• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/vmalloc.h>
8 
9 /* ENETC overhead: optional extension BD + 1 BD gap */
10 #define ENETC_TXBDS_NEEDED(val)	((val) + 2)
11 /* max # of chained Tx BDs is 15, including head and extension BD */
12 #define ENETC_MAX_SKB_FRAGS	13
13 #define ENETC_TXBDS_MAX_NEEDED	ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
14 
15 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
16 			      int active_offloads);
17 
enetc_xmit(struct sk_buff * skb,struct net_device * ndev)18 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
19 {
20 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
21 	struct enetc_bdr *tx_ring;
22 	int count;
23 
24 	tx_ring = priv->tx_ring[skb->queue_mapping];
25 
26 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
27 		if (unlikely(skb_linearize(skb)))
28 			goto drop_packet_err;
29 
30 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
31 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
32 		netif_stop_subqueue(ndev, tx_ring->index);
33 		return NETDEV_TX_BUSY;
34 	}
35 
36 	enetc_lock_mdio();
37 	count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
38 	enetc_unlock_mdio();
39 
40 	if (unlikely(!count))
41 		goto drop_packet_err;
42 
43 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
44 		netif_stop_subqueue(ndev, tx_ring->index);
45 
46 	return NETDEV_TX_OK;
47 
48 drop_packet_err:
49 	dev_kfree_skb_any(skb);
50 	return NETDEV_TX_OK;
51 }
52 
enetc_tx_csum(struct sk_buff * skb,union enetc_tx_bd * txbd)53 static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
54 {
55 	int l3_start, l3_hsize;
56 	u16 l3_flags, l4_flags;
57 
58 	if (skb->ip_summed != CHECKSUM_PARTIAL)
59 		return false;
60 
61 	switch (skb->csum_offset) {
62 	case offsetof(struct tcphdr, check):
63 		l4_flags = ENETC_TXBD_L4_TCP;
64 		break;
65 	case offsetof(struct udphdr, check):
66 		l4_flags = ENETC_TXBD_L4_UDP;
67 		break;
68 	default:
69 		skb_checksum_help(skb);
70 		return false;
71 	}
72 
73 	l3_start = skb_network_offset(skb);
74 	l3_hsize = skb_network_header_len(skb);
75 
76 	l3_flags = 0;
77 	if (skb->protocol == htons(ETH_P_IPV6))
78 		l3_flags = ENETC_TXBD_L3_IPV6;
79 
80 	/* write BD fields */
81 	txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
82 	txbd->l4_csoff = l4_flags;
83 
84 	return true;
85 }
86 
enetc_unmap_tx_buff(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * tx_swbd)87 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
88 				struct enetc_tx_swbd *tx_swbd)
89 {
90 	if (tx_swbd->is_dma_page)
91 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
92 			       tx_swbd->len, DMA_TO_DEVICE);
93 	else
94 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
95 				 tx_swbd->len, DMA_TO_DEVICE);
96 	tx_swbd->dma = 0;
97 }
98 
enetc_free_tx_skb(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * tx_swbd)99 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
100 			      struct enetc_tx_swbd *tx_swbd)
101 {
102 	if (tx_swbd->dma)
103 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
104 
105 	if (tx_swbd->skb) {
106 		dev_kfree_skb_any(tx_swbd->skb);
107 		tx_swbd->skb = NULL;
108 	}
109 }
110 
enetc_map_tx_buffs(struct enetc_bdr * tx_ring,struct sk_buff * skb,int active_offloads)111 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
112 			      int active_offloads)
113 {
114 	struct enetc_tx_swbd *tx_swbd;
115 	skb_frag_t *frag;
116 	int len = skb_headlen(skb);
117 	union enetc_tx_bd temp_bd;
118 	union enetc_tx_bd *txbd;
119 	bool do_vlan, do_tstamp;
120 	int i, count = 0;
121 	unsigned int f;
122 	dma_addr_t dma;
123 	u8 flags = 0;
124 
125 	i = tx_ring->next_to_use;
126 	txbd = ENETC_TXBD(*tx_ring, i);
127 	prefetchw(txbd);
128 
129 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
130 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
131 		goto dma_err;
132 
133 	temp_bd.addr = cpu_to_le64(dma);
134 	temp_bd.buf_len = cpu_to_le16(len);
135 	temp_bd.lstatus = 0;
136 
137 	tx_swbd = &tx_ring->tx_swbd[i];
138 	tx_swbd->dma = dma;
139 	tx_swbd->len = len;
140 	tx_swbd->is_dma_page = 0;
141 	count++;
142 
143 	do_vlan = skb_vlan_tag_present(skb);
144 	do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
145 		    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
146 	tx_swbd->do_tstamp = do_tstamp;
147 	tx_swbd->check_wb = tx_swbd->do_tstamp;
148 
149 	if (do_vlan || do_tstamp)
150 		flags |= ENETC_TXBD_FLAGS_EX;
151 
152 	if (enetc_tx_csum(skb, &temp_bd))
153 		flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
154 	else if (tx_ring->tsd_enable)
155 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
156 
157 	/* first BD needs frm_len and offload flags set */
158 	temp_bd.frm_len = cpu_to_le16(skb->len);
159 	temp_bd.flags = flags;
160 
161 	if (flags & ENETC_TXBD_FLAGS_TSE) {
162 		u32 temp;
163 
164 		temp = (skb->skb_mstamp_ns >> 5 & ENETC_TXBD_TXSTART_MASK)
165 			| (flags << ENETC_TXBD_FLAGS_OFFSET);
166 		temp_bd.txstart = cpu_to_le32(temp);
167 	}
168 
169 	if (flags & ENETC_TXBD_FLAGS_EX) {
170 		u8 e_flags = 0;
171 		*txbd = temp_bd;
172 		enetc_clear_tx_bd(&temp_bd);
173 
174 		/* add extension BD for VLAN and/or timestamping */
175 		flags = 0;
176 		tx_swbd++;
177 		txbd++;
178 		i++;
179 		if (unlikely(i == tx_ring->bd_count)) {
180 			i = 0;
181 			tx_swbd = tx_ring->tx_swbd;
182 			txbd = ENETC_TXBD(*tx_ring, 0);
183 		}
184 		prefetchw(txbd);
185 
186 		if (do_vlan) {
187 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
188 			temp_bd.ext.tpid = 0; /* < C-TAG */
189 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
190 		}
191 
192 		if (do_tstamp) {
193 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
194 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
195 		}
196 
197 		temp_bd.ext.e_flags = e_flags;
198 		count++;
199 	}
200 
201 	frag = &skb_shinfo(skb)->frags[0];
202 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
203 		len = skb_frag_size(frag);
204 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
205 				       DMA_TO_DEVICE);
206 		if (dma_mapping_error(tx_ring->dev, dma))
207 			goto dma_err;
208 
209 		*txbd = temp_bd;
210 		enetc_clear_tx_bd(&temp_bd);
211 
212 		flags = 0;
213 		tx_swbd++;
214 		txbd++;
215 		i++;
216 		if (unlikely(i == tx_ring->bd_count)) {
217 			i = 0;
218 			tx_swbd = tx_ring->tx_swbd;
219 			txbd = ENETC_TXBD(*tx_ring, 0);
220 		}
221 		prefetchw(txbd);
222 
223 		temp_bd.addr = cpu_to_le64(dma);
224 		temp_bd.buf_len = cpu_to_le16(len);
225 
226 		tx_swbd->dma = dma;
227 		tx_swbd->len = len;
228 		tx_swbd->is_dma_page = 1;
229 		count++;
230 	}
231 
232 	/* last BD needs 'F' bit set */
233 	flags |= ENETC_TXBD_FLAGS_F;
234 	temp_bd.flags = flags;
235 	*txbd = temp_bd;
236 
237 	tx_ring->tx_swbd[i].skb = skb;
238 
239 	enetc_bdr_idx_inc(tx_ring, &i);
240 	tx_ring->next_to_use = i;
241 
242 	skb_tx_timestamp(skb);
243 
244 	/* let H/W know BD ring has been updated */
245 	enetc_wr_reg_hot(tx_ring->tpir, i); /* includes wmb() */
246 
247 	return count;
248 
249 dma_err:
250 	dev_err(tx_ring->dev, "DMA map error");
251 
252 	do {
253 		tx_swbd = &tx_ring->tx_swbd[i];
254 		enetc_free_tx_skb(tx_ring, tx_swbd);
255 		if (i == 0)
256 			i = tx_ring->bd_count;
257 		i--;
258 	} while (count--);
259 
260 	return 0;
261 }
262 
enetc_msix(int irq,void * data)263 static irqreturn_t enetc_msix(int irq, void *data)
264 {
265 	struct enetc_int_vector	*v = data;
266 	int i;
267 
268 	enetc_lock_mdio();
269 
270 	/* disable interrupts */
271 	enetc_wr_reg_hot(v->rbier, 0);
272 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
273 
274 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
275 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
276 
277 	enetc_unlock_mdio();
278 
279 	napi_schedule(&v->napi);
280 
281 	return IRQ_HANDLED;
282 }
283 
