ERR(idata->buf)) {
382 		err = PTR_ERR(idata->buf);
383 		goto idata_err;
384 	}
385 
386 	return idata;
387 
388 idata_err:
389 	kfree(idata);
390 out:
391 	return ERR_PTR(err);
392 }
393 
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 				      struct mmc_blk_ioc_data *idata)
396 {
397 	struct mmc_ioc_cmd *ic = &idata->ic;
398 
399 	if (copy_to_user(&(ic_ptr->response), ic->response,
400 			 sizeof(ic->response)))
401 		return -EFAULT;
402 
403 	if (!idata->ic.write_flag) {
404 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 				 idata->buf, idata->buf_bytes))
406 			return -EFAULT;
407 	}
408 
409 	return 0;
410 }
411 
card_busy_detect(struct mmc_card * card,unsigned int timeout_ms,u32 * resp_errs)412 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
413 			    u32 *resp_errs)
414 {
415 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
416 	int err = 0;
417 	u32 status;
418 
419 	do {
420 		bool done = time_after(jiffies, timeout);
421 
422 		err = __mmc_send_status(card, &status, 5);
423 		if (err) {
424 			dev_err(mmc_dev(card->host),
425 				"error %d requesting status\n", err);
426 			return err;
427 		}
428 
429 		/* Accumulate any response error bits seen */
430 		if (resp_errs)
431 			*resp_errs |= status;
432 
433 		/*
434 		 * Timeout if the device never becomes ready for data and never
435 		 * leaves the program state.
436 		 */
437 		if (done) {
438 			dev_err(mmc_dev(card->host),
439 				"Card stuck in wrong state! %s status: %#x\n",
440 				 __func__, status);
441 			return -ETIMEDOUT;
442 		}
443 	} while (!mmc_ready_for_data(status));
444 
445 	return err;
446 }
447 
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data * idata)448 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
449 			       struct mmc_blk_ioc_data *idata)
450 {
451 	struct mmc_command cmd = {}, sbc = {};
452 	struct mmc_data data = {};
453 	struct mmc_request mrq = {};
454 	struct scatterlist sg;
455 	int err;
456 	unsigned int target_part;
457 
458 	if (!card || !md || !idata)
459 		return -EINVAL;
460 
461 	/*
462 	 * The RPMB accesses comes in from the character device, so we
463 	 * need to target these explicitly. Else we just target the
464 	 * partition type for the block device the ioctl() was issued
465 	 * on.
466 	 */
467 	if (idata->rpmb) {
468 		/* Support multiple RPMB partitions */
469 		target_part = idata->rpmb->part_index;
470 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
471 	} else {
472 		target_part = md->part_type;
473 	}
474 
475 	cmd.opcode = idata->ic.opcode;
476 	cmd.arg = idata->ic.arg;
477 	cmd.flags = idata->ic.flags;
478 
479 	if (idata->buf_bytes) {
480 		data.sg = &sg;
481 		data.sg_len = 1;
482 		data.blksz = idata->ic.blksz;
483 		data.blocks = idata->ic.blocks;
484 
485 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
486 
487 		if (idata->ic.write_flag)
488 			data.flags = MMC_DATA_WRITE;
489 		else
490 			data.flags = MMC_DATA_READ;
491 
492 		/* data.flags must already be set before doing this. */
493 		mmc_set_data_timeout(&data, card);
494 
495 		/* Allow overriding the timeout_ns for empirical tuning. */
496 		if (idata->ic.data_timeout_ns)
497 			data.timeout_ns = idata->ic.data_timeout_ns;
498 
499 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
500 			/*
501 			 * Pretend this is a data transfer and rely on the
502 			 * host driver to compute timeout.  When all host
503 			 * drivers support cmd.cmd_timeout for R1B, this
504 			 * can be changed to:
505 			 *
506 			 *     mrq.data = NULL;
507 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
508 			 */
509 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
510 		}
511 
512 		mrq.data = &data;
513 	}
514 
515 	mrq.cmd = &cmd;
516 
517 	err = mmc_blk_part_switch(card, target_part);
518 	if (err)
519 		return err;
520 
521 	if (idata->ic.is_acmd) {
522 		err = mmc_app_cmd(card->host, card);
523 		if (err)
524 			return err;
525 	}
526 
527 	if (idata->rpmb) {
528 		sbc.opcode = MMC_SET_BLOCK_COUNT;
529 		/*
530 		 * We don't do any blockcount validation because the max size
531 		 * may be increased by a future standard. We just copy the
532 		 * 'Reliable Write' bit here.
533 		 */
534 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
535 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
536 		mrq.sbc = &sbc;
537 	}
538 
539 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 	    (cmd.opcode == MMC_SWITCH))
541 		return mmc_sanitize(card);
542 
543 	mmc_wait_for_req(card->host, &mrq);
544 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
545 
546 	if (cmd.error) {
547 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
548 						__func__, cmd.error);
549 		return cmd.error;
550 	}
551 	if (data.error) {
552 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
553 						__func__, data.error);
554 		return data.error;
555 	}
556 
557 	/*
558 	 * Make sure the cache of the PARTITION_CONFIG register and
559 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
560 	 * changed it successfully.
561 	 */
562 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
563 	    (cmd.opcode == MMC_SWITCH)) {
564 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
565 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
566 
567 		/*
568 		 * Update cache so the next mmc_blk_part_switch call operates
569 		 * on up-to-date data.
570 		 */
571 		card->ext_csd.part_config = value;
572 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
573 	}
574 
575 	/*
576 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
577 	 * will get turned back on if the card is re-initialized, e.g.
578 	 * suspend/resume or hw reset in recovery.
579 	 */
580 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
581 	    (cmd.opcode == MMC_SWITCH)) {
582 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
583 
584 		card->ext_csd.cache_ctrl = value;
585 	}
586 
587 	/*
588 	 * According to the SD specs, some commands require a delay after
589 	 * issuing the command.
590 	 */
591 	if (idata->ic.postsleep_min_us)
592 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
593 
594 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
595 		/*
596 		 * Ensure RPMB/R1B command has completed by polling CMD13
597 		 * "Send Status".
598 		 */
599 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
600 	}
601 
602 	return err;
603 }
604 
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)605 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
606 			     struct mmc_ioc_cmd __user *ic_ptr,
607 			     struct mmc_rpmb_data *rpmb)
608 {
609 	struct mmc_blk_ioc_data *idata;
610 	struct mmc_blk_ioc_data *idatas[1];
611 	struct mmc_queue *mq;
612 	struct mmc_card *card;
613 	int err = 0, ioc_err = 0;
614 	struct request *req;
615 
616 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
617 	if (IS_ERR(idata))
618 		return PTR_ERR(idata);
619 	/* This will be NULL on non-RPMB ioctl():s */
620 	idata->rpmb = rpmb;
621 
622 	card = md->queue.card;
623 	if (IS_ERR(card)) {
624 		err = PTR_ERR(card);
625 		goto cmd_done;
626 	}
627 
628 	/*
629 	 * Dispatch the ioctl() into the block request queue.
630 	 */
631 	mq = &md->queue;
632 	req = blk_get_request(mq->queue,
633 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
634 	if (IS_ERR(req)) {
635 		err = PTR_ERR(req);
636 		goto cmd_done;
637 	}
638 	idatas[0] = idata;
639 	req_to_mmc_queue_req(req)->drv_op =
640 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
641 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
642 	req_to_mmc_queue_req(req)->ioc_count = 1;
643 	blk_execute_rq(mq->queue, NULL, req, 0);
644 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
645 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
646 	blk_put_request(req);
647 
648 cmd_done:
649 	kfree(idata->buf);
650 	kfree(idata);
651 	return ioc_err ? ioc_err : err;
652 }
653 
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)654 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
655 				   struct mmc_ioc_multi_cmd __user *user,
656 				   struct mmc_rpmb_data *rpmb)
657 {
658 	struct mmc_blk_ioc_data **idata = NULL;
659 	struct mmc_ioc_cmd __user *cmds = user->cmds;
660 	struct mmc_card *card;
661 	struct mmc_queue *mq;
662 	int i, err = 0, ioc_err = 0;
663 	__u64 num_of_cmds;
664 	struct request *req;
665 
666 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
667 			   sizeof(num_of_cmds)))
668 		return -EFAULT;
669 
670 	if (!num_of_cmds)
671 		return 0;
672 
673 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
674 		return -EINVAL;
675 
676 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
677 	if (!idata)
678 		return -ENOMEM;
679 
680 	for (i = 0; i < num_of_cmds; i++) {
681 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
682 		if (IS_ERR(idata[i])) {
683 			err = PTR_ERR(idata[i]);
684 			num_of_cmds = i;
685 			goto cmd_err;
686 		}
687 		/* This will be NULL on non-RPMB ioctl():s */
688 		idata[i]->rpmb = rpmb;
689 	}
690 
691 	card = md->queue.card;
692 	if (IS_ERR(card)) {
693 		err = PTR_ERR(card);
694 		goto cmd_err;
695 	}
696 
697 
698 	/*
699 	 * Dispatch the ioctl()s into the block request queue.
700 	 */
701 	mq = &md->queue;
702 	req = blk_get_request(mq->queue,
703 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
704 	if (IS_ERR(req)) {
705 		err = PTR_ERR(req);
706 		goto cmd_err;
707 	}
708 	req_to_mmc_queue_req(req)->drv_op =
709 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
710 	req_to_mmc_queue_req(req)->drv_op_data = idata;
711 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
712 	blk_execute_rq(mq->queue, NULL, req, 0);
713 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
714 
715 	/* copy to user if data and response */
716 	for (i = 0; i < num_of_cmds && !err; i++)
717 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
718 
719 	blk_put_request(req);
720 
721 cmd_err:
722 	for (i = 0; i < num_of_cmds; i++) {
723 		kfree(idata[i]->buf);
724 		kfree(idata[i]);
725 	}
726 	kfree(idata);
727 	return ioc_err ? ioc_err : err;
728 }
729 
mmc_blk_check_blkdev(struct block_device * bdev)730 static int mmc_blk_check_blkdev(struct block_device *bdev)
731 {
732 	/*
733 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
734 	 * whole block device, not on a partition.  This prevents overspray
735 	 * between sibling partitions.
