1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include "ixgbe.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/clocksource.h>
7
8 /*
9 * The 82599 and the X540 do not have true 64bit nanosecond scale
10 * counter registers. Instead, SYSTIME is defined by a fixed point
11 * system which allows the user to define the scale counter increment
12 * value at every level change of the oscillator driving the SYSTIME
13 * value. For both devices the TIMINCA:IV field defines this
14 * increment. On the X540 device, 31 bits are provided. However on the
15 * 82599 only provides 24 bits. The time unit is determined by the
16 * clock frequency of the oscillator in combination with the TIMINCA
17 * register. When these devices link at 10Gb the oscillator has a
18 * period of 6.4ns. In order to convert the scale counter into
19 * nanoseconds the cyclecounter and timecounter structures are
20 * used. The SYSTIME registers need to be converted to ns values by use
21 * of only a right shift (division by power of 2). The following math
22 * determines the largest incvalue that will fit into the available
23 * bits in the TIMINCA register.
24 *
25 * PeriodWidth: Number of bits to store the clock period
26 * MaxWidth: The maximum width value of the TIMINCA register
27 * Period: The clock period for the oscillator
28 * round(): discard the fractional portion of the calculation
29 *
30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31 *
32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34 *
35 * The period also changes based on the link speed:
36 * At 10Gb link or no link, the period remains the same.
37 * At 1Gb link, the period is multiplied by 10. (64ns)
38 * At 100Mb link, the period is multiplied by 100. (640ns)
39 *
40 * The calculated value allows us to right shift the SYSTIME register
41 * value in order to quickly convert it into a nanosecond clock,
42 * while allowing for the maximum possible adjustment value.
43 *
44 * These diagrams are only for the 10Gb link period
45 *
46 * SYSTIMEH SYSTIMEL
47 * +--------------+ +--------------+
48 * X540 | 32 | | 1 | 3 | 28 |
49 * *--------------+ +--------------+
50 * \________ 36 bits ______/ fract
51 *
52 * +--------------+ +--------------+
53 * 82599 | 32 | | 8 | 3 | 21 |
54 * *--------------+ +--------------+
55 * \________ 43 bits ______/ fract
56 *
57 * The 36 bit X540 SYSTIME overflows every
58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59 *
60 * The 43 bit 82599 SYSTIME overflows every
61 * 2^43 * 10^-9 / 3600 = 2.4 hours
62 */
63 #define IXGBE_INCVAL_10GB 0x66666666
64 #define IXGBE_INCVAL_1GB 0x40000000
65 #define IXGBE_INCVAL_100 0x50000000
66
67 #define IXGBE_INCVAL_SHIFT_10GB 28
68 #define IXGBE_INCVAL_SHIFT_1GB 24
69 #define IXGBE_INCVAL_SHIFT_100 21
70
71 #define IXGBE_INCVAL_SHIFT_82599 7
72 #define IXGBE_INCPER_SHIFT_82599 24
73
74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
75 #define IXGBE_PTP_TX_TIMEOUT (HZ)
76
77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78 * the value as a ULL to force precision when bit shifting.
79 */
80 #define NS_PER_SEC 1000000000ULL
81 #define NS_PER_HALF_SEC 500000000ULL
82
83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84 * which contain measurements of seconds and nanoseconds respectively. This
85 * matches the standard linux representation of time in the kernel. In addition,
86 * the X550 also has a SYSTIMER register which represents residue, or
87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90 * high bit representing whether the adjustent is positive or negative. Every
91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93 * X550's clock for purposes of SYSTIME generation is constant and not dependent
94 * on the link speed.
95 *
96 * SYSTIMEH SYSTIMEL SYSTIMER
97 * +--------------+ +--------------+ +-------------+
98 * X550 | 32 | | 32 | | 32 |
99 * *--------------+ +--------------+ +-------------+
100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
101 *
102 * This results in a full 96 bits to represent the clock, with 32 bits for
103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105 * underflow of adjustments.
106 *
107 * The 32 bits of seconds for the X550 overflows every
108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109 *
110 * In order to adjust the clock frequency for the X550, the TIMINCA register is
111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113 * the sign bit. This register enables software to calculate frequency
114 * adjustments and apply them directly to the clock rate.
115 *
116 * The math for converting ppb into TIMINCA values is fairly straightforward.