284 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
285 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
286 			       struct napi_struct *napi, int work_limit);
287 
enetc_rx_dim_work(struct work_struct * w)288 static void enetc_rx_dim_work(struct work_struct *w)
289 {
290 	struct dim *dim = container_of(w, struct dim, work);
291 	struct dim_cq_moder moder =
292 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
293 	struct enetc_int_vector	*v =
294 		container_of(dim, struct enetc_int_vector, rx_dim);
295 
296 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
297 	dim->state = DIM_START_MEASURE;
298 }
299 
enetc_rx_net_dim(struct enetc_int_vector * v)300 static void enetc_rx_net_dim(struct enetc_int_vector *v)
301 {
302 	struct dim_sample dim_sample = {};
303 
304 	v->comp_cnt++;
305 
306 	if (!v->rx_napi_work)
307 		return;
308 
309 	dim_update_sample(v->comp_cnt,
310 			  v->rx_ring.stats.packets,
311 			  v->rx_ring.stats.bytes,
312 			  &dim_sample);
313 	net_dim(&v->rx_dim, dim_sample);
314 }
315 
enetc_poll(struct napi_struct * napi,int budget)316 static int enetc_poll(struct napi_struct *napi, int budget)
317 {
318 	struct enetc_int_vector
319 		*v = container_of(napi, struct enetc_int_vector, napi);
320 	bool complete = true;
321 	int work_done;
322 	int i;
323 
324 	enetc_lock_mdio();
325 
326 	for (i = 0; i < v->count_tx_rings; i++)
327 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
328 			complete = false;
329 
330 	work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
331 	if (work_done == budget)
332 		complete = false;
333 	if (work_done)
334 		v->rx_napi_work = true;
335 
336 	if (!complete) {
337 		enetc_unlock_mdio();
338 		return budget;
339 	}
340 
341 	napi_complete_done(napi, work_done);
342 
343 	if (likely(v->rx_dim_en))
344 		enetc_rx_net_dim(v);
345 
346 	v->rx_napi_work = false;
347 
348 	/* enable interrupts */
349 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
350 
351 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
352 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
353 				 ENETC_TBIER_TXTIE);
354 
355 	enetc_unlock_mdio();
356 
357 	return work_done;
358 }
359 
enetc_bd_ready_count(struct enetc_bdr * tx_ring,int ci)360 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
361 {
362 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
363 
364 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
365 }
366 
enetc_get_tx_tstamp(struct enetc_hw * hw,union enetc_tx_bd * txbd,u64 * tstamp)367 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
368 				u64 *tstamp)
369 {
370 	u32 lo, hi, tstamp_lo;
371 
372 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
373 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
374 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
375 	if (lo <= tstamp_lo)
376 		hi -= 1;
377 	*tstamp = (u64)hi << 32 | tstamp_lo;
378 }
379 
enetc_tstamp_tx(struct sk_buff * skb,u64 tstamp)380 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
381 {
382 	struct skb_shared_hwtstamps shhwtstamps;
383 
384 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
385 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
386 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
387 		/* Ensure skb_mstamp_ns, which might have been populated with
388 		 * the txtime, is not mistaken for a software timestamp,
389 		 * because this will prevent the dispatch of our hardware
390 		 * timestamp to the socket.
391 		 */
392 		skb->tstamp = ktime_set(0, 0);
393 		skb_tstamp_tx(skb, &shhwtstamps);
394 	}
395 }
396 
enetc_clean_tx_ring(struct enetc_bdr * tx_ring,int napi_budget)397 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
398 {
399 	struct net_device *ndev = tx_ring->ndev;
400 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
401 	struct enetc_tx_swbd *tx_swbd;
402 	int i, bds_to_clean;
403 	bool do_tstamp;
404 	u64 tstamp = 0;
405 
406 	i = tx_ring->next_to_clean;
407 	tx_swbd = &tx_ring->tx_swbd[i];
408 
409 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
410 
411 	do_tstamp = false;
412 
413 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
414 		bool is_eof = !!tx_swbd->skb;
415 
416 		if (unlikely(tx_swbd->check_wb)) {
417 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
418 			union enetc_tx_bd *txbd;
419 
420 			txbd = ENETC_TXBD(*tx_ring, i);
421 
422 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
423 			    tx_swbd->do_tstamp) {
424 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
425 						    &tstamp);
426 				do_tstamp = true;
427 			}
428 		}
429 
430 		if (likely(tx_swbd->dma))
431 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
432 
433 		if (is_eof) {
434 			if (unlikely(do_tstamp)) {
435 				enetc_tstamp_tx(tx_swbd->skb, tstamp);
436 				do_tstamp = false;
437 			}
438 			napi_consume_skb(tx_swbd->skb, napi_budget);
439 			tx_swbd->skb = NULL;
440 		}
441 
442 		tx_byte_cnt += tx_swbd->len;
443 
444 		bds_to_clean--;
445 		tx_swbd++;
446 		i++;
447 		if (unlikely(i == tx_ring->bd_count)) {
448 			i = 0;
449 			tx_swbd = tx_ring->tx_swbd;
450 		}
451 
452 		/* BD iteration loop end */
453 		if (is_eof) {
454 			tx_frm_cnt++;
455 			/* re-arm interrupt source */
456 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
457 					 BIT(16 + tx_ring->index));
458 		}
459 
460 		if (unlikely(!bds_to_clean))
461 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
462 	}
463 
464 	tx_ring->next_to_clean = i;
465 	tx_ring->stats.packets += tx_frm_cnt;
466 	tx_ring->stats.bytes += tx_byte_cnt;
467 
468 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
469 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
470 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
471 		netif_wake_subqueue(ndev, tx_ring->index);
472 	}
473 
474 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
475 }
476 
enetc_new_page(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * rx_swbd)477 static bool enetc_new_page(struct enetc_bdr *rx_ring,
478 			   struct enetc_rx_swbd *rx_swbd)
479 {
480 	struct page *page;
481 	dma_addr_t addr;
482 
483 	page = dev_alloc_page();
484 	if (unlikely(!page))
485 		return false;
486 
487 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
488 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
489 		__free_page(page);
490 
491 		return false;
492 	}
493 
494 	rx_swbd->dma = addr;
495 	rx_swbd->page = page;
496 	rx_swbd->page_offset = ENETC_RXB_PAD;
497 
498 	return true;
499 }
500 
enetc_refill_rx_ring(struct enetc_bdr * rx_ring,const int buff_cnt)501 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
502 {
503 	struct enetc_rx_swbd *rx_swbd;
504 	union enetc_rx_bd *rxbd;
505 	int i, j;
506 
507 	i = rx_ring->next_to_use;
508 	rx_swbd = &rx_ring->rx_swbd[i];
509 	rxbd = enetc_rxbd(rx_ring, i);
510 
511 	for (j = 0; j < buff_cnt; j++) {
512 		/* try reuse page */
513 		if (unlikely(!rx_swbd->page)) {
514 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
515 				rx_ring->stats.rx_alloc_errs++;
516 				break;
517 			}
518 		}
519 
520 		/* update RxBD */
521 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
522 					   rx_swbd->page_offset);
523 		/* clear 'R" as well */
524 		rxbd->r.lstatus = 0;
525 
526 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
527 		rx_swbd++;
528 		i++;
529 		if (unlikely(i == rx_ring->bd_count)) {
530 			i = 0;
531 			rx_swbd = rx_ring->rx_swbd;
532 		}
533 	}
534 
535 	if (likely(j)) {
536 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
537 		rx_ring->next_to_use = i;
538 	}
539 
540 	return j;
541 }
542 
543 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
enetc_get_rx_tstamp(struct net_device * ndev,union enetc_rx_bd * rxbd,struct sk_buff * skb)544 static void enetc_get_rx_tstamp(struct net_device *ndev,
545 				union enetc_rx_bd *rxbd,
546 				struct sk_buff *skb)