736 	 */
737 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
738 		return -EPERM;
739 	return 0;
740 }
741 
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)742 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
743 	unsigned int cmd, unsigned long arg)
744 {
745 	struct mmc_blk_data *md;
746 	int ret;
747 
748 	switch (cmd) {
749 	case MMC_IOC_CMD:
750 		ret = mmc_blk_check_blkdev(bdev);
751 		if (ret)
752 			return ret;
753 		md = mmc_blk_get(bdev->bd_disk);
754 		if (!md)
755 			return -EINVAL;
756 		ret = mmc_blk_ioctl_cmd(md,
757 					(struct mmc_ioc_cmd __user *)arg,
758 					NULL);
759 		mmc_blk_put(md);
760 		return ret;
761 	case MMC_IOC_MULTI_CMD:
762 		ret = mmc_blk_check_blkdev(bdev);
763 		if (ret)
764 			return ret;
765 		md = mmc_blk_get(bdev->bd_disk);
766 		if (!md)
767 			return -EINVAL;
768 		ret = mmc_blk_ioctl_multi_cmd(md,
769 					(struct mmc_ioc_multi_cmd __user *)arg,
770 					NULL);
771 		mmc_blk_put(md);
772 		return ret;
773 	default:
774 		return -EINVAL;
775 	}
776 }
777 
778 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)779 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
780 	unsigned int cmd, unsigned long arg)
781 {
782 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
783 }
784 #endif
785 
786 static const struct block_device_operations mmc_bdops = {
787 	.open			= mmc_blk_open,
788 	.release		= mmc_blk_release,
789 	.getgeo			= mmc_blk_getgeo,
790 	.owner			= THIS_MODULE,
791 	.ioctl			= mmc_blk_ioctl,
792 #ifdef CONFIG_COMPAT
793 	.compat_ioctl		= mmc_blk_compat_ioctl,
794 #endif
795 };
796 
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)797 static int mmc_blk_part_switch_pre(struct mmc_card *card,
798 				   unsigned int part_type)
799 {
800 	int ret = 0;
801 
802 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
803 		if (card->ext_csd.cmdq_en) {
804 			ret = mmc_cmdq_disable(card);
805 			if (ret)
806 				return ret;
807 		}
808 		mmc_retune_pause(card->host);
809 	}
810 
811 	return ret;
812 }
813 
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)814 static int mmc_blk_part_switch_post(struct mmc_card *card,
815 				    unsigned int part_type)
816 {
817 	int ret = 0;
818 
819 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
820 		mmc_retune_unpause(card->host);
821 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
822 			ret = mmc_cmdq_enable(card);
823 	}
824 
825 	return ret;
826 }
827 
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)828 static inline int mmc_blk_part_switch(struct mmc_card *card,
829 				      unsigned int part_type)
830 {
831 	int ret = 0;
832 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
833 
834 	if (main_md->part_curr == part_type)
835 		return 0;
836 
837 	if (mmc_card_mmc(card)) {
838 		u8 part_config = card->ext_csd.part_config;
839 
840 		ret = mmc_blk_part_switch_pre(card, part_type);
841 		if (ret)
842 			return ret;
843 
844 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
845 		part_config |= part_type;
846 
847 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
848 				 EXT_CSD_PART_CONFIG, part_config,
849 				 card->ext_csd.part_time);
850 		if (ret) {
851 			mmc_blk_part_switch_post(card, part_type);
852 			return ret;
853 		}
854 
855 		card->ext_csd.part_config = part_config;
856 
857 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
858 	}
859 
860 	main_md->part_curr = part_type;
861 	return ret;
862 }
863 
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)864 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
865 {
866 	int err;
867 	u32 result;
868 	__be32 *blocks;
869 
870 	struct mmc_request mrq = {};
871 	struct mmc_command cmd = {};
872 	struct mmc_data data = {};
873 
874 	struct scatterlist sg;
875 
876 	cmd.opcode = MMC_APP_CMD;
877 	cmd.arg = card->rca << 16;
878 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
879 
880 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
881 	if (err)
882 		return err;
883 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
884 		return -EIO;
885 
886 	memset(&cmd, 0, sizeof(struct mmc_command));
887 
888 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
889 	cmd.arg = 0;
890 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
891 
892 	data.blksz = 4;
893 	data.blocks = 1;
894 	data.flags = MMC_DATA_READ;
895 	data.sg = &sg;
896 	data.sg_len = 1;
897 	mmc_set_data_timeout(&data, card);
898 
899 	mrq.cmd = &cmd;
900 	mrq.data = &data;
901 
902 	blocks = kmalloc(4, GFP_KERNEL);
903 	if (!blocks)
904 		return -ENOMEM;
905 
906 	sg_init_one(&sg, blocks, 4);
907 
908 	mmc_wait_for_req(card->host, &mrq);
909 
910 	result = ntohl(*blocks);
911 	kfree(blocks);
912 
913 	if (cmd.error || data.error)
914 		return -EIO;
915 
916 	*written_blocks = result;
917 
918 	return 0;
919 }
920 
mmc_blk_clock_khz(struct mmc_host * host)921 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
922 {
923 	if (host->actual_clock)
924 		return host->actual_clock / 1000;
925 
926 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
927 	if (host->ios.clock)
928 		return host->ios.clock / 2000;
929 
930 	/* How can there be no clock */
931 	WARN_ON_ONCE(1);
932 	return 100; /* 100 kHz is minimum possible value */
933 }
934 
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)935 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
936 					    struct mmc_data *data)
937 {
938 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
939 	unsigned int khz;
940 
941 	if (data->timeout_clks) {
942 		khz = mmc_blk_clock_khz(host);
943 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
944 	}
945 
946 	return ms;
947 }
948 
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)949 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
950 			 int type)
951 {
952 	int err;
953 
954 	if (md->reset_done & type)
955 		return -EEXIST;
956 
957 	md->reset_done |= type;
958 	err = mmc_hw_reset(host);
959 	/* Ensure we switch back to the correct partition */
960 	if (err != -EOPNOTSUPP) {
961 		struct mmc_blk_data *main_md =
962 			dev_get_drvdata(&host->card->dev);
963 		int part_err;
964 
965 		main_md->part_curr = main_md->part_type;
966 		part_err = mmc_blk_part_switch(host->card, md->part_type);
967 		if (part_err) {
968 			/*
969 			 * We have failed to get back into the correct
970 			 * partition, so we need to abort the whole request.
971 			 */
972 			return -ENODEV;
973 		}
974 	}
975 	return err;
976 }
977 
mmc_blk_reset_success(struct mmc_blk_data * md,int type)978 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
979 {
980 	md->reset_done &= ~type;
981 }
982 
983 /*
984  * The non-block commands come back from the block layer after it queued it and
985  * processed it with all other requests and then they get issued in this
986  * function.
987  */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)988 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
989 {
990 	struct mmc_queue_req *mq_rq;
991 	struct mmc_card *card = mq->card;
992 	struct mmc_blk_data *md = mq->blkdata;
993 	struct mmc_blk_ioc_data **idata;
994 	bool rpmb_ioctl;
995 	u8 **ext_csd;
996 	u32 status;
997 	int ret;
998 	int i;
999 
1000 	mq_rq = req_to_mmc_queue_req(req);
1001 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1002 
1003 	switch (mq_rq->drv_op) {
1004 	case MMC_DRV_OP_IOCTL:
1005 		if (card->ext_csd.cmdq_en) {
1006 			ret = mmc_cmdq_disable(card);
1007 			if (ret)
1008 				break;
1009 		}
1010 		fallthrough;
1011 	case MMC_DRV_OP_IOCTL_RPMB:
1012 		idata = mq_rq->drv_op_data;
1013 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1014 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1015 			if (ret)
1016 				break;
1017 		}
1018 		/* Always switch back to main area after RPMB access */
1019 		if (rpmb_ioctl)
1020 			mmc_blk_part_switch(card, 0);
1021 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1022 			mmc_cmdq_enable(card);
1023 		break;
1024 	case MMC_DRV_OP_BOOT_WP:
1025 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1026 				 card->ext_csd.boot_ro_lock |
1027 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1028 				 card->ext_csd.part_time);
1029 		if (ret)
1030 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1031 			       md->disk->disk_name, ret);
1032 		else
1033 			card->ext_csd.boot_ro_lock |=
1034 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1035 		break;
1036 	case MMC_DRV_OP_GET_CARD_STATUS:
1037 		ret = mmc_send_status(card, &status);
1038 		if (!ret)
1039 			ret = status;
1040 		break;
1041 	case MMC_DRV_OP_GET_EXT_CSD:
1042 		ext_csd = mq_rq->drv_op_data;
1043 		ret = mmc_get_ext_csd(card, ext_csd);
1044 		break;
1045 	default:
1046 		pr_err("%s: unknown driver specific operation\n",
1047 		       md->disk->disk_name);
1048 		ret = -EINVAL;
1049 		break;
1050 	}
1051 	mq_rq->drv_op_result = ret;
1052 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1053 }
1054 
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1055 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1056 {
1057 	struct mmc_blk_data *md = mq->blkdata;
1058 	struct mmc_card *card = md->queue.card;
1059 	unsigned int from, nr;
1060 	int err = 0, type = MMC_BLK_DISCARD;
1061 	blk_status_t status = BLK_STS_OK;
1062 
1063 	if (!mmc_can_erase(card)) {
1064 		status = BLK_STS_NOTSUPP;
1065 		goto fail;
1066 	}
1067 
1068 	from = blk_rq_pos(req);
1069 	nr = blk_rq_sectors(req);
1070 
1071 	do {
1072 		err = 0;
1073 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1074 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1075 					 INAND_CMD38_ARG_EXT_CSD,
1076 					 card->erase_arg == MMC_TRIM_ARG ?
1077 					 INAND_CMD38_ARG_TRIM :
1078 					 INAND_CMD38_ARG_ERASE,
1079 					 card->ext_csd.generic_cmd6_time);
1080 		}
1081 		if (!err)
1082 			err = mmc_erase(card, from, nr, card->erase_arg);
1083 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1084 	if (err)
1085 		status = BLK_STS_IOERR;
1086 	else
1087 		mmc_blk_reset_success(md, type);
1088 fail:
1089 	blk_mq_end_request(req, status);
1090 }
1091 
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1092 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1093 				       struct request *req)
1094 {
1095 	struct mmc_blk_data *md = mq->blkdata;
1096 	struct mmc_card *card = md->queue.card;
1097 	unsigned int from, nr, arg;
1098 	int err = 0, type = MMC_BLK_SECDISCARD;
1099 	blk_status_t status = BLK_STS_OK;
1100 
1101 	if (!(mmc_can_secure_erase_trim(card))) {
1102 		status = BLK_STS_NOTSUPP;
1103 		goto out;
1104 	}
1105 
1106 	from = blk_rq_pos(req);
1107 	nr = blk_rq_sectors(req);
1108 
1109 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1110 		arg = MMC_SECURE_TRIM1_ARG;
1111 	else
1112 		arg = MMC_SECURE_ERASE_ARG;
1113 
1114 retry:
1115 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1116 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1117 				 INAND_CMD38_ARG_EXT_CSD,
1118 				 arg == MMC_SECURE_TRIM1_ARG ?