117 * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
118 *
119 * This assumes that ppb is never high enough to create a value bigger than
120 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
121 * value is also simple.
122 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
123 *
124 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
125 * 12.5 nanoseconds. This means that the Max ppb is 39999999
126 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
127 * register can only hold slightly under 0.5 nanoseconds.
128 *
129 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
130 * into 2^-32 units, which is
131 *
132 * 12.5 * 2^32 = C80000000
133 *
134 * Some revisions of hardware have a faster base frequency than the registers
135 * were defined for. To fix this, we use a timecounter structure with the
136 * proper mult and shift to convert the cycles into nanoseconds of time.
137 */
138 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
139 #define INCVALUE_MASK 0x7FFFFFFF
140 #define ISGN 0x80000000
141 #define MAX_TIMADJ 0x7FFFFFFF
142
143 /**
144 * ixgbe_ptp_setup_sdp_X540
145 * @adapter: private adapter structure
146 *
147 * this function enables or disables the clock out feature on SDP0 for
148 * the X540 device. It will create a 1 second periodic output that can
149 * be used as the PPS (via an interrupt).
150 *
151 * It calculates when the system time will be on an exact second, and then
152 * aligns the start of the PPS signal to that value.
153 *
154 * This works by using the cycle counter shift and mult values in reverse, and
155 * assumes that the values we're shifting will not overflow.
156 */
ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter * adapter)157 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
158 {
159 struct cyclecounter *cc = &adapter->hw_cc;
160 struct ixgbe_hw *hw = &adapter->hw;
161 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
162 u64 ns = 0, clock_edge = 0, clock_period;
163 unsigned long flags;
164
165 /* disable the pin first */
166 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
167 IXGBE_WRITE_FLUSH(hw);
168
169 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
170 return;
171
172 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
173
174 /* enable the SDP0 pin as output, and connected to the
175 * native function for Timesync (ClockOut)
176 */
177 esdp |= IXGBE_ESDP_SDP0_DIR |
178 IXGBE_ESDP_SDP0_NATIVE;
179
180 /* enable the Clock Out feature on SDP0, and allow
181 * interrupts to occur when the pin changes
182 */
183 tsauxc = (IXGBE_TSAUXC_EN_CLK |
184 IXGBE_TSAUXC_SYNCLK |
185 IXGBE_TSAUXC_SDP0_INT);
186
187 /* Determine the clock time period to use. This assumes that the
188 * cycle counter shift is small enough to avoid overflow.
189 */
190 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
191 clktiml = (u32)(clock_period);
192 clktimh = (u32)(clock_period >> 32);
193
194 /* Read the current clock time, and save the cycle counter value */
195 spin_lock_irqsave(&adapter->tmreg_lock, flags);
196 ns = timecounter_read(&adapter->hw_tc);
197 clock_edge = adapter->hw_tc.cycle_last;
198 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
199
200 /* Figure out how many seconds to add in order to round up */
201 div_u64_rem(ns, NS_PER_SEC, &rem);
202
203 /* Figure out how many nanoseconds to add to round the clock edge up
204 * to the next full second
205 */
206 rem = (NS_PER_SEC - rem);
207
208 /* Adjust the clock edge to align with the next full second. */
209 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
210 trgttiml = (u32)clock_edge;
211 trgttimh = (u32)(clock_edge >> 32);
212
213 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
214 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
215 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
216 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
217
218 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
219 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
220
221 IXGBE_WRITE_FLUSH(hw);
222 }
223
224 /**
225 * ixgbe_ptp_setup_sdp_X550
226 * @adapter: private adapter structure
227 *
228 * Enable or disable a clock output signal on SDP 0 for X550 hardware.
229 *
230 * Use the target time feature to align the output signal on the next full
231 * second.
232 *
233 * This works by using the cycle counter shift and mult values in reverse, and
234 * assumes that the values we're shifting will not overflow.
235 */
ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter * adapter)236 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
237 {
238 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
239 struct cyclecounter *cc = &adapter->hw_cc;
240 struct ixgbe_hw *hw = &adapter->hw;
241 u64 ns = 0, clock_edge = 0;
242 struct timespec64 ts;
243 unsigned long flags;
244
245 /* disable the pin first */
246 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
247 IXGBE_WRITE_FLUSH(hw);
248
249 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
250 return;
251
252 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
253
254 /* enable the SDP0 pin as output, and connected to the
255 * native function for Timesync (ClockOut)
256 */
257 esdp |= IXGBE_ESDP_SDP0_DIR |
258 IXGBE_ESDP_SDP0_NATIVE;
259
260 /* enable the Clock Out feature on SDP0, and use Target Time 0 to
261 * enable generation of interrupts on the clock change.