547 {
548 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
549 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
550 	struct enetc_hw *hw = &priv->si->hw;
551 	u32 lo, hi, tstamp_lo;
552 	u64 tstamp;
553 
554 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
555 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
556 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
557 		rxbd = enetc_rxbd_ext(rxbd);
558 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
559 		if (lo <= tstamp_lo)
560 			hi -= 1;
561 
562 		tstamp = (u64)hi << 32 | tstamp_lo;
563 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
564 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
565 	}
566 }
567 #endif
568 
enetc_get_offloads(struct enetc_bdr * rx_ring,union enetc_rx_bd * rxbd,struct sk_buff * skb)569 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
570 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
571 {
572 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
573 
574 	/* TODO: hashing */
575 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
576 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
577 
578 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
579 		skb->ip_summed = CHECKSUM_COMPLETE;
580 	}
581 
582 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
583 		__be16 tpid = 0;
584 
585 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
586 		case 0:
587 			tpid = htons(ETH_P_8021Q);
588 			break;
589 		case 1:
590 			tpid = htons(ETH_P_8021AD);
591 			break;
592 		case 2:
593 			tpid = htons(enetc_port_rd(&priv->si->hw,
594 						   ENETC_PCVLANR1));
595 			break;
596 		case 3:
597 			tpid = htons(enetc_port_rd(&priv->si->hw,
598 						   ENETC_PCVLANR2));
599 			break;
600 		default:
601 			break;
602 		}
603 
604 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
605 	}
606 
607 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
608 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
609 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
610 #endif
611 }
612 
enetc_process_skb(struct enetc_bdr * rx_ring,struct sk_buff * skb)613 static void enetc_process_skb(struct enetc_bdr *rx_ring,
614 			      struct sk_buff *skb)
615 {
616 	skb_record_rx_queue(skb, rx_ring->index);
617 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
618 }
619 
enetc_page_reusable(struct page * page)620 static bool enetc_page_reusable(struct page *page)
621 {
622 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
623 }
624 
enetc_reuse_page(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * old)625 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
626 			     struct enetc_rx_swbd *old)
627 {
628 	struct enetc_rx_swbd *new;
629 
630 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
631 
632 	/* next buf that may reuse a page */
633 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
634 
635 	/* copy page reference */
636 	*new = *old;
637 }
638 
enetc_get_rx_buff(struct enetc_bdr * rx_ring,int i,u16 size)639 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
640 					       int i, u16 size)
641 {
642 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
643 
644 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
645 				      rx_swbd->page_offset,
646 				      size, DMA_FROM_DEVICE);
647 	return rx_swbd;
648 }
649 
enetc_put_rx_buff(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * rx_swbd)650 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
651 			      struct enetc_rx_swbd *rx_swbd)
652 {
653 	if (likely(enetc_page_reusable(rx_swbd->page))) {
654 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
655 		page_ref_inc(rx_swbd->page);
656 
657 		enetc_reuse_page(rx_ring, rx_swbd);
658 
659 		/* sync for use by the device */
660 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
661 						 rx_swbd->page_offset,
662 						 ENETC_RXB_DMA_SIZE,
663 						 DMA_FROM_DEVICE);
664 	} else {
665 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
666 			       PAGE_SIZE, DMA_FROM_DEVICE);
667 	}
668 
669 	rx_swbd->page = NULL;
670 }
671 
enetc_map_rx_buff_to_skb(struct enetc_bdr * rx_ring,int i,u16 size)672 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
673 						int i, u16 size)
674 {
675 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
676 	struct sk_buff *skb;
677 	void *ba;
678 
679 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
680 	skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
681 	if (unlikely(!skb)) {
682 		rx_ring->stats.rx_alloc_errs++;
683 		return NULL;
684 	}
685 
686 	skb_reserve(skb, ENETC_RXB_PAD);
687 	__skb_put(skb, size);
688 
689 	enetc_put_rx_buff(rx_ring, rx_swbd);
690 
691 	return skb;
692 }
693 
enetc_add_rx_buff_to_skb(struct enetc_bdr * rx_ring,int i,u16 size,struct sk_buff * skb)694 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
695 				     u16 size, struct sk_buff *skb)
696 {
697 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
698 
699 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
700 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
701 
702 	enetc_put_rx_buff(rx_ring, rx_swbd);
703 }
704 
705 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
706 
enetc_clean_rx_ring(struct enetc_bdr * rx_ring,struct napi_struct * napi,int work_limit)707 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
708 			       struct napi_struct *napi, int work_limit)
709 {
710 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
711 	int cleaned_cnt, i;
712 
713 	cleaned_cnt = enetc_bd_unused(rx_ring);
714 	/* next descriptor to process */
715 	i = rx_ring->next_to_clean;
716 
717 	while (likely(rx_frm_cnt < work_limit)) {
718 		union enetc_rx_bd *rxbd;
719 		struct sk_buff *skb;
720 		u32 bd_status;
721 		u16 size;
722 
723 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
724 			int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
725 
726 			/* update ENETC's consumer index */
727 			enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
728 			cleaned_cnt -= count;
729 		}
730 
731 		rxbd = enetc_rxbd(rx_ring, i);
732 		bd_status = le32_to_cpu(rxbd->r.lstatus);
733 		if (!bd_status)
734 			break;
735 
736 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
737 		dma_rmb(); /* for reading other rxbd fields */
738 		size = le16_to_cpu(rxbd->r.buf_len);
739 		skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
740 		if (!skb)
741 			break;
742 
743 		enetc_get_offloads(rx_ring, rxbd, skb);
744 
745 		cleaned_cnt++;
746 
747 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
748 		if (unlikely(++i == rx_ring->bd_count))
749 			i = 0;
750 
751 		if (unlikely(bd_status &
752 			     ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
753 			dev_kfree_skb(skb);
754 			while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
755 				dma_rmb();
756 				bd_status = le32_to_cpu(rxbd->r.lstatus);
757 
758 				rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
759 				if (unlikely(++i == rx_ring->bd_count))
760 					i = 0;
761 			}
762 
763 			rx_ring->ndev->stats.rx_dropped++;
764 			rx_ring->ndev->stats.rx_errors++;
765 
766 			break;
767 		}
768 
769 		/* not last BD in frame? */
770 		while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
771 			bd_status = le32_to_cpu(rxbd->r.lstatus);
772 			size = ENETC_RXB_DMA_SIZE;
773 
774 			if (bd_status & ENETC_RXBD_LSTATUS_F) {
775 				dma_rmb();
776 				size = le16_to_cpu(rxbd->r.buf_len);
777 			}
778 
779 			enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
780 
781 			cleaned_cnt++;
782 
783 			rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
784 			if (unlikely(++i == rx_ring->bd_count))
785 				i = 0;
786 		}
787 
788 		rx_byte_cnt += skb->len;
789 
790 		enetc_process_skb(rx_ring, skb);
791 
792 		napi_gro_receive(napi, skb);
793 
794 		rx_frm_cnt++;