1119 				 INAND_CMD38_ARG_SECTRIM1 :
1120 				 INAND_CMD38_ARG_SECERASE,
1121 				 card->ext_csd.generic_cmd6_time);
1122 		if (err)
1123 			goto out_retry;
1124 	}
1125 
1126 	err = mmc_erase(card, from, nr, arg);
1127 	if (err == -EIO)
1128 		goto out_retry;
1129 	if (err) {
1130 		status = BLK_STS_IOERR;
1131 		goto out;
1132 	}
1133 
1134 	if (arg == MMC_SECURE_TRIM1_ARG) {
1135 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1136 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1137 					 INAND_CMD38_ARG_EXT_CSD,
1138 					 INAND_CMD38_ARG_SECTRIM2,
1139 					 card->ext_csd.generic_cmd6_time);
1140 			if (err)
1141 				goto out_retry;
1142 		}
1143 
1144 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1145 		if (err == -EIO)
1146 			goto out_retry;
1147 		if (err) {
1148 			status = BLK_STS_IOERR;
1149 			goto out;
1150 		}
1151 	}
1152 
1153 out_retry:
1154 	if (err && !mmc_blk_reset(md, card->host, type))
1155 		goto retry;
1156 	if (!err)
1157 		mmc_blk_reset_success(md, type);
1158 out:
1159 	blk_mq_end_request(req, status);
1160 }
1161 
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1162 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1163 {
1164 	struct mmc_blk_data *md = mq->blkdata;
1165 	struct mmc_card *card = md->queue.card;
1166 	int ret = 0;
1167 
1168 	ret = mmc_flush_cache(card);
1169 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1170 }
1171 
1172 /*
1173  * Reformat current write as a reliable write, supporting
1174  * both legacy and the enhanced reliable write MMC cards.
1175  * In each transfer we'll handle only as much as a single
1176  * reliable write can handle, thus finish the request in
1177  * partial completions.
1178  */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1179 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1180 				    struct mmc_card *card,
1181 				    struct request *req)
1182 {
1183 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1184 		/* Legacy mode imposes restrictions on transfers. */
1185 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1186 			brq->data.blocks = 1;
1187 
1188 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1189 			brq->data.blocks = card->ext_csd.rel_sectors;
1190 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1191 			brq->data.blocks = 1;
1192 	}
1193 }
1194 
1195 #define CMD_ERRORS_EXCL_OOR						\
1196 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1197 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1198 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1199 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1200 	 R1_CC_ERROR |		/* Card controller error */		\
1201 	 R1_ERROR)		/* General/unknown error */
1202 
1203 #define CMD_ERRORS							\
1204 	(CMD_ERRORS_EXCL_OOR |						\
1205 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1206 
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1207 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1208 {
1209 	u32 val;
1210 
1211 	/*
1212 	 * Per the SD specification(physical layer version 4.10)[1],
1213 	 * section 4.3.3, it explicitly states that "When the last
1214 	 * block of user area is read using CMD18, the host should
1215 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1216 	 * is correct". And JESD84-B51 for eMMC also has a similar
1217 	 * statement on section 6.8.3.
1218 	 *
1219 	 * Multiple block read/write could be done by either predefined
1220 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1221 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1222 	 *
1223 	 * However the spec[1] doesn't tell us whether we should also
1224 	 * ignore that for predefined method. But per the spec[1], section
1225 	 * 4.15 Set Block Count Command, it says"If illegal block count
1226 	 * is set, out of range error will be indicated during read/write
1227 	 * operation (For example, data transfer is stopped at user area
1228 	 * boundary)." In another word, we could expect a out of range error
1229 	 * in the response for the following CMD18/25. And if argument of
1230 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1231 	 * we could also expect to get a -ETIMEDOUT or any error number from
1232 	 * the host drivers due to missing data response(for write)/data(for
1233 	 * read), as the cards will stop the data transfer by itself per the
1234 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1235 	 */
1236 
1237 	if (!brq->stop.error) {
1238 		bool oor_with_open_end;
1239 		/* If there is no error yet, check R1 response */
1240 
1241 		val = brq->stop.resp[0] & CMD_ERRORS;
1242 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1243 
1244 		if (val && !oor_with_open_end)
1245 			brq->stop.error = -EIO;
1246 	}
1247 }
1248 
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int disable_multi,bool * do_rel_wr_p,bool * do_data_tag_p)1249 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1250 			      int disable_multi, bool *do_rel_wr_p,
1251 			      bool *do_data_tag_p)
1252 {
1253 	struct mmc_blk_data *md = mq->blkdata;
1254 	struct mmc_card *card = md->queue.card;
1255 	struct mmc_blk_request *brq = &mqrq->brq;
1256 	struct request *req = mmc_queue_req_to_req(mqrq);
1257 	bool do_rel_wr, do_data_tag;
1258 
1259 	/*
1260 	 * Reliable writes are used to implement Forced Unit Access and
1261 	 * are supported only on MMCs.
1262 	 */
1263 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1264 		    rq_data_dir(req) == WRITE &&
1265 		    (md->flags & MMC_BLK_REL_WR);
1266 
1267 	memset(brq, 0, sizeof(struct mmc_blk_request));
1268 
1269 	brq->mrq.data = &brq->data;
1270 	brq->mrq.tag = req->tag;
1271 
1272 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1273 	brq->stop.arg = 0;
1274 
1275 	if (rq_data_dir(req) == READ) {
1276 		brq->data.flags = MMC_DATA_READ;
1277 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1278 	} else {
1279 		brq->data.flags = MMC_DATA_WRITE;
1280 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1281 	}
1282 
1283 	brq->data.blksz = 512;
1284 	brq->data.blocks = blk_rq_sectors(req);
1285 	brq->data.blk_addr = blk_rq_pos(req);
1286 
1287 	/*
1288 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1289 	 * The eMMC will give "high" priority tasks priority over "simple"
1290 	 * priority tasks. Here we always set "simple" priority by not setting
1291 	 * MMC_DATA_PRIO.
1292 	 */
1293 
1294 	/*
1295 	 * The block layer doesn't support all sector count
1296 	 * restrictions, so we need to be prepared for too big
1297 	 * requests.
1298 	 */
1299 	if (brq->data.blocks > card->host->max_blk_count)
1300 		brq->data.blocks = card->host->max_blk_count;
1301 
1302 	if (brq->data.blocks > 1) {
1303 		/*
1304 		 * Some SD cards in SPI mode return a CRC error or even lock up
1305 		 * completely when trying to read the last block using a
1306 		 * multiblock read command.
1307 		 */
1308 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1309 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1310 		     get_capacity(md->disk)))
1311 			brq->data.blocks--;
1312 
1313 		/*
1314 		 * After a read error, we redo the request one sector
1315 		 * at a time in order to accurately determine which
1316 		 * sectors can be read successfully.
1317 		 */
1318 		if (disable_multi)
1319 			brq->data.blocks = 1;
1320 
1321 		/*
1322 		 * Some controllers have HW issues while operating
1323 		 * in multiple I/O mode
1324 		 */
1325 		if (card->host->ops->multi_io_quirk)
1326 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1327 						(rq_data_dir(req) == READ) ?
1328 						MMC_DATA_READ : MMC_DATA_WRITE,
1329 						brq->data.blocks);
1330 	}
1331 
1332 	if (do_rel_wr) {
1333 		mmc_apply_rel_rw(brq, card, req);
1334 		brq->data.flags |= MMC_DATA_REL_WR;
1335 	}
1336 
1337 	/*
1338 	 * Data tag is used only during writing meta data to speed
1339 	 * up write and any subsequent read of this meta data
1340 	 */
1341 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1342 		      (req->cmd_flags & REQ_META) &&
1343 		      (rq_data_dir(req) == WRITE) &&
1344 		      ((brq->data.blocks * brq->data.blksz) >=
1345 		       card->ext_csd.data_tag_unit_size);
1346 
1347 	if (do_data_tag)
1348 		brq->data.flags |= MMC_DATA_DAT_TAG;
1349 
1350 	mmc_set_data_timeout(&brq->data, card);
1351 
1352 	brq->data.sg = mqrq->sg;
1353 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1354 
1355 	/*
1356 	 * Adjust the sg list so it is the same size as the
1357 	 * request.
1358 	 */
1359 	if (brq->data.blocks != blk_rq_sectors(req)) {
1360 		int i, data_size = brq->data.blocks << 9;
1361 		struct scatterlist *sg;
1362 
1363 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1364 			data_size -= sg->length;
1365 			if (data_size <= 0) {
1366 				sg->length += data_size;
1367 				i++;
1368 				break;
1369 			}
1370 		}
1371 		brq->data.sg_len = i;
1372 	}
1373 
1374 	if (do_rel_wr_p)
1375 		*do_rel_wr_p = do_rel_wr;
1376 
1377 	if (do_data_tag_p)
1378 		*do_data_tag_p = do_data_tag;
1379 }
1380 
1381 #define MMC_CQE_RETRIES 2
1382 
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1383 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1384 {
1385 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1386 	struct mmc_request *mrq = &mqrq->brq.mrq;
1387 	struct request_queue *q = req->q;
1388 	struct mmc_host *host = mq->card->host;
1389 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1390 	unsigned long flags;
1391 	bool put_card;
1392 	int err;
1393 
1394 	mmc_cqe_post_req(host, mrq);
1395 
1396 	if (mrq->cmd && mrq->cmd->error)
1397 		err = mrq->cmd->error;
1398 	else if (mrq->data && mrq->data->error)
1399 		err = mrq->data->error;
1400 	else
1401 		err = 0;
1402 
1403 	if (err) {
1404 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1405 			blk_mq_requeue_request(req, true);
1406 		else
1407 			blk_mq_end_request(req, BLK_STS_IOERR);
1408 	} else if (mrq->data) {
1409 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1410 			blk_mq_requeue_request(req, true);
1411 		else
1412 			__blk_mq_end_request(req, BLK_STS_OK);
1413 	} else {
1414 		blk_mq_end_request(req, BLK_STS_OK);
1415 	}
1416 
1417 	spin_lock_irqsave(&mq->lock, flags);
1418 
1419 	mq->in_flight[issue_type] -= 1;
1420 
1421 	put_card = (mmc_tot_in_flight(mq) == 0);
1422 
1423 	mmc_cqe_check_busy(mq);
1424 
1425 	spin_unlock_irqrestore(&mq->lock, flags);
1426 
1427 	if (!mq->cqe_busy)
1428 		blk_mq_run_hw_queues(q, true);
1429 
1430 	if (put_card)
1431 		mmc_put_card(mq->card, &mq->ctx);
1432 }
1433 
mmc_blk_cqe_recovery(struct mmc_queue * mq)1434 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1435 {
1436 	struct mmc_card *card = mq->card;
1437 	struct mmc_host *host = card->host;
1438 	int err;
1439 
1440 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1441 
1442 	err = mmc_cqe_recovery(host);
1443 	if (err)
1444 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1445 	else
1446 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1447 
1448 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1449 }
1450 
mmc_blk_cqe_req_done(struct mmc_request * mrq)1451 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1452 {
1453 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1454 						  brq.mrq);
1455 	struct request *req = mmc_queue_req_to_req(mqrq);
1456 	struct request_queue *q = req->q;
1457 	struct mmc_queue *mq = q->queuedata;
1458 
1459 	/*
1460 	 * Block layer timeouts race with completions which means the normal
1461 	 * completion path cannot be used during recovery.