262 */
263 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
264 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
265 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
266 IXGBE_TSAUXC_DIS_TS_CLEAR);
267
268 tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
269 IXGBE_TSSDP_TS_SDP0_CLK0);
270
271 /* Determine the clock time period to use. This assumes that the
272 * cycle counter shift is small enough to avoid overflowing a 32bit
273 * value.
274 */
275 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult);
276
277 /* Read the current clock time, and save the cycle counter value */
278 spin_lock_irqsave(&adapter->tmreg_lock, flags);
279 ns = timecounter_read(&adapter->hw_tc);
280 clock_edge = adapter->hw_tc.cycle_last;
281 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
282
283 /* Figure out how far past the next second we are */
284 div_u64_rem(ns, NS_PER_SEC, &rem);
285
286 /* Figure out how many nanoseconds to add to round the clock edge up
287 * to the next full second
288 */
289 rem = (NS_PER_SEC - rem);
290
291 /* Adjust the clock edge to align with the next full second. */
292 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
293
294 /* X550 hardware stores the time in 32bits of 'billions of cycles' and
295 * 32bits of 'cycles'. There's no guarantee that cycles represents
296 * nanoseconds. However, we can use the math from a timespec64 to
297 * convert into the hardware representation.
298 *
299 * See ixgbe_ptp_read_X550() for more details.
300 */
301 ts = ns_to_timespec64(clock_edge);
302 trgttiml = (u32)ts.tv_nsec;
303 trgttimh = (u32)ts.tv_sec;
304
305 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
306 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
307 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
308
309 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
310 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
311 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
312
313 IXGBE_WRITE_FLUSH(hw);
314 }
315
316 /**
317 * ixgbe_ptp_read_X550 - read cycle counter value
318 * @cc: cyclecounter structure
319 *
320 * This function reads SYSTIME registers. It is called by the cyclecounter
321 * structure to convert from internal representation into nanoseconds. We need
322 * this for X550 since some skews do not have expected clock frequency and
323 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
324 * "cycles", rather than seconds and nanoseconds.
325 */
ixgbe_ptp_read_X550(const struct cyclecounter * cc)326 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
327 {
328 struct ixgbe_adapter *adapter =
329 container_of(cc, struct ixgbe_adapter, hw_cc);
330 struct ixgbe_hw *hw = &adapter->hw;
331 struct timespec64 ts;
332
333 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
334 * Some revisions of hardware run at a higher frequency and so the
335 * cycles are not guaranteed to be nanoseconds. The timespec64 created
336 * here is used for its math/conversions but does not necessarily
337 * represent nominal time.
338 *
339 * It should be noted that this cyclecounter will overflow at a
340 * non-bitmask field since we have to convert our billions of cycles
341 * into an actual cycles count. This results in some possible weird
342 * situations at high cycle counter stamps. However given that 32 bits
343 * of "seconds" is ~138 years this isn't a problem. Even at the
344 * increased frequency of some revisions, this is still ~103 years.
345 * Since the SYSTIME values start at 0 and we never write them, it is
346 * highly unlikely for the cyclecounter to overflow in practice.
347 */
348 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
349 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
350 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
351
352 return (u64)timespec64_to_ns(&ts);
353 }
354
355 /**
356 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
357 * @cc: the cyclecounter structure
358 *
359 * this function reads the cyclecounter registers and is called by the
360 * cyclecounter structure used to construct a ns counter from the
361 * arbitrary fixed point registers
362 */
ixgbe_ptp_read_82599(const struct cyclecounter * cc)363 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
364 {
365 struct ixgbe_adapter *adapter =
366 container_of(cc, struct ixgbe_adapter, hw_cc);
367 struct ixgbe_hw *hw = &adapter->hw;
368 u64 stamp = 0;
369
370 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
371 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
372
373 return stamp;
374 }
375
376 /**
377 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
378 * @adapter: private adapter structure
379 * @hwtstamp: stack timestamp structure
380 * @timestamp: unsigned 64bit system time value
381 *
382 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
383 * which can be used by the stack's ptp functions.