795 	}
796 
797 	rx_ring->next_to_clean = i;
798 
799 	rx_ring->stats.packets += rx_frm_cnt;
800 	rx_ring->stats.bytes += rx_byte_cnt;
801 
802 	return rx_frm_cnt;
803 }
804 
805 /* Probing and Init */
806 #define ENETC_MAX_RFS_SIZE 64
enetc_get_si_caps(struct enetc_si * si)807 void enetc_get_si_caps(struct enetc_si *si)
808 {
809 	struct enetc_hw *hw = &si->hw;
810 	u32 val;
811 
812 	/* find out how many of various resources we have to work with */
813 	val = enetc_rd(hw, ENETC_SICAPR0);
814 	si->num_rx_rings = (val >> 16) & 0xff;
815 	si->num_tx_rings = val & 0xff;
816 
817 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
818 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
819 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
820 
821 	si->num_rss = 0;
822 	val = enetc_rd(hw, ENETC_SIPCAPR0);
823 	if (val & ENETC_SIPCAPR0_RSS) {
824 		u32 rss;
825 
826 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
827 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
828 	}
829 
830 	if (val & ENETC_SIPCAPR0_QBV)
831 		si->hw_features |= ENETC_SI_F_QBV;
832 
833 	if (val & ENETC_SIPCAPR0_PSFP)
834 		si->hw_features |= ENETC_SI_F_PSFP;
835 }
836 
enetc_dma_alloc_bdr(struct enetc_bdr * r,size_t bd_size)837 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
838 {
839 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
840 					&r->bd_dma_base, GFP_KERNEL);
841 	if (!r->bd_base)
842 		return -ENOMEM;
843 
844 	/* h/w requires 128B alignment */
845 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
846 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
847 				  r->bd_dma_base);
848 		return -EINVAL;
849 	}
850 
851 	return 0;
852 }
853 
enetc_alloc_txbdr(struct enetc_bdr * txr)854 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
855 {
856 	int err;
857 
858 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
859 	if (!txr->tx_swbd)
860 		return -ENOMEM;
861 
862 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
863 	if (err) {
864 		vfree(txr->tx_swbd);
865 		return err;
866 	}
867 
868 	txr->next_to_clean = 0;
869 	txr->next_to_use = 0;
870 
871 	return 0;
872 }
873 
enetc_free_txbdr(struct enetc_bdr * txr)874 static void enetc_free_txbdr(struct enetc_bdr *txr)
875 {
876 	int size, i;
877 
878 	for (i = 0; i < txr->bd_count; i++)
879 		enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
880 
881 	size = txr->bd_count * sizeof(union enetc_tx_bd);
882 
883 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
884 	txr->bd_base = NULL;
885 
886 	vfree(txr->tx_swbd);
887 	txr->tx_swbd = NULL;
888 }
889 
enetc_alloc_tx_resources(struct enetc_ndev_priv * priv)890 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
891 {
892 	int i, err;
893 
894 	for (i = 0; i < priv->num_tx_rings; i++) {
895 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
896 
897 		if (err)
898 			goto fail;
899 	}
900 
901 	return 0;
902 
903 fail:
904 	while (i-- > 0)
905 		enetc_free_txbdr(priv->tx_ring[i]);
906 
907 	return err;
908 }
909 
enetc_free_tx_resources(struct enetc_ndev_priv * priv)910 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
911 {
912 	int i;
913 
914 	for (i = 0; i < priv->num_tx_rings; i++)
915 		enetc_free_txbdr(priv->tx_ring[i]);
916 }
917 
enetc_alloc_rxbdr(struct enetc_bdr * rxr,bool extended)918 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
919 {
920 	size_t size = sizeof(union enetc_rx_bd);
921 	int err;
922 
923 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
924 	if (!rxr->rx_swbd)
925 		return -ENOMEM;
926 
927 	if (extended)
928 		size *= 2;
929 
930 	err = enetc_dma_alloc_bdr(rxr, size);
931 	if (err) {
932 		vfree(rxr->rx_swbd);
933 		return err;
934 	}
935 
936 	rxr->next_to_clean = 0;
937 	rxr->next_to_use = 0;
938 	rxr->next_to_alloc = 0;
939 	rxr->ext_en = extended;
940 
941 	return 0;
942 }
943 
enetc_free_rxbdr(struct enetc_bdr * rxr)944 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
945 {
946 	int size;
947 
948 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
949 
950 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
951 	rxr->bd_base = NULL;
952 
953 	vfree(rxr->rx_swbd);
954 	rxr->rx_swbd = NULL;
955 }
956 
enetc_alloc_rx_resources(struct enetc_ndev_priv * priv)957 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
958 {
959 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
960 	int i, err;
961 
962 	for (i = 0; i < priv->num_rx_rings; i++) {
963 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
964 
965 		if (err)
966 			goto fail;
967 	}
968 
969 	return 0;
970 
971 fail:
972 	while (i-- > 0)
973 		enetc_free_rxbdr(priv->rx_ring[i]);
974 
975 	return err;
976 }
977 
enetc_free_rx_resources(struct enetc_ndev_priv * priv)978 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
979 {
980 	int i;
981 
982 	for (i = 0; i < priv->num_rx_rings; i++)
983 		enetc_free_rxbdr(priv->rx_ring[i]);
984 }
985 
enetc_free_tx_ring(struct enetc_bdr * tx_ring)986 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
987 {
988 	int i;
989 
990 	if (!tx_ring->tx_swbd)
991 		return;
992 
993 	for (i = 0; i < tx_ring->bd_count; i++) {
994 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
995 
996 		enetc_free_tx_skb(tx_ring, tx_swbd);
997 	}
998 
999 	tx_ring->next_to_clean = 0;
1000 	tx_ring->next_to_use = 0;
1001 }
1002 
enetc_free_rx_ring(struct enetc_bdr * rx_ring)1003 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
1004 {
1005 	int i;
1006 
1007 	if (!rx_ring->rx_swbd)
1008 		return;
1009 
1010 	for (i = 0; i < rx_ring->bd_count; i++) {
1011 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1012 
1013 		if (!rx_swbd->page)
1014 			continue;
1015 
1016 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
1017 			       PAGE_SIZE, DMA_FROM_DEVICE);
1018 		__free_page(rx_swbd->page);
1019 		rx_swbd->page = NULL;
1020 	}
1021 
1022 	rx_ring->next_to_clean = 0;
1023 	rx_ring->next_to_use = 0;
1024 	rx_ring->next_to_alloc = 0;
1025 }
1026 
enetc_free_rxtx_rings(struct enetc_ndev_priv * priv)1027 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < priv->num_rx_rings; i++)
1032 		enetc_free_rx_ring(priv->rx_ring[i]);
1033 
1034 	for (i = 0; i < priv->num_tx_rings; i++)
1035 		enetc_free_tx_ring(priv->tx_ring[i]);
1036 }
1037 
enetc_alloc_cbdr(struct device * dev,struct enetc_cbdr * cbdr)1038 int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
1039 {
1040 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
1041 
1042 	cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
1043 					   GFP_KERNEL);
1044 	if (!cbdr->bd_base)
1045 		return -ENOMEM;
1046 
1047 	/* h/w requires 128B alignment */
1048 	if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
1049 		dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
1050 		return -EINVAL;
1051 	}
1052 
1053 	cbdr->next_to_clean = 0;
1054 	cbdr->next_to_use = 0;
1055 
1056 	return 0;
1057 }
1058 
enetc_free_cbdr(struct device * dev,struct enetc_cbdr * cbdr)1059 void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
1060 {
1061 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
1062 
1063 	dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
1064 	cbdr->bd_base = NULL;
1065 }
1066 
enetc_setup_cbdr(struct enetc_hw * hw,struct enetc_cbdr * cbdr)1067 void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
1068 {
1069 	/* set CBDR cache attributes */
1070 	enetc_wr(hw, ENETC_SICAR2,
1071 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1072 
1073 	enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
1074 	enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
1075 	enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
1076 
1077 	enetc_wr(hw, ENETC_SICBDRPIR, 0);
1078 	enetc_wr(hw, ENETC_SICBDRCIR, 0);
1079 
1080 	/* enable ring */
1081 	enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
1082 