1462 	 */
1463 	if (mq->in_recovery)
1464 		mmc_blk_cqe_complete_rq(mq, req);
1465 	else if (likely(!blk_should_fake_timeout(req->q)))
1466 		blk_mq_complete_request(req);
1467 }
1468 
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1469 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1470 {
1471 	mrq->done		= mmc_blk_cqe_req_done;
1472 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1473 
1474 	return mmc_cqe_start_req(host, mrq);
1475 }
1476 
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1477 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1478 						 struct request *req)
1479 {
1480 	struct mmc_blk_request *brq = &mqrq->brq;
1481 
1482 	memset(brq, 0, sizeof(*brq));
1483 
1484 	brq->mrq.cmd = &brq->cmd;
1485 	brq->mrq.tag = req->tag;
1486 
1487 	return &brq->mrq;
1488 }
1489 
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1490 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1491 {
1492 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1493 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1494 
1495 	mrq->cmd->opcode = MMC_SWITCH;
1496 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1497 			(EXT_CSD_FLUSH_CACHE << 16) |
1498 			(1 << 8) |
1499 			EXT_CSD_CMD_SET_NORMAL;
1500 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1501 
1502 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1503 }
1504 
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1505 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1506 {
1507 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1508 	struct mmc_host *host = mq->card->host;
1509 	int err;
1510 
1511 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1512 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1513 	mmc_pre_req(host, &mqrq->brq.mrq);
1514 
1515 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1516 	if (err)
1517 		mmc_post_req(host, &mqrq->brq.mrq, err);
1518 
1519 	return err;
1520 }
1521 
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1522 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1523 {
1524 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1525 	struct mmc_host *host = mq->card->host;
1526 
1527 	if (host->hsq_enabled)
1528 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1529 
1530 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1531 
1532 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1533 }
1534 
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int disable_multi,struct mmc_queue * mq)1535 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1536 			       struct mmc_card *card,
1537 			       int disable_multi,
1538 			       struct mmc_queue *mq)
1539 {
1540 	u32 readcmd, writecmd;
1541 	struct mmc_blk_request *brq = &mqrq->brq;
1542 	struct request *req = mmc_queue_req_to_req(mqrq);
1543 	struct mmc_blk_data *md = mq->blkdata;
1544 	bool do_rel_wr, do_data_tag;
1545 
1546 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1547 
1548 	brq->mrq.cmd = &brq->cmd;
1549 
1550 	brq->cmd.arg = blk_rq_pos(req);
1551 	if (!mmc_card_blockaddr(card))
1552 		brq->cmd.arg <<= 9;
1553 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1554 
1555 	if (brq->data.blocks > 1 || do_rel_wr) {
1556 		/* SPI multiblock writes terminate using a special
1557 		 * token, not a STOP_TRANSMISSION request.
1558 		 */
1559 		if (!mmc_host_is_spi(card->host) ||
1560 		    rq_data_dir(req) == READ)
1561 			brq->mrq.stop = &brq->stop;
1562 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1563 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1564 	} else {
1565 		brq->mrq.stop = NULL;
1566 		readcmd = MMC_READ_SINGLE_BLOCK;
1567 		writecmd = MMC_WRITE_BLOCK;
1568 	}
1569 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1570 
1571 	/*
1572 	 * Pre-defined multi-block transfers are preferable to
1573 	 * open ended-ones (and necessary for reliable writes).
1574 	 * However, it is not sufficient to just send CMD23,
1575 	 * and avoid the final CMD12, as on an error condition
1576 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1577 	 * with Auto-CMD23 enhancements provided by some
1578 	 * hosts, means that the complexity of dealing
1579 	 * with this is best left to the host. If CMD23 is
1580 	 * supported by card and host, we'll fill sbc in and let
1581 	 * the host deal with handling it correctly. This means
1582 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1583 	 * change of behavior will be observed.
1584 	 *
1585 	 * N.B: Some MMC cards experience perf degradation.
1586 	 * We'll avoid using CMD23-bounded multiblock writes for
1587 	 * these, while retaining features like reliable writes.
1588 	 */
1589 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1590 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1591 	     do_data_tag)) {
1592 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1593 		brq->sbc.arg = brq->data.blocks |
1594 			(do_rel_wr ? (1 << 31) : 0) |
1595 			(do_data_tag ? (1 << 29) : 0);
1596 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1597 		brq->mrq.sbc = &brq->sbc;
1598 	}
1599 }
1600 
1601 #define MMC_MAX_RETRIES		5
1602 #define MMC_DATA_RETRIES	2
1603 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1604 
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1605 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1606 {
1607 	struct mmc_command cmd = {
1608 		.opcode = MMC_STOP_TRANSMISSION,
1609 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1610 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1611 		.busy_timeout = timeout,
1612 	};
1613 
1614 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1615 }
1616 
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1617 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1618 {
1619 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1620 	struct mmc_blk_request *brq = &mqrq->brq;
1621 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1622 	int err;
1623 
1624 	mmc_retune_hold_now(card->host);
1625 
1626 	mmc_blk_send_stop(card, timeout);
1627 
1628 	err = card_busy_detect(card, timeout, NULL);
1629 
1630 	mmc_retune_release(card->host);
1631 
1632 	return err;
1633 }
1634 
1635 #define MMC_READ_SINGLE_RETRIES	2
1636 
1637 /* Single sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1638 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1639 {
1640 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1641 	struct mmc_request *mrq = &mqrq->brq.mrq;
1642 	struct mmc_card *card = mq->card;
1643 	struct mmc_host *host = card->host;
1644 	blk_status_t error = BLK_STS_OK;
1645 
1646 	do {
1647 		u32 status;
1648 		int err;
1649 		int retries = 0;
1650 
1651 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1652 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1653 
1654 			mmc_wait_for_req(host, mrq);
1655 
1656 			err = mmc_send_status(card, &status);
1657 			if (err)
1658 				goto error_exit;
1659 
1660 			if (!mmc_host_is_spi(host) &&
1661 			    !mmc_ready_for_data(status)) {
1662 				err = mmc_blk_fix_state(card, req);
1663 				if (err)
1664 					goto error_exit;
1665 			}
1666 
1667 			if (!mrq->cmd->error)
1668 				break;
1669 		}
1670 
1671 		if (mrq->cmd->error ||
1672 		    mrq->data->error ||
1673 		    (!mmc_host_is_spi(host) &&
1674 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1675 			error = BLK_STS_IOERR;
1676 		else
1677 			error = BLK_STS_OK;
1678 
1679 	} while (blk_update_request(req, error, 512));
1680 
1681 	return;
1682 
1683 error_exit:
1684 	mrq->data->bytes_xfered = 0;
1685 	blk_update_request(req, BLK_STS_IOERR, 512);
1686 	/* Let it try the remaining request again */
1687 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1688 		mqrq->retries = MMC_MAX_RETRIES - 1;
1689 }
1690 
mmc_blk_oor_valid(struct mmc_blk_request * brq)1691 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1692 {
1693 	return !!brq->mrq.sbc;
1694 }
1695 
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1696 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1697 {
1698 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1699 }
1700 
1701 /*
1702  * Check for errors the host controller driver might not have seen such as
1703  * response mode errors or invalid card state.
1704  */
mmc_blk_status_error(struct request * req,u32 status)1705 static bool mmc_blk_status_error(struct request *req, u32 status)
1706 {
1707 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1708 	struct mmc_blk_request *brq = &mqrq->brq;
1709 	struct mmc_queue *mq = req->q->queuedata;
1710 	u32 stop_err_bits;
1711 
1712 	if (mmc_host_is_spi(mq->card->host))
1713 		return false;
1714 
1715 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1716 
1717 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1718 	       brq->stop.resp[0] & stop_err_bits ||
1719 	       status            & stop_err_bits ||
1720 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1721 }
1722 
mmc_blk_cmd_started(struct mmc_blk_request * brq)1723 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1724 {
1725 	return !brq->sbc.error && !brq->cmd.error &&
1726 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1727 }
1728 
1729 /*
1730  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1731  * policy:
1732  * 1. A request that has transferred at least some data is considered
1733  * successful and will be requeued if there is remaining data to
1734  * transfer.
1735  * 2. Otherwise the number of retries is incremented and the request
1736  * will be requeued if there are remaining retries.
1737  * 3. Otherwise the request will be errored out.
1738  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1739  * mqrq->retries. So there are only 4 possible actions here:
1740  *	1. do not accept the bytes_xfered value i.e. set it to zero
1741  *	2. change mqrq->retries to determine the number of retries
1742  *	3. try to reset the card
1743  *	4. read one sector at a time
1744  */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1745 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1746 {
1747 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1748 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1749 	struct mmc_blk_request *brq = &mqrq->brq;
1750 	struct mmc_blk_data *md = mq->blkdata;
1751 	struct mmc_card *card = mq->card;
1752 	u32 status;
1753 	u32 blocks;
1754 	int err;
1755 
1756 	/*
1757 	 * Some errors the host driver might not have seen. Set the number of
1758 	 * bytes transferred to zero in that case.