1083 	cbdr->pir = hw->reg + ENETC_SICBDRPIR;
1084 	cbdr->cir = hw->reg + ENETC_SICBDRCIR;
1085 }
1086 
enetc_clear_cbdr(struct enetc_hw * hw)1087 void enetc_clear_cbdr(struct enetc_hw *hw)
1088 {
1089 	enetc_wr(hw, ENETC_SICBDRMR, 0);
1090 }
1091 
enetc_setup_default_rss_table(struct enetc_si * si,int num_groups)1092 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1093 {
1094 	int *rss_table;
1095 	int i;
1096 
1097 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1098 	if (!rss_table)
1099 		return -ENOMEM;
1100 
1101 	/* Set up RSS table defaults */
1102 	for (i = 0; i < si->num_rss; i++)
1103 		rss_table[i] = i % num_groups;
1104 
1105 	enetc_set_rss_table(si, rss_table, si->num_rss);
1106 
1107 	kfree(rss_table);
1108 
1109 	return 0;
1110 }
1111 
enetc_configure_si(struct enetc_ndev_priv * priv)1112 int enetc_configure_si(struct enetc_ndev_priv *priv)
1113 {
1114 	struct enetc_si *si = priv->si;
1115 	struct enetc_hw *hw = &si->hw;
1116 	int err;
1117 
1118 	/* set SI cache attributes */
1119 	enetc_wr(hw, ENETC_SICAR0,
1120 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1121 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1122 	/* enable SI */
1123 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1124 
1125 	if (si->num_rss) {
1126 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1127 		if (err)
1128 			return err;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
enetc_init_si_rings_params(struct enetc_ndev_priv * priv)1134 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1135 {
1136 	struct enetc_si *si = priv->si;
1137 	int cpus = num_online_cpus();
1138 
1139 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
1140 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
1141 
1142 	/* Enable all available TX rings in order to configure as many
1143 	 * priorities as possible, when needed.
1144 	 * TODO: Make # of TX rings run-time configurable
1145 	 */
1146 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1147 	priv->num_tx_rings = si->num_tx_rings;
1148 	priv->bdr_int_num = cpus;
1149 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
1150 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
1151 
1152 	/* SI specific */
1153 	si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1154 }
1155 
enetc_alloc_si_resources(struct enetc_ndev_priv * priv)1156 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1157 {
1158 	struct enetc_si *si = priv->si;
1159 	int err;
1160 
1161 	err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1162 	if (err)
1163 		return err;
1164 
1165 	enetc_setup_cbdr(&si->hw, &si->cbd_ring);
1166 
1167 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1168 				  GFP_KERNEL);
1169 	if (!priv->cls_rules) {
1170 		err = -ENOMEM;
1171 		goto err_alloc_cls;
1172 	}
1173 
1174 	return 0;
1175 
1176 err_alloc_cls:
1177 	enetc_clear_cbdr(&si->hw);
1178 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1179 
1180 	return err;
1181 }
1182 
enetc_free_si_resources(struct enetc_ndev_priv * priv)1183 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1184 {
1185 	struct enetc_si *si = priv->si;
1186 
1187 	enetc_clear_cbdr(&si->hw);
1188 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1189 
1190 	kfree(priv->cls_rules);
1191 }
1192 
enetc_setup_txbdr(struct enetc_hw * hw,struct enetc_bdr * tx_ring)1193 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1194 {
1195 	int idx = tx_ring->index;
1196 	u32 tbmr;
1197 
1198 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1199 		       lower_32_bits(tx_ring->bd_dma_base));
1200 
1201 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1202 		       upper_32_bits(tx_ring->bd_dma_base));
1203 
1204 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1205 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1206 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1207 
1208 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1209 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1210 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1211 
1212 	/* enable Tx ints by setting pkt thr to 1 */
1213 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
1214 
1215 	tbmr = ENETC_TBMR_EN;
1216 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1217 		tbmr |= ENETC_TBMR_VIH;
1218 
1219 	/* enable ring */
1220 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1221 
1222 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1223 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1224 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1225 }
1226 
enetc_setup_rxbdr(struct enetc_hw * hw,struct enetc_bdr * rx_ring)1227 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1228 {
1229 	int idx = rx_ring->index;
1230 	u32 rbmr;
1231 
1232 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1233 		       lower_32_bits(rx_ring->bd_dma_base));
1234 
1235 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1236 		       upper_32_bits(rx_ring->bd_dma_base));
1237 
1238 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1239 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1240 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1241 
1242 	enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1243 
1244 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1245 
1246 	/* enable Rx ints by setting pkt thr to 1 */
1247 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
1248 
1249 	rbmr = ENETC_RBMR_EN;
1250 
1251 	if (rx_ring->ext_en)
1252 		rbmr |= ENETC_RBMR_BDS;
1253 
1254 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1255 		rbmr |= ENETC_RBMR_VTE;
1256 
1257 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1258 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1259 
1260 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1261 	/* update ENETC's consumer index */
1262 	enetc_rxbdr_wr(hw, idx, ENETC_RBCIR, rx_ring->next_to_use);
1263 
1264 	/* enable ring */
1265 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1266 }
1267 
enetc_setup_bdrs(struct enetc_ndev_priv * priv)1268 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1269 {
1270 	int i;
1271 
1272 	for (i = 0; i < priv->num_tx_rings; i++)
1273 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1274 
1275 	for (i = 0; i < priv->num_rx_rings; i++)
1276 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1277 }
1278 
enetc_clear_rxbdr(struct enetc_hw * hw,struct enetc_bdr * rx_ring)1279 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1280 {
1281 	int idx = rx_ring->index;
1282 
1283 	/* disable EN bit on ring */
1284 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1285 }
1286 
enetc_clear_txbdr(struct enetc_hw * hw,struct enetc_bdr * tx_ring)1287 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1288 {
1289 	int delay = 8, timeout = 100;
1290 	int idx = tx_ring->index;
1291 
1292 	/* disable EN bit on ring */
1293 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1294 
1295 	/* wait for busy to clear */
1296 	while (delay < timeout &&
1297 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1298 		msleep(delay);
1299 		delay *= 2;
1300 	}
1301 
1302 	if (delay >= timeout)
1303 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1304 			    idx);
1305 }
1306 
enetc_clear_bdrs(struct enetc_ndev_priv * priv)1307 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1308 {
1309 	int i;
1310 
1311 	for (i = 0; i < priv->num_tx_rings; i++)
1312 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1313 
1314 	for (i = 0; i < priv->num_rx_rings; i++)
1315 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1316 
1317 	udelay(1);
1318 }
1319 
enetc_setup_irqs(struct enetc_ndev_priv * priv)1320 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1321 {
1322 	struct pci_dev *pdev = priv->si->pdev;
1323 	int i, j, err;
1324 
1325 	for (i = 0; i < priv->bdr_int_num; i++) {
1326 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1327 		struct enetc_int_vector *v = priv->int_vector[i];
1328 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1329 		struct enetc_hw *hw = &priv->si->hw;
1330 
1331 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1332 			 priv->ndev->name, i);
1333 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1334 		if (err) {
1335 			dev_err(priv->dev, "request_irq() failed!\n");
1336 			goto irq_err;
1337 		}
1338 		disable_irq(irq);
1339 
1340 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1341 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1342 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
1343 
1344 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1345 
1346 		for (j = 0; j < v->count_tx_rings; j++) {
1347 			int idx = v->tx_ring[j].index;
1348 
1349 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1350 		}
1351 		irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
1352 	}
1353 
1354 	return 0;
1355 
1356 irq_err:
1357 	while (i--) {
1358 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1359 
1360 		irq_set_affinity_hint(irq, NULL);
1361 		free_irq(irq, priv->int_vector[i]);
1362 	}
1363 
1364 	return err;
1365 }
1366 
enetc_free_irqs(struct enetc_ndev_priv * priv)1367 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1368 {
1369 	struct pci_dev *pdev = priv->si->pdev;
1370 	int i;
1371 
1372 	for (i = 0; i < priv->bdr_int_num; i++) {
1373 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1374 
1375 		irq_set_affinity_hint(irq, NULL);
1376 		free_irq(irq, priv->int_vector[i]);
1377 	}
1378 }
1379 
enetc_setup_interrupts(struct enetc_ndev_priv * priv)1380 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
1381 {
1382 	struct enetc_hw *hw = &priv->si->hw;
1383 	u32 icpt, ictt;
1384 	int i;
1385 
1386 	/* enable Tx & Rx event indication */
1387 	if (priv->ic_mode &
1388 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
1389 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
1390 		/* init to non-0 minimum, will be adjusted later */
1391 		ictt = 0x1;
1392 	} else {
1393 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
1394 		ictt = 0;
1395 	}
1396 
1397 	for (i = 0; i < priv->num_rx_rings; i++) {
1398 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
1399 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
1400 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
1401 	}
1402 
1403 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
1404 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
1405 	else
1406 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
1407 
1408 	for (i = 0; i < priv->num_tx_rings; i++) {
1409 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
1410 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
1411 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
1412 	}
1413 }
1414 
enetc_clear_interrupts(struct enetc_ndev_priv * priv)1415 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
1416 {
1417 	int i;
1418 
1419 	for (i = 0; i < priv->num_tx_rings; i++)
1420 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1421 
1422 	for (i = 0; i < priv->num_rx_rings; i++)
1423 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1424 }
1425 
enetc_phylink_connect(struct net_device * ndev)1426 static int enetc_phylink_connect(struct net_device *ndev)
1427 {
1428 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1429 	struct ethtool_eee edata;
1430 	int err;
1431 
1432 	if (!priv->phylink)
1433 		return 0; /* phy-less mode */
1434 
1435 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
1436 	if (err) {
1437 		dev_err(&ndev->dev, "could not attach to PHY\n");
1438 		return err;
1439 	}
1440 
1441 	/* disable EEE autoneg, until ENETC driver supports it */
1442 	memset(&edata, 0, sizeof(struct ethtool_eee));
1443 	phylink_ethtool_set_eee(priv->phylink, &edata);
1444 
1445 	return 0;
1446 }
1447 
enetc_start(struct net_device * ndev)1448 void enetc_start(struct net_device *ndev)
1449 {
1450 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1451 	int i;
1452 
1453 	enetc_setup_interrupts(priv);
1454 
1455 	for (i = 0; i < priv->bdr_int_num; i++) {
1456 		int irq = pci_irq_vector(priv->si->pdev,
1457 					 ENETC_BDR_INT_BASE_IDX + i);
1458 
1459 		napi_enable(&priv->int_vector[i]->napi);
1460 		enable_irq(irq);
1461 	}
1462 
1463 	if (priv->phylink)
1464 		phylink_start(priv->phylink);
1465 	else
1466 		netif_carrier_on(ndev);
1467 
1468 	netif_tx_start_all_queues(ndev);
1469 }
1470 
enetc_open(struct net_device * ndev)1471 int enetc_open(struct net_device *ndev)
1472 {
1473 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1474 	int err;
1475 
1476 	err = enetc_setup_irqs(priv);
1477 	if (err)
1478 		return err;
1479 
1480 	err = enetc_phylink_connect(ndev);
1481 	if (err)
1482 		goto err_phy_connect;
1483 
1484 	err = enetc_alloc_tx_resources(priv);
1485 	if (err)
1486 		goto err_alloc_tx;
1487 
1488 	err = enetc_alloc_rx_resources(priv);
1489 	if (err)
1490 		goto err_alloc_rx;
1491 
1492 	err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1493 	if (err)
1494 		goto err_set_queues;
1495 
1496 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1497 	if (err)
1498 		goto err_set_queues;
1499 
1500 	enetc_setup_bdrs(priv);
1501 	enetc_start(ndev);
1502 
1503 	return 0;
1504 
1505 err_set_queues:
1506 	enetc_free_rx_resources(priv);
1507 err_alloc_rx:
1508 	enetc_free_tx_resources(priv);
1509 err_alloc_tx:
1510 	if (priv->phylink)
1511 		phylink_disconnect_phy(priv->phylink);
1512 err_phy_connect:
1513 	enetc_free_irqs(priv);
1514 
1515 	return err;
1516 }
1517 
enetc_stop(struct net_device * ndev)1518 void enetc_stop(struct net_device *ndev)
1519 {
1520 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1521 	int i;
1522 
1523 	netif_tx_stop_all_queues(ndev);
1524 
1525 	for (i = 0; i < priv->bdr_int_num; i++) {
1526 		int irq = pci_irq_vector(priv->si->pdev,
1527 					 ENETC_BDR_INT_BASE_IDX + i);
1528 
1529 		disable_irq(irq);
1530 		napi_synchronize(&priv->int_vector[i]->napi);
1531 		napi_disable(&priv->int_vector[i]->napi);
1532 	}
1533 
1534 	if (priv->phylink)
1535 		phylink_stop(priv->phylink);
1536 	else
1537 		netif_carrier_off(ndev);
1538 
1539 	enetc_clear_interrupts(priv);
1540 }
1541 
enetc_close(struct net_device * ndev)1542 int enetc_close(struct net_device *ndev)
1543 {
1544 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1545 
1546 	enetc_stop(ndev);
1547 	enetc_clear_bdrs(priv);
1548 
1549 	if (priv->phylink)
1550 		phylink_disconnect_phy(priv->phylink);
1551 	enetc_free_rxtx_rings(priv);
1552 	enetc_free_rx_resources(priv);
1553 	enetc_free_tx_resources(priv);
1554 	enetc_free_irqs(priv);
1555 
1556 	return 0;
1557 }
1558 
enetc_setup_tc_mqprio(struct net_device * ndev,void * type_data)1559 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
1560 {
1561 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1562 	struct tc_mqprio_qopt *mqprio = type_data;
1563 	struct enetc_bdr *tx_ring;
1564 	u8 num_tc;
1565 	int i;
1566 
1567 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1568 	num_tc = mqprio->num_tc;
1569 
1570 	if (!num_tc) {
1571 		netdev_reset_tc(ndev);
1572 		netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1573 
1574 		/* Reset all ring priorities to 0 */
1575 		for (i = 0; i < priv->num_tx_rings; i++) {
1576 			tx_ring = priv->tx_ring[i];
1577 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1578 		}
1579 
1580 		return 0;
1581 	}
1582 
1583 	/* Check if we have enough BD rings available to accommodate all TCs */
1584 	if (num_tc > priv->num_tx_rings) {
1585 		netdev_err(ndev, "Max %d traffic classes supported\n",
1586 			   priv->num_tx_rings);
1587 		return -EINVAL;
1588 	}
1589 
1590 	/* For the moment, we use only one BD ring per TC.