1759 	 */
1760 	err = __mmc_send_status(card, &status, 0);
1761 	if (err || mmc_blk_status_error(req, status))
1762 		brq->data.bytes_xfered = 0;
1763 
1764 	mmc_retune_release(card->host);
1765 
1766 	/*
1767 	 * Try again to get the status. This also provides an opportunity for
1768 	 * re-tuning.
1769 	 */
1770 	if (err)
1771 		err = __mmc_send_status(card, &status, 0);
1772 
1773 	/*
1774 	 * Nothing more to do after the number of bytes transferred has been
1775 	 * updated and there is no card.
1776 	 */
1777 	if (err && mmc_detect_card_removed(card->host))
1778 		return;
1779 
1780 	/* Try to get back to "tran" state */
1781 	if (!mmc_host_is_spi(mq->card->host) &&
1782 	    (err || !mmc_ready_for_data(status)))
1783 		err = mmc_blk_fix_state(mq->card, req);
1784 
1785 	/*
1786 	 * Special case for SD cards where the card might record the number of
1787 	 * blocks written.
1788 	 */
1789 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1790 	    rq_data_dir(req) == WRITE) {
1791 		if (mmc_sd_num_wr_blocks(card, &blocks))
1792 			brq->data.bytes_xfered = 0;
1793 		else
1794 			brq->data.bytes_xfered = blocks << 9;
1795 	}
1796 
1797 	/* Reset if the card is in a bad state */
1798 	if (!mmc_host_is_spi(mq->card->host) &&
1799 	    err && mmc_blk_reset(md, card->host, type)) {
1800 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1801 		mqrq->retries = MMC_NO_RETRIES;
1802 		return;
1803 	}
1804 
1805 	/*
1806 	 * If anything was done, just return and if there is anything remaining
1807 	 * on the request it will get requeued.
1808 	 */
1809 	if (brq->data.bytes_xfered)
1810 		return;
1811 
1812 	/* Reset before last retry */
1813 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1814 		mmc_blk_reset(md, card->host, type);
1815 
1816 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1817 	if (brq->sbc.error || brq->cmd.error)
1818 		return;
1819 
1820 	/* Reduce the remaining retries for data errors */
1821 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1822 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1823 		return;
1824 	}
1825 
1826 	/* FIXME: Missing single sector read for large sector size */
1827 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1828 	    brq->data.blocks > 1) {
1829 		/* Read one sector at a time */
1830 		mmc_blk_read_single(mq, req);
1831 		return;
1832 	}
1833 }
1834 
mmc_blk_rq_error(struct mmc_blk_request * brq)1835 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1836 {
1837 	mmc_blk_eval_resp_error(brq);
1838 
1839 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1840 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1841 }
1842 
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1843 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1844 {
1845 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1846 	u32 status = 0;
1847 	int err;
1848 
1849 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1850 		return 0;
1851 
1852 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1853 
1854 	/*
1855 	 * Do not assume data transferred correctly if there are any error bits
1856 	 * set.
1857 	 */
1858 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1859 		mqrq->brq.data.bytes_xfered = 0;
1860 		err = err ? err : -EIO;
1861 	}
1862 
1863 	/* Copy the exception bit so it will be seen later on */
1864 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1865 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1866 
1867 	return err;
1868 }
1869 
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)1870 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1871 					    struct request *req)
1872 {
1873 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1874 
1875 	mmc_blk_reset_success(mq->blkdata, type);
1876 }
1877 
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)1878 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1879 {
1880 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1881 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1882 
1883 	if (nr_bytes) {
1884 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1885 			blk_mq_requeue_request(req, true);
1886 		else
1887 			__blk_mq_end_request(req, BLK_STS_OK);
1888 	} else if (!blk_rq_bytes(req)) {
1889 		__blk_mq_end_request(req, BLK_STS_IOERR);
1890 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1891 		blk_mq_requeue_request(req, true);
1892 	} else {
1893 		if (mmc_card_removed(mq->card))
1894 			req->rq_flags |= RQF_QUIET;
1895 		blk_mq_end_request(req, BLK_STS_IOERR);
1896 	}
1897 }
1898 
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1899 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1900 					struct mmc_queue_req *mqrq)
1901 {
1902 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1903 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1904 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1905 }
1906 
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1907 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1908 				 struct mmc_queue_req *mqrq)
1909 {
1910 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1911 		mmc_run_bkops(mq->card);
1912 }
1913 
mmc_blk_hsq_req_done(struct mmc_request * mrq)1914 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1915 {
1916 	struct mmc_queue_req *mqrq =
1917 		container_of(mrq, struct mmc_queue_req, brq.mrq);
1918 	struct request *req = mmc_queue_req_to_req(mqrq);
1919 	struct request_queue *q = req->q;
1920 	struct mmc_queue *mq = q->queuedata;
1921 	struct mmc_host *host = mq->card->host;
1922 	unsigned long flags;
1923 
1924 	if (mmc_blk_rq_error(&mqrq->brq) ||
1925 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1926 		spin_lock_irqsave(&mq->lock, flags);
1927 		mq->recovery_needed = true;
1928 		mq->recovery_req = req;
1929 		spin_unlock_irqrestore(&mq->lock, flags);
1930 
1931 		host->cqe_ops->cqe_recovery_start(host);
1932 
1933 		schedule_work(&mq->recovery_work);
1934 		return;
1935 	}
1936 
1937 	mmc_blk_rw_reset_success(mq, req);
1938 
1939 	/*
1940 	 * Block layer timeouts race with completions which means the normal
1941 	 * completion path cannot be used during recovery.
1942 	 */
1943 	if (mq->in_recovery)
1944 		mmc_blk_cqe_complete_rq(mq, req);
1945 	else if (likely(!blk_should_fake_timeout(req->q)))
1946 		blk_mq_complete_request(req);
1947 }
1948 
mmc_blk_mq_complete(struct request * req)1949 void mmc_blk_mq_complete(struct request *req)
1950 {
1951 	struct mmc_queue *mq = req->q->queuedata;
1952 
1953 	if (mq->use_cqe)
1954 		mmc_blk_cqe_complete_rq(mq, req);
1955 	else if (likely(!blk_should_fake_timeout(req->q)))
1956 		mmc_blk_mq_complete_rq(mq, req);
1957 }
1958 
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)1959 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1960 				       struct request *req)
1961 {
1962 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1963 	struct mmc_host *host = mq->card->host;
1964 
1965 	if (mmc_blk_rq_error(&mqrq->brq) ||
1966 	    mmc_blk_card_busy(mq->card, req)) {
1967 		mmc_blk_mq_rw_recovery(mq, req);
1968 	} else {
1969 		mmc_blk_rw_reset_success(mq, req);
1970 		mmc_retune_release(host);
1971 	}
1972 
1973 	mmc_blk_urgent_bkops(mq, mqrq);
1974 }
1975 
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,struct request * req)1976 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1977 {
1978 	unsigned long flags;
1979 	bool put_card;
1980 
1981 	spin_lock_irqsave(&mq->lock, flags);
1982 
1983 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1984 
1985 	put_card = (mmc_tot_in_flight(mq) == 0);
1986 
1987 	spin_unlock_irqrestore(&mq->lock, flags);
1988 
1989 	if (put_card)
1990 		mmc_put_card(mq->card, &mq->ctx);
1991 }
1992 
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req)1993 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1994 {
1995 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1996 	struct mmc_request *mrq = &mqrq->brq.mrq;
1997 	struct mmc_host *host = mq->card->host;
1998 
1999 	mmc_post_req(host, mrq, 0);
2000 
2001 	/*
2002 	 * Block layer timeouts race with completions which means the normal
2003 	 * completion path cannot be used during recovery.
2004 	 */
2005 	if (mq->in_recovery)
2006 		mmc_blk_mq_complete_rq(mq, req);
2007 	else if (likely(!blk_should_fake_timeout(req->q)))
2008 		blk_mq_complete_request(req);
2009 
2010 	mmc_blk_mq_dec_in_flight(mq, req);
2011 }
2012 
mmc_blk_mq_recovery(struct mmc_queue * mq)2013 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2014 {
2015 	struct request *req = mq->recovery_req;
2016 	struct mmc_host *host = mq->card->host;
2017 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2018 
2019 	mq->recovery_req = NULL;
2020 	mq->rw_wait = false;
2021 
2022 	if (mmc_blk_rq_error(&mqrq->brq)) {
2023 		mmc_retune_hold_now(host);
2024 		mmc_blk_mq_rw_recovery(mq, req);
2025 	}
2026 
2027 	mmc_blk_urgent_bkops(mq, mqrq);
2028 
2029 	mmc_blk_mq_post_req(mq, req);
2030 }
2031 
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2032 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2033 					 struct request **prev_req)
2034 {
2035 	if (mmc_host_done_complete(mq->card->host))
2036 		return;
2037 
2038 	mutex_lock(&mq->complete_lock);
2039 
2040 	if (!mq->complete_req)
2041 		goto out_unlock;
2042 
2043 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2044 
2045 	if (prev_req)
2046 		*prev_req = mq->complete_req;
2047 	else
2048 		mmc_blk_mq_post_req(mq, mq->complete_req);
2049 
2050 	mq->complete_req = NULL;
2051 
2052 out_unlock:
2053 	mutex_unlock(&mq->complete_lock);
2054 }
2055 
mmc_blk_mq_complete_work(struct work_struct * work)2056 void mmc_blk_mq_complete_work(struct work_struct *work)
2057 {
2058 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2059 					    complete_work);
2060 
2061 	mmc_blk_mq_complete_prev_req(mq, NULL);
2062 }
2063 
mmc_blk_mq_req_done(struct mmc_request * mrq)2064 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2065 {
2066 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2067 						  brq.mrq);
2068 	struct request *req = mmc_queue_req_to_req(mqrq);
2069 	struct request_queue *q = req->q;
2070 	struct mmc_queue *mq = q->queuedata;
2071 	struct mmc_host *host = mq->card->host;
2072 	unsigned long flags;
2073 
2074 	if (!mmc_host_done_complete(host)) {
2075 		bool waiting;
2076 
2077 		/*
2078 		 * We cannot complete the request in this context, so record
2079 		 * that there is a request to complete, and that a following
2080 		 * request does not need to wait (although it does need to
2081 		 * complete complete_req first).
2082 		 */
2083 		spin_lock_irqsave(&mq->lock, flags);
2084 		mq->complete_req = req;
2085 		mq->rw_wait = false;
2086 		waiting = mq->waiting;
2087 		spin_unlock_irqrestore(&mq->lock, flags);
2088 
2089 		/*
2090 		 * If 'waiting' then the waiting task will complete this
2091 		 * request, otherwise queue a work to do it. Note that
2092 		 * complete_work may still race with the dispatch of a following
2093 		 * request.