1591 	 *
1592 	 * Configure num_tc BD rings with increasing priorities.
1593 	 */
1594 	for (i = 0; i < num_tc; i++) {
1595 		tx_ring = priv->tx_ring[i];
1596 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1597 	}
1598 
1599 	/* Reset the number of netdev queues based on the TC count */
1600 	netif_set_real_num_tx_queues(ndev, num_tc);
1601 
1602 	netdev_set_num_tc(ndev, num_tc);
1603 
1604 	/* Each TC is associated with one netdev queue */
1605 	for (i = 0; i < num_tc; i++)
1606 		netdev_set_tc_queue(ndev, i, 1, i);
1607 
1608 	return 0;
1609 }
1610 
enetc_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)1611 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1612 		   void *type_data)
1613 {
1614 	switch (type) {
1615 	case TC_SETUP_QDISC_MQPRIO:
1616 		return enetc_setup_tc_mqprio(ndev, type_data);
1617 	case TC_SETUP_QDISC_TAPRIO:
1618 		return enetc_setup_tc_taprio(ndev, type_data);
1619 	case TC_SETUP_QDISC_CBS:
1620 		return enetc_setup_tc_cbs(ndev, type_data);
1621 	case TC_SETUP_QDISC_ETF:
1622 		return enetc_setup_tc_txtime(ndev, type_data);
1623 	case TC_SETUP_BLOCK:
1624 		return enetc_setup_tc_psfp(ndev, type_data);
1625 	default:
1626 		return -EOPNOTSUPP;
1627 	}
1628 }
1629 
enetc_get_stats(struct net_device * ndev)1630 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1631 {
1632 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1633 	struct net_device_stats *stats = &ndev->stats;
1634 	unsigned long packets = 0, bytes = 0;
1635 	int i;
1636 
1637 	for (i = 0; i < priv->num_rx_rings; i++) {
1638 		packets += priv->rx_ring[i]->stats.packets;
1639 		bytes	+= priv->rx_ring[i]->stats.bytes;
1640 	}
1641 
1642 	stats->rx_packets = packets;
1643 	stats->rx_bytes = bytes;
1644 	bytes = 0;
1645 	packets = 0;
1646 
1647 	for (i = 0; i < priv->num_tx_rings; i++) {
1648 		packets += priv->tx_ring[i]->stats.packets;
1649 		bytes	+= priv->tx_ring[i]->stats.bytes;
1650 	}
1651 
1652 	stats->tx_packets = packets;
1653 	stats->tx_bytes = bytes;
1654 
1655 	return stats;
1656 }
1657 
enetc_set_rss(struct net_device * ndev,int en)1658 static int enetc_set_rss(struct net_device *ndev, int en)
1659 {
1660 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1661 	struct enetc_hw *hw = &priv->si->hw;
1662 	u32 reg;
1663 
1664 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1665 
1666 	reg = enetc_rd(hw, ENETC_SIMR);
1667 	reg &= ~ENETC_SIMR_RSSE;
1668 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
1669 	enetc_wr(hw, ENETC_SIMR, reg);
1670 
1671 	return 0;
1672 }
1673 
enetc_set_psfp(struct net_device * ndev,int en)1674 static int enetc_set_psfp(struct net_device *ndev, int en)
1675 {
1676 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1677 	int err;
1678 
1679 	if (en) {
1680 		err = enetc_psfp_enable(priv);
1681 		if (err)
1682 			return err;
1683 
1684 		priv->active_offloads |= ENETC_F_QCI;
1685 		return 0;
1686 	}
1687 
1688 	err = enetc_psfp_disable(priv);
1689 	if (err)
1690 		return err;
1691 
1692 	priv->active_offloads &= ~ENETC_F_QCI;
1693 
1694 	return 0;
1695 }
1696 
enetc_enable_rxvlan(struct net_device * ndev,bool en)1697 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
1698 {
1699 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1700 	int i;
1701 
1702 	for (i = 0; i < priv->num_rx_rings; i++)
1703 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
1704 }
1705 
enetc_enable_txvlan(struct net_device * ndev,bool en)1706 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
1707 {
1708 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1709 	int i;
1710 
1711 	for (i = 0; i < priv->num_tx_rings; i++)
1712 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
1713 }
1714 
enetc_set_features(struct net_device * ndev,netdev_features_t features)1715 int enetc_set_features(struct net_device *ndev,
1716 		       netdev_features_t features)
1717 {
1718 	netdev_features_t changed = ndev->features ^ features;
1719 	int err = 0;
1720 
1721 	if (changed & NETIF_F_RXHASH)
1722 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1723 
1724 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1725 		enetc_enable_rxvlan(ndev,
1726 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
1727 
1728 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
1729 		enetc_enable_txvlan(ndev,
1730 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
1731 
1732 	if (changed & NETIF_F_HW_TC)
1733 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
1734 
1735 	return err;
1736 }
1737 
1738 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
enetc_hwtstamp_set(struct net_device * ndev,struct ifreq * ifr)1739 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1740 {
1741 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1742 	struct hwtstamp_config config;
1743 	int ao;
1744 
1745 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1746 		return -EFAULT;
1747 
1748 	switch (config.tx_type) {
1749 	case HWTSTAMP_TX_OFF:
1750 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1751 		break;
1752 	case HWTSTAMP_TX_ON:
1753 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
1754 		break;
1755 	default:
1756 		return -ERANGE;
1757 	}
1758 
1759 	ao = priv->active_offloads;
1760 	switch (config.rx_filter) {
1761 	case HWTSTAMP_FILTER_NONE:
1762 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1763 		break;
1764 	default:
1765 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
1766 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1767 	}
1768 
1769 	if (netif_running(ndev) && ao != priv->active_offloads) {
1770 		enetc_close(ndev);
1771 		enetc_open(ndev);
1772 	}
1773 
1774 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1775 	       -EFAULT : 0;
1776 }
1777 
enetc_hwtstamp_get(struct net_device * ndev,struct ifreq * ifr)1778 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1779 {
1780 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1781 	struct hwtstamp_config config;
1782 
1783 	config.flags = 0;
1784 
1785 	if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1786 		config.tx_type = HWTSTAMP_TX_ON;
1787 	else
1788 		config.tx_type = HWTSTAMP_TX_OFF;
1789 
1790 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1791 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1792 
1793 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1794 	       -EFAULT : 0;
1795 }
1796 #endif
1797 
enetc_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)1798 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1799 {