2094 		 */
2095 		if (waiting)
2096 			wake_up(&mq->wait);
2097 		else
2098 			queue_work(mq->card->complete_wq, &mq->complete_work);
2099 
2100 		return;
2101 	}
2102 
2103 	/* Take the recovery path for errors or urgent background operations */
2104 	if (mmc_blk_rq_error(&mqrq->brq) ||
2105 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2106 		spin_lock_irqsave(&mq->lock, flags);
2107 		mq->recovery_needed = true;
2108 		mq->recovery_req = req;
2109 		spin_unlock_irqrestore(&mq->lock, flags);
2110 		wake_up(&mq->wait);
2111 		schedule_work(&mq->recovery_work);
2112 		return;
2113 	}
2114 
2115 	mmc_blk_rw_reset_success(mq, req);
2116 
2117 	mq->rw_wait = false;
2118 	wake_up(&mq->wait);
2119 
2120 	mmc_blk_mq_post_req(mq, req);
2121 }
2122 
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2123 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2124 {
2125 	unsigned long flags;
2126 	bool done;
2127 
2128 	/*
2129 	 * Wait while there is another request in progress, but not if recovery
2130 	 * is needed. Also indicate whether there is a request waiting to start.
2131 	 */
2132 	spin_lock_irqsave(&mq->lock, flags);
2133 	if (mq->recovery_needed) {
2134 		*err = -EBUSY;
2135 		done = true;
2136 	} else {
2137 		done = !mq->rw_wait;
2138 	}
2139 	mq->waiting = !done;
2140 	spin_unlock_irqrestore(&mq->lock, flags);
2141 
2142 	return done;
2143 }
2144 
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2145 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2146 {
2147 	int err = 0;
2148 
2149 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2150 
2151 	/* Always complete the previous request if there is one */
2152 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2153 
2154 	return err;
2155 }
2156 
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2157 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2158 				  struct request *req)
2159 {
2160 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2161 	struct mmc_host *host = mq->card->host;
2162 	struct request *prev_req = NULL;
2163 	int err = 0;
2164 
2165 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2166 
2167 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2168 
2169 	mmc_pre_req(host, &mqrq->brq.mrq);
2170 
2171 	err = mmc_blk_rw_wait(mq, &prev_req);
2172 	if (err)
2173 		goto out_post_req;
2174 
2175 	mq->rw_wait = true;
2176 
2177 	err = mmc_start_request(host, &mqrq->brq.mrq);
2178 
2179 	if (prev_req)
2180 		mmc_blk_mq_post_req(mq, prev_req);
2181 
2182 	if (err)
2183 		mq->rw_wait = false;
2184 
2185 	/* Release re-tuning here where there is no synchronization required */
2186 	if (err || mmc_host_done_complete(host))
2187 		mmc_retune_release(host);
2188 
2189 out_post_req:
2190 	if (err)
2191 		mmc_post_req(host, &mqrq->brq.mrq, err);
2192 
2193 	return err;
2194 }
2195 
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2196 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2197 {
2198 	if (mq->use_cqe)
2199 		return host->cqe_ops->cqe_wait_for_idle(host);
2200 
2201 	return mmc_blk_rw_wait(mq, NULL);
2202 }
2203 
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2204 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2205 {
2206 	struct mmc_blk_data *md = mq->blkdata;
2207 	struct mmc_card *card = md->queue.card;
2208 	struct mmc_host *host = card->host;
2209 	int ret;
2210 
2211 	ret = mmc_blk_part_switch(card, md->part_type);
2212 	if (ret)
2213 		return MMC_REQ_FAILED_TO_START;
2214 
2215 	switch (mmc_issue_type(mq, req)) {
2216 	case MMC_ISSUE_SYNC:
2217 		ret = mmc_blk_wait_for_idle(mq, host);
2218 		if (ret)
2219 			return MMC_REQ_BUSY;
2220 		switch (req_op(req)) {
2221 		case REQ_OP_DRV_IN:
2222 		case REQ_OP_DRV_OUT:
2223 			mmc_blk_issue_drv_op(mq, req);
2224 			break;
2225 		case REQ_OP_DISCARD:
2226 			mmc_blk_issue_discard_rq(mq, req);
2227 			break;
2228 		case REQ_OP_SECURE_ERASE:
2229 			mmc_blk_issue_secdiscard_rq(mq, req);
2230 			break;
2231 		case REQ_OP_FLUSH:
2232 			mmc_blk_issue_flush(mq, req);
2233 			break;
2234 		default:
2235 			WARN_ON_ONCE(1);
2236 			return MMC_REQ_FAILED_TO_START;
2237 		}
2238 		return MMC_REQ_FINISHED;
2239 	case MMC_ISSUE_DCMD:
2240 	case MMC_ISSUE_ASYNC:
2241 		switch (req_op(req)) {
2242 		case REQ_OP_FLUSH:
2243 			if (!mmc_cache_enabled(host)) {
2244 				blk_mq_end_request(req, BLK_STS_OK);
2245 				return MMC_REQ_FINISHED;
2246 			}
2247 			ret = mmc_blk_cqe_issue_flush(mq, req);
2248 			break;
2249 		case REQ_OP_READ:
2250 		case REQ_OP_WRITE:
2251 			if (mq->use_cqe)
2252 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2253 			else
2254 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2255 			break;
2256 		default:
2257 			WARN_ON_ONCE(1);
2258 			ret = -EINVAL;
2259 		}
2260 		if (!ret)
2261 			return MMC_REQ_STARTED;
2262 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2263 	default:
2264 		WARN_ON_ONCE(1);
2265 		return MMC_REQ_FAILED_TO_START;
2266 	}
2267 }
2268 
mmc_blk_readonly(struct mmc_card * card)2269 static inline int mmc_blk_readonly(struct mmc_card *card)
2270 {
2271 	return mmc_card_readonly(card) ||
2272 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2273 }
2274 
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type)2275 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2276 					      struct device *parent,
2277 					      sector_t size,
2278 					      bool default_ro,
2279 					      const char *subname,
2280 					      int area_type)
2281 {
2282 	struct mmc_blk_data *md;
2283 	int devidx, ret;
2284 
2285 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2286 	if (devidx < 0) {
2287 		/*
2288 		 * We get -ENOSPC because there are no more any available
2289 		 * devidx. The reason may be that, either userspace haven't yet
2290 		 * unmounted the partitions, which postpones mmc_blk_release()
2291 		 * from being called, or the device has more partitions than
2292 		 * what we support.
2293 		 */
2294 		if (devidx == -ENOSPC)
2295 			dev_err(mmc_dev(card->host),
2296 				"no more device IDs available\n");
2297 
2298 		return ERR_PTR(devidx);
2299 	}
2300 
2301 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2302 	if (!md) {
2303 		ret = -ENOMEM;
2304 		goto out;
2305 	}
2306 
2307 	md->area_type = area_type;
2308 
2309 	/*
2310 	 * Set the read-only status based on the supported commands
2311 	 * and the write protect switch.
2312 	 */
2313 	md->read_only = mmc_blk_readonly(card);
2314 
2315 	md->disk = alloc_disk(perdev_minors);
2316 	if (md->disk == NULL) {
2317 		ret = -ENOMEM;
2318 		goto err_kfree;
2319 	}
2320 
2321 	INIT_LIST_HEAD(&md->part);
2322 	INIT_LIST_HEAD(&md->rpmbs);
2323 	md->usage = 1;
2324 
2325 	ret = mmc_init_queue(&md->queue, card);
2326 	if (ret)
2327 		goto err_putdisk;
2328 
2329 	md->queue.blkdata = md;
2330 
2331 	/*
2332 	 * Keep an extra reference to the queue so that we can shutdown the
2333 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2334 	 * references to the 'md'. The corresponding blk_put_queue() is in
2335 	 * mmc_blk_put().
2336 	 */
2337 	if (!blk_get_queue(md->queue.queue)) {
2338 		mmc_cleanup_queue(&md->queue);
2339 		ret = -ENODEV;
2340 		goto err_putdisk;
2341 	}
2342 
2343 	md->disk->major	= MMC_BLOCK_MAJOR;
2344 	md->disk->first_minor = devidx * perdev_minors;
2345 	md->disk->fops = &mmc_bdops;
2346 	md->disk->private_data = md;
2347 	md->disk->queue = md->queue.queue;
2348 	md->parent = parent;
2349 	set_disk_ro(md->disk, md->read_only || default_ro);
2350 	md->disk->flags = GENHD_FL_EXT_DEVT;
2351 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2352 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2353 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2354 
2355 	/*
2356 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2357 	 *
2358 	 * - be set for removable media with permanent block devices
2359 	 * - be unset for removable block devices with permanent media
2360 	 *
2361 	 * Since MMC block devices clearly fall under the second
2362 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2363 	 * should use the block device creation/destruction hotplug
2364 	 * messages to tell when the card is present.
2365 	 */
2366 
2367 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2368 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2369 
2370 	set_capacity(md->disk, size);
2371 
2372 	if (mmc_host_cmd23(card->host)) {
2373 		if ((mmc_card_mmc(card) &&
2374 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2375 		    (mmc_card_sd(card) &&
2376 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2377 			md->flags |= MMC_BLK_CMD23;
2378 	}
2379 
2380 	if (mmc_card_mmc(card) &&
2381 	    md->flags & MMC_BLK_CMD23 &&
2382 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2383 	     card->ext_csd.rel_sectors)) {
2384 		md->flags |= MMC_BLK_REL_WR;
2385 		blk_queue_write_cache(md->queue.queue, true, true);
2386 	}
2387 
2388 	return md;
2389 
2390  err_putdisk:
2391 	put_disk(md->disk);
2392  err_kfree:
2393 	kfree(md);
2394  out:
2395 	ida_simple_remove(&mmc_blk_ida, devidx);
2396 	return ERR_PTR(ret);
2397 }
2398 
mmc_blk_alloc(struct mmc_card * card)2399 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2400 {
2401 	sector_t size;
2402 
2403 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2404 		/*
2405 		 * The EXT_CSD sector count is in number or 512 byte
2406 		 * sectors.
2407 		 */
2408 		size = card->ext_csd.sectors;
2409 	} else {
2410 		/*
2411 		 * The CSD capacity field is in units of read_blkbits.
2412 		 * set_capacity takes units of 512 bytes.
2413 		 */
2414 		size = (typeof(sector_t))card->csd.capacity
2415 			<< (card->csd.read_blkbits - 9);
2416 	}
2417 
2418 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2419 					MMC_BLK_DATA_AREA_MAIN);
2420 }
2421 
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2422 static int mmc_blk_alloc_part(struct mmc_card *card,
2423 			      struct mmc_blk_data *md,
2424 			      unsigned int part_type,
2425 			      sector_t size,
2426 			      bool default_ro,
2427 			      const char *subname,
2428 			      int area_type)
2429 {
2430 	char cap_str[10];
2431 	struct mmc_blk_data *part_md;
2432 
2433 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2434 				    subname, area_type);
2435 	if (IS_ERR(part_md))
2436 		return PTR_ERR(part_md);
2437 	part_md->part_type = part_type;
2438 	list_add(&part_md->part, &md->part);
2439 
2440 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2441 			cap_str, sizeof(cap_str));
2442 	pr_info("%s: %s %s partition %u %s\n",
2443 	       part_md->disk->disk_name, mmc_card_id(card),
2444 	       mmc_card_name(card), part_md->part_type, cap_str);
2445 	return 0;
2446 }
2447 
2448 /**
2449  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2450  * @filp: the character device file
2451  * @cmd: the ioctl() command
2452  * @arg: the argument from userspace
2453  *
2454  * This will essentially just redirect the ioctl()s coming in over to
2455  * the main block device spawning the RPMB character device.
2456  */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2457 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2458 			   unsigned long arg)
2459 {
2460 	struct mmc_rpmb_data *rpmb = filp->private_data;
2461 	int ret;
2462 
2463 	switch (cmd) {
2464 	case MMC_IOC_CMD:
2465 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2466 					(struct mmc_ioc_cmd __user *)arg,
2467 					rpmb);
2468 		break;
2469 	case MMC_IOC_MULTI_CMD:
2470 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2471 					(struct mmc_ioc_multi_cmd __user *)arg,
2472 					rpmb);
2473 		break;
2474 	default:
2475 		ret = -EINVAL;
2476 		break;
2477 	}
2478 
2479 	return ret;
2480 }
2481 
2482 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2483 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2484 			      unsigned long arg)
2485 {
2486 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2487 }
2488 #endif
2489 
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2490 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2491 {
2492 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2493 						  struct mmc_rpmb_data, chrdev);
2494 
2495 	get_device(&rpmb->dev);
2496 	filp->private_data = rpmb;
2497 	mmc_blk_get(rpmb->md->disk);
2498 
2499 	return nonseekable_open(inode, filp);
2500 }
2501 
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2502 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2503 {
2504 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2505 						  struct mmc_rpmb_data, chrdev);
2506 
2507 	mmc_blk_put(rpmb->md);
2508 	put_device(&rpmb->dev);
2509 
2510 	return 0;
2511 }
2512 
2513 static const struct file_operations mmc_rpmb_fileops = {
2514 	.release = mmc_rpmb_chrdev_release,
2515 	.open = mmc_rpmb_chrdev_open,
2516 	.owner = THIS_MODULE,
2517 	.llseek = no_llseek,
2518 	.unlocked_ioctl = mmc_rpmb_ioctl,
2519 #ifdef CONFIG_COMPAT
2520 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2521 #endif
2522 };
2523 
mmc_blk_rpmb_device_release(struct device * dev)2524 static void mmc_blk_rpmb_device_release(struct device *dev)
2525 {
2526 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2527 
2528 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2529 	kfree(rpmb);
2530 }
2531 
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2532 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2533 				   struct mmc_blk_data *md,
2534 				   unsigned int part_index,
2535 				   sector_t size,
2536 				   const char *subname)
2537 {
2538 	int devidx, ret;
2539 	char rpmb_name[DISK_NAME_LEN];
2540 	char cap_str[10];
2541 	struct mmc_rpmb_data *rpmb;
2542 
2543 	/* This creates the minor number for the RPMB char device */
2544 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2545 	if (devidx < 0)
2546 		return devidx;
2547 
2548 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2549 	if (!rpmb) {
2550 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2551 		return -ENOMEM;
2552 	}
2553 
2554 	snprintf(rpmb_name, sizeof(rpmb_name),
2555 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2556 
2557 	rpmb->id = devidx;
2558 	rpmb->part_index = part_index;
2559 	rpmb->dev.init_name = rpmb_name;
2560 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2561 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2562 	rpmb->dev.parent = &card->dev;
2563 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2564 	device_initialize(&rpmb->dev);
2565 	dev_set_drvdata(&rpmb->dev, rpmb);
2566 	rpmb->md = md;
2567 
2568 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2569 	rpmb->chrdev.owner = THIS_MODULE;
2570 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2571 	if (ret) {
2572 		pr_err("%s: could not add character device\n", rpmb_name);
2573 		goto out_put_device;
2574 	}
2575 
2576 	list_add(&rpmb->node, &md->rpmbs);
2577 
2578 	string_get_size((u64)size, 512, STRING_UNITS_2,
2579 			cap_str, sizeof(cap_str));
2580 
2581 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2582 		rpmb_name, mmc_card_id(card),
2583 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2584 		MAJOR(mmc_rpmb_devt), rpmb->id);
2585 
2586 	return 0;
2587 
2588 out_put_device:
2589 	put_device(&rpmb->dev);
2590 	return ret;
2591 }
2592 
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2593 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2594 
2595 {
2596 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2597 	put_device(&rpmb->dev);
2598 }
2599 
2600 /* MMC Physical partitions consist of two boot partitions and
2601  * up to four general purpose partitions.
2602  * For each partition enabled in EXT_CSD a block device will be allocatedi
2603  * to provide access to the partition.
2604  */
2605 
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2606 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2607 {
2608 	int idx, ret;
2609 
2610 	if (!mmc_card_mmc(card))
2611 		return 0;
2612 
2613 	for (idx = 0; idx < card->nr_parts; idx++) {
2614 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2615 			/*
2616 			 * RPMB partitions does not provide block access, they
2617 			 * are only accessed using ioctl():s. Thus create
2618 			 * special RPMB block devices that do not have a
2619 			 * backing block queue for these.
2620 			 */
2621 			ret = mmc_blk_alloc_rpmb_part(card, md,
2622 				card->part[idx].part_cfg,
2623 				card->part[idx].size >> 9,
2624 				card->part[idx].name);
2625 			if (ret)
2626 				return ret;
2627 		} else if (card->part[idx].size) {
2628 			ret = mmc_blk_alloc_part(card, md,
2629 				card->part[idx].part_cfg,
2630 				card->part[idx].size >> 9,
2631 				card->part[idx].force_ro,
2632 				card->part[idx].name,
2633 				card->part[idx].area_type);
2634 			if (ret)
2635 				return ret;
2636 		}
2637 	}
2638 
2639 	return 0;
2640 }
2641 
mmc_blk_remove_req(struct mmc_blk_data * md)2642 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2643 {
2644 	struct mmc_card *card;
2645 
2646 	if (md) {
2647 		/*
2648 		 * Flush remaining requests and free queues. It
2649 		 * is freeing the queue that stops new requests
2650 		 * from being accepted.
2651 		 */
2652 		card = md->queue.card;
2653 		if (md->disk->flags & GENHD_FL_UP) {
2654 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2655 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2656 					card->ext_csd.boot_ro_lockable)
2657 				device_remove_file(disk_to_dev(md->disk),
2658 					&md->power_ro_lock);
2659 
2660 			del_gendisk(md->disk);
2661 		}
2662 		mmc_cleanup_queue(&md->queue);
2663 		mmc_blk_put(md);
2664 	}
2665 }
2666 
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2667 static void mmc_blk_remove_parts(struct mmc_card *card,
2668 				 struct mmc_blk_data *md)
2669 {
2670 	struct list_head *pos, *q;
2671 	struct mmc_blk_data *part_md;
2672 	struct mmc_rpmb_data *rpmb;
2673 
2674 	/* Remove RPMB partitions */
2675 	list_for_each_safe(pos, q, &md->rpmbs) {
2676 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2677 		list_del(pos);
2678 		mmc_blk_remove_rpmb_part(rpmb);
2679 	}
2680 	/* Remove block partitions */
2681 	list_for_each_safe(pos, q, &md->part) {
2682 		part_md = list_entry(pos, struct mmc_blk_data, part);
2683 		list_del(pos);
2684 		mmc_blk_remove_req(part_md);
2685 	}
2686 }
2687 
mmc_add_disk(struct mmc_blk_data * md)2688 static int mmc_add_disk(struct mmc_blk_data *md)
2689 {
2690 	int ret;
2691 	struct mmc_card *card = md->queue.card;
2692 
2693 	device_add_disk(md->parent, md->disk, NULL);
2694 	md->force_ro.show = force_ro_show;
2695 	md->force_ro.store = force_ro_store;
2696 	sysfs_attr_init(&md->force_ro.attr);
2697 	md->force_ro.attr.name = "force_ro";
2698 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2699 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2700 	if (ret)
2701 		goto force_ro_fail;
2702 
2703 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2704 	     card->ext_csd.boot_ro_lockable) {
2705 		umode_t mode;
2706 
2707 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2708 			mode = S_IRUGO;
2709 		else
2710 			mode = S_IRUGO | S_IWUSR;
2711 
2712 		md->power_ro_lock.show = power_ro_lock_show;
2713 		md->power_ro_lock.store = power_ro_lock_store;
2714 		sysfs_attr_init(&md->power_ro_lock.attr);
2715 		md->power_ro_lock.attr.mode = mode;
2716 		md->power_ro_lock.attr.name =
2717 					"ro_lock_until_next_power_on";
2718 		ret = device_create_file(disk_to_dev(md->disk),
2719 				&md->power_ro_lock);
2720 		if (ret)
2721 			goto power_ro_lock_fail;
2722 	}
2723 	return ret;
2724 
2725 power_ro_lock_fail:
2726 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2727 force_ro_fail:
2728 	del_gendisk(md->disk);
2729 
2730 	return ret;
2731 }
2732 
2733 #ifdef CONFIG_DEBUG_FS
2734 
mmc_dbg_card_status_get(void * data,u64 * val)2735 static int mmc_dbg_card_status_get(void *data, u64 *val)
2736 {