1800 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1801 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1802 	if (cmd == SIOCSHWTSTAMP)
1803 		return enetc_hwtstamp_set(ndev, rq);
1804 	if (cmd == SIOCGHWTSTAMP)
1805 		return enetc_hwtstamp_get(ndev, rq);
1806 #endif
1807 
1808 	if (!priv->phylink)
1809 		return -EOPNOTSUPP;
1810 
1811 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
1812 }
1813 
enetc_alloc_msix(struct enetc_ndev_priv * priv)1814 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1815 {
1816 	struct pci_dev *pdev = priv->si->pdev;
1817 	int v_tx_rings;
1818 	int i, n, err, nvec;
1819 
1820 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1821 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
1822 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1823 
1824 	if (n < 0)
1825 		return n;
1826 
1827 	if (n != nvec)
1828 		return -EPERM;
1829 
1830 	/* # of tx rings per int vector */
1831 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1832 
1833 	for (i = 0; i < priv->bdr_int_num; i++) {
1834 		struct enetc_int_vector *v;
1835 		struct enetc_bdr *bdr;
1836 		int j;
1837 
1838 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
1839 		if (!v) {
1840 			err = -ENOMEM;
1841 			goto fail;
1842 		}
1843 
1844 		priv->int_vector[i] = v;
1845 
1846 		/* init defaults for adaptive IC */
1847 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
1848 			v->rx_ictt = 0x1;
1849 			v->rx_dim_en = true;
1850 		}
1851 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
1852 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1853 			       NAPI_POLL_WEIGHT);
1854 		v->count_tx_rings = v_tx_rings;
1855 
1856 		for (j = 0; j < v_tx_rings; j++) {
1857 			int idx;
1858 
1859 			/* default tx ring mapping policy */
1860 			if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1861 				idx = 2 * j + i; /* 2 CPUs */
1862 			else
1863 				idx = j + i * v_tx_rings; /* default */
1864 
1865 			__set_bit(idx, &v->tx_rings_map);
1866 			bdr = &v->tx_ring[j];
1867 			bdr->index = idx;
1868 			bdr->ndev = priv->ndev;
1869 			bdr->dev = priv->dev;
1870 			bdr->bd_count = priv->tx_bd_count;
1871 			priv->tx_ring[idx] = bdr;
1872 		}
1873 
1874 		bdr = &v->rx_ring;
1875 		bdr->index = i;
1876 		bdr->ndev = priv->ndev;
1877 		bdr->dev = priv->dev;
1878 		bdr->bd_count = priv->rx_bd_count;
1879 		priv->rx_ring[i] = bdr;
1880 	}
1881 
1882 	return 0;
1883 
1884 fail:
1885 	while (i--) {
1886 		netif_napi_del(&priv->int_vector[i]->napi);
1887 		cancel_work_sync(&priv->int_vector[i]->rx_dim.work);
1888 		kfree(priv->int_vector[i]);
1889 	}
1890 
1891 	pci_free_irq_vectors(pdev);
1892 
1893 	return err;
1894 }
1895 
enetc_free_msix(struct enetc_ndev_priv * priv)1896 void enetc_free_msix(struct enetc_ndev_priv *priv)
1897 {
1898 	int i;
1899 
1900 	for (i = 0; i < priv->bdr_int_num; i++) {
1901 		struct enetc_int_vector *v = priv->int_vector[i];
1902 
1903 		netif_napi_del(&v->napi);
1904 		cancel_work_sync(&v->rx_dim.work);
1905 	}
1906 
1907 	for (i = 0; i < priv->num_rx_rings; i++)
1908 		priv->rx_ring[i] = NULL;
1909 
1910 	for (i = 0; i < priv->num_tx_rings; i++)
1911 		priv->tx_ring[i] = NULL;
1912 
1913 	for (i = 0; i < priv->bdr_int_num; i++) {
1914 		kfree(priv->int_vector[i]);
1915 		priv->int_vector[i] = NULL;
1916 	}
1917 
1918 	/* disable all MSIX for this device */
1919 	pci_free_irq_vectors(priv->si->pdev);
1920 }
1921 
enetc_kfree_si(struct enetc_si * si)1922 static void enetc_kfree_si(struct enetc_si *si)
1923 {
1924 	char *p = (char *)si - si->pad;
1925 
1926 	kfree(p);
1927 }
1928 
enetc_detect_errata(struct enetc_si * si)1929 static void enetc_detect_errata(struct enetc_si *si)
1930 {
1931 	if (si->pdev->revision == ENETC_REV1)
1932 		si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
1933 			     ENETC_ERR_UCMCSWP;
1934 }
1935 
enetc_pci_probe(struct pci_dev * pdev,const char * name,int sizeof_priv)1936 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1937 {
1938 	struct enetc_si *si, *p;
1939 	struct enetc_hw *hw;
1940 	size_t alloc_size;
1941 	int err, len;
1942 
1943 	pcie_flr(pdev);
1944 	err = pci_enable_device_mem(pdev);
1945 	if (err) {
1946 		dev_err(&pdev->dev, "device enable failed\n");
1947 		return err;
1948 	}
1949 
1950 	/* set up for high or low dma */
1951 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1952 	if (err) {
1953 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1954 		if (err) {
1955 			dev_err(&pdev->dev,
1956 				"DMA configuration failed: 0x%x\n", err);
1957 			goto err_dma;
1958 		}
1959 	}
1960 
1961 	err = pci_request_mem_regions(pdev, name);
1962 	if (err) {
1963 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1964 		goto err_pci_mem_reg;
1965 	}
1966 
1967 	pci_set_master(pdev);
1968 
1969 	alloc_size = sizeof(struct enetc_si);
1970 	if (sizeof_priv) {
1971 		/* align priv to 32B */
1972 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1973 		alloc_size += sizeof_priv;
1974 	}
1975 	/* force 32B alignment for enetc_si */
1976 	alloc_size += ENETC_SI_ALIGN - 1;
1977 
1978 	p = kzalloc(alloc_size, GFP_KERNEL);
1979 	if (!p) {
1980 		err = -ENOMEM;
1981 		goto err_alloc_si;
1982 	}
1983 
1984 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1985 	si->pad = (char *)si - (char *)p;
1986 
1987 	pci_set_drvdata(pdev, si);
1988 	si->pdev = pdev;
1989 	hw = &si->hw;
1990 
1991 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
1992 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1993 	if (!hw->reg) {
1994 		err = -ENXIO;
1995 		dev_err(&pdev->dev, "ioremap() failed\n");
1996 		goto err_ioremap;
1997 	}
1998 	if (len > ENETC_PORT_BASE)
1999 		hw->port = hw->reg + ENETC_PORT_BASE;
2000 	if (len > ENETC_GLOBAL_BASE)
2001 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
2002 
2003 	enetc_detect_errata(si);
2004 
2005 	return 0;
2006 
2007 err_ioremap:
2008 	enetc_kfree_si(si);
2009 err_alloc_si:
2010 	pci_release_mem_regions(pdev);
2011 err_pci_mem_reg:
2012 err_dma:
2013 	pci_disable_device(pdev);
2014 
2015 	return err;
2016 }
2017 
enetc_pci_remove(struct pci_dev * pdev)2018 void enetc_pci_remove(struct pci_dev *pdev)
2019 {
2020 	struct enetc_si *si = pci_get_drvdata(pdev);
2021 	struct enetc_hw *hw = &si->hw;
2022 
2023 	iounmap(hw->reg);
2024 	enetc_kfree_si(si);
2025 	pci_release_mem_regions(pdev);
2026 	pci_disable_device(pdev);
2027 }
2028