2737 	struct mmc_card *card = data;
2738 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2739 	struct mmc_queue *mq = &md->queue;
2740 	struct request *req;
2741 	int ret;
2742 
2743 	/* Ask the block layer about the card status */
2744 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2745 	if (IS_ERR(req))
2746 		return PTR_ERR(req);
2747 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2748 	blk_execute_rq(mq->queue, NULL, req, 0);
2749 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2750 	if (ret >= 0) {
2751 		*val = ret;
2752 		ret = 0;
2753 	}
2754 	blk_put_request(req);
2755 
2756 	return ret;
2757 }
2758 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2759 			 NULL, "%08llx\n");
2760 
2761 /* That is two digits * 512 + 1 for newline */
2762 #define EXT_CSD_STR_LEN 1025
2763 
mmc_ext_csd_open(struct inode * inode,struct file * filp)2764 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2765 {
2766 	struct mmc_card *card = inode->i_private;
2767 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2768 	struct mmc_queue *mq = &md->queue;
2769 	struct request *req;
2770 	char *buf;
2771 	ssize_t n = 0;
2772 	u8 *ext_csd;
2773 	int err, i;
2774 
2775 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2776 	if (!buf)
2777 		return -ENOMEM;
2778 
2779 	/* Ask the block layer for the EXT CSD */
2780 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2781 	if (IS_ERR(req)) {
2782 		err = PTR_ERR(req);
2783 		goto out_free;
2784 	}
2785 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2786 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2787 	blk_execute_rq(mq->queue, NULL, req, 0);
2788 	err = req_to_mmc_queue_req(req)->drv_op_result;
2789 	blk_put_request(req);
2790 	if (err) {
2791 		pr_err("FAILED %d\n", err);
2792 		goto out_free;
2793 	}
2794 
2795 	for (i = 0; i < 512; i++)
2796 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2797 	n += sprintf(buf + n, "\n");
2798 
2799 	if (n != EXT_CSD_STR_LEN) {
2800 		err = -EINVAL;
2801 		kfree(ext_csd);
2802 		goto out_free;
2803 	}
2804 
2805 	filp->private_data = buf;
2806 	kfree(ext_csd);
2807 	return 0;
2808 
2809 out_free:
2810 	kfree(buf);
2811 	return err;
2812 }
2813 
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2814 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2815 				size_t cnt, loff_t *ppos)
2816 {
2817 	char *buf = filp->private_data;
2818 
2819 	return simple_read_from_buffer(ubuf, cnt, ppos,
2820 				       buf, EXT_CSD_STR_LEN);
2821 }
2822 
mmc_ext_csd_release(struct inode * inode,struct file * file)2823 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2824 {
2825 	kfree(file->private_data);
2826 	return 0;
2827 }
2828 
2829 static const struct file_operations mmc_dbg_ext_csd_fops = {
2830 	.open		= mmc_ext_csd_open,
2831 	.read		= mmc_ext_csd_read,
2832 	.release	= mmc_ext_csd_release,
2833 	.llseek		= default_llseek,
2834 };
2835 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2836 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2837 {
2838 	struct dentry *root;
2839 
2840 	if (!card->debugfs_root)
2841 		return 0;
2842 
2843 	root = card->debugfs_root;
2844 
2845 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2846 		md->status_dentry =
2847 			debugfs_create_file_unsafe("status", 0400, root,
2848 						   card,
2849 						   &mmc_dbg_card_status_fops);
2850 		if (!md->status_dentry)
2851 			return -EIO;
2852 	}
2853 
2854 	if (mmc_card_mmc(card)) {
2855 		md->ext_csd_dentry =
2856 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2857 					    &mmc_dbg_ext_csd_fops);
2858 		if (!md->ext_csd_dentry)
2859 			return -EIO;
2860 	}
2861 
2862 	return 0;
2863 }
2864 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2865 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2866 				   struct mmc_blk_data *md)
2867 {
2868 	if (!card->debugfs_root)
2869 		return;
2870 
2871 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2872 		debugfs_remove(md->status_dentry);
2873 		md->status_dentry = NULL;
2874 	}
2875 
2876 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2877 		debugfs_remove(md->ext_csd_dentry);
2878 		md->ext_csd_dentry = NULL;
2879 	}
2880 }
2881 
2882 #else
2883 
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2884 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2885 {
2886 	return 0;
2887 }
2888 
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2889 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2890 				   struct mmc_blk_data *md)
2891 {
2892 }
2893 
2894 #endif /* CONFIG_DEBUG_FS */
2895 
mmc_blk_probe(struct mmc_card * card)2896 static int mmc_blk_probe(struct mmc_card *card)
2897 {
2898 	struct mmc_blk_data *md, *part_md;
2899 	char cap_str[10];
2900 
2901 	/*
2902 	 * Check that the card supports the command class(es) we need.
2903 	 */
2904 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2905 		return -ENODEV;
2906 
2907 	mmc_fixup_device(card, mmc_blk_fixups);
2908 
2909 	card->complete_wq = alloc_workqueue("mmc_complete",
2910 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2911 	if (unlikely(!card->complete_wq)) {
2912 		pr_err("Failed to create mmc completion workqueue");
2913 		return -ENOMEM;
2914 	}
2915 
2916 	md = mmc_blk_alloc(card);
2917 	if (IS_ERR(md))
2918 		return PTR_ERR(md);
2919 
2920 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2921 			cap_str, sizeof(cap_str));
2922 	pr_info("%s: %s %s %s %s\n",
2923 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2924 		cap_str, md->read_only ? "(ro)" : "");
2925 
2926 	if (mmc_blk_alloc_parts(card, md))
2927 		goto out;
2928 
2929 	dev_set_drvdata(&card->dev, md);
2930 
2931 	if (mmc_add_disk(md))
2932 		goto out;
2933 
2934 	list_for_each_entry(part_md, &md->part, part) {
2935 		if (mmc_add_disk(part_md))
2936 			goto out;
2937 	}
2938 
2939 	/* Add two debugfs entries */
2940 	mmc_blk_add_debugfs(card, md);
2941 
2942 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2943 	pm_runtime_use_autosuspend(&card->dev);
2944 
2945 	/*
2946 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2947 	 * decision to be taken during the SDIO init sequence instead.
2948 	 */
2949 	if (card->type != MMC_TYPE_SD_COMBO) {
2950 		pm_runtime_set_active(&card->dev);
2951 		pm_runtime_enable(&card->dev);
2952 	}
2953 
2954 	return 0;
2955 
2956  out:
2957 	mmc_blk_remove_parts(card, md);
2958 	mmc_blk_remove_req(md);
2959 	return 0;
2960 }
2961 
mmc_blk_remove(struct mmc_card * card)2962 static void mmc_blk_remove(struct mmc_card *card)
2963 {
2964 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2965 
2966 	mmc_blk_remove_debugfs(card, md);
2967 	mmc_blk_remove_parts(card, md);
2968 	pm_runtime_get_sync(&card->dev);
2969 	if (md->part_curr != md->part_type) {
2970 		mmc_claim_host(card->host);
2971 		mmc_blk_part_switch(card, md->part_type);
2972 		mmc_release_host(card->host);
2973 	}
2974 	if (card->type != MMC_TYPE_SD_COMBO)
2975 		pm_runtime_disable(&card->dev);
2976 	pm_runtime_put_noidle(&card->dev);
2977 	mmc_blk_remove_req(md);
2978 	dev_set_drvdata(&card->dev, NULL);
2979 	destroy_workqueue(card->complete_wq);
2980 }
2981 
_mmc_blk_suspend(struct mmc_card * card)2982 static int _mmc_blk_suspend(struct mmc_card *card)
2983 {
2984 	struct mmc_blk_data *part_md;
2985 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2986 
2987 	if (md) {
2988 		mmc_queue_suspend(&md->queue);
2989 		list_for_each_entry(part_md, &md->part, part) {
2990 			mmc_queue_suspend(&part_md->queue);
2991 		}
2992 	}
2993 	return 0;
2994 }
2995 
mmc_blk_shutdown(struct mmc_card * card)2996 static void mmc_blk_shutdown(struct mmc_card *card)
2997 {
2998 	_mmc_blk_suspend(card);
2999 }
3000 
3001 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3002 static int mmc_blk_suspend(struct device *dev)
3003 {
3004 	struct mmc_card *card = mmc_dev_to_card(dev);
3005 
3006 	return _mmc_blk_suspend(card);
3007 }
3008 
mmc_blk_resume(struct device * dev)3009 static int mmc_blk_resume(struct device *dev)
3010 {
3011 	struct mmc_blk_data *part_md;
3012 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3013 
3014 	if (md) {
3015 		/*
3016 		 * Resume involves the card going into idle state,
3017 		 * so current partition is always the main one.
3018 		 */
3019 		md->part_curr = md->part_type;
3020 		mmc_queue_resume(&md->queue);
3021 		list_for_each_entry(part_md, &md->part, part) {
3022 			mmc_queue_resume(&part_md->queue);
3023 		}
3024 	}
3025 	return 0;
3026 }
3027 #endif
3028 
3029 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3030 
3031 static struct mmc_driver mmc_driver = {
3032 	.drv		= {
3033 		.name	= "mmcblk",
3034 		.pm	= &mmc_blk_pm_ops,
3035 	},
3036 	.probe		= mmc_blk_probe,
3037 	.remove		= mmc_blk_remove,
3038 	.shutdown	= mmc_blk_shutdown,
3039 };
3040 
mmc_blk_init(void)3041 static int __init mmc_blk_init(void)
3042 {
3043 	int res;
3044 
3045 	res  = bus_register(&mmc_rpmb_bus_type);
3046 	if (res < 0) {
3047 		pr_err("mmcblk: could not register RPMB bus type\n");
3048 		return res;
3049 	}
3050 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3051 	if (res < 0) {
3052 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3053 		goto out_bus_unreg;
3054 	}
3055 
3056 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3057 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3058 
3059 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3060 
3061 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3062 	if (res)
3063 		goto out_chrdev_unreg;
3064 
3065 	res = mmc_register_driver(&mmc_driver);
3066 	if (res)
3067 		goto out_blkdev_unreg;
3068 
3069 	return 0;
3070 
3071 out_blkdev_unreg:
3072 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3073 out_chrdev_unreg:
3074 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3075 out_bus_unreg:
3076 	bus_unregister(&mmc_rpmb_bus_type);
3077 	return res;
3078 }
3079 
mmc_blk_exit(void)3080 static void __exit mmc_blk_exit(void)
3081 {
3082 	mmc_unregister_driver(&mmc_driver);
3083 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3084 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3085 	bus_unregister(&mmc_rpmb_bus_type);
3086 }
3087 
3088 module_init(mmc_blk_init);
3089 module_exit(mmc_blk_exit);
3090 
3091 MODULE_LICENSE("GPL");
3092 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3093 
3094