384 *
385 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
386 * registers. However, it does not need to protect against the Rx or Tx
387 * timestamp registers, as there can't be a new timestamp until the old one is
388 * unlatched by reading.
389 *
390 * In addition to the timestamp in hardware, some controllers need a software
391 * overflow cyclecounter, and this function takes this into account as well.
392 **/
ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter * adapter,struct skb_shared_hwtstamps * hwtstamp,u64 timestamp)393 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
394 struct skb_shared_hwtstamps *hwtstamp,
395 u64 timestamp)
396 {
397 unsigned long flags;
398 struct timespec64 systime;
399 u64 ns;
400
401 memset(hwtstamp, 0, sizeof(*hwtstamp));
402
403 switch (adapter->hw.mac.type) {
404 /* X550 and later hardware supposedly represent time using a seconds
405 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
406 * to convert the timestamp into cycles before it can be fed to the
407 * cyclecounter. We need an actual cyclecounter because some revisions
408 * of hardware run at a higher frequency and thus the counter does
409 * not represent seconds/nanoseconds. Instead it can be thought of as
410 * cycles and billions of cycles.
411 */
412 case ixgbe_mac_X550:
413 case ixgbe_mac_X550EM_x:
414 case ixgbe_mac_x550em_a:
415 /* Upper 32 bits represent billions of cycles, lower 32 bits
416 * represent cycles. However, we use timespec64_to_ns for the
417 * correct math even though the units haven't been corrected
418 * yet.
419 */
420 systime.tv_sec = timestamp >> 32;
421 systime.tv_nsec = timestamp & 0xFFFFFFFF;
422
423 timestamp = timespec64_to_ns(&systime);
424 break;
425 default:
426 break;
427 }
428
429 spin_lock_irqsave(&adapter->tmreg_lock, flags);
430 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
431 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
432
433 hwtstamp->hwtstamp = ns_to_ktime(ns);
434 }
435
436 /**
437 * ixgbe_ptp_adjfreq_82599
438 * @ptp: the ptp clock structure
439 * @ppb: parts per billion adjustment from base
440 *
441 * adjust the frequency of the ptp cycle counter by the
442 * indicated ppb from the base frequency.
443 */
ixgbe_ptp_adjfreq_82599(struct ptp_clock_info * ptp,s32 ppb)444 static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
445 {
446 struct ixgbe_adapter *adapter =
447 container_of(ptp, struct ixgbe_adapter, ptp_caps);
448 struct ixgbe_hw *hw = &adapter->hw;
449 u64 freq, incval;
450 u32 diff;
451 int neg_adj = 0;
452
453 if (ppb < 0) {
454 neg_adj = 1;
455 ppb = -ppb;
456 }
457
458 smp_mb();
459 incval = READ_ONCE(adapter->base_incval);
460
461 freq = incval;
462 freq *= ppb;
463 diff = div_u64(freq, 1000000000ULL);
464
465 incval = neg_adj ? (incval - diff) : (incval + diff);
466
467 switch (hw->mac.type) {
468 case ixgbe_mac_X540:
469 if (incval > 0xFFFFFFFFULL)
470 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
471 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
472 break;
473 case ixgbe_mac_82599EB:
474 if (incval > 0x00FFFFFFULL)
475 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
476 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
477 BIT(IXGBE_INCPER_SHIFT_82599) |
478 ((u32)incval & 0x00FFFFFFUL));
479 break;
480 default:
481 break;
482 }
483
484 return 0;
485 }
486
487 /**
488 * ixgbe_ptp_adjfreq_X550
489 * @ptp: the ptp clock structure
490 * @ppb: parts per billion adjustment from base
491 *
492 * adjust the frequency of the SYSTIME registers by the indicated ppb from base
493 * frequency
494 */
ixgbe_ptp_adjfreq_X550(struct ptp_clock_info * ptp,s32 ppb)495 static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
496 {
497 struct ixgbe_adapter *adapter =
498 container_of(ptp, struct ixgbe_adapter, ptp_caps);
499 struct ixgbe_hw *hw = &adapter->hw;
500 int neg_adj = 0;
501 u64 rate = IXGBE_X550_BASE_PERIOD;
502 u32 inca;
503
504 if (ppb < 0) {
505 neg_adj = 1;
506 ppb = -ppb;
507 }
508 rate *= ppb;
509 rate = div_u64(rate, 1000000000ULL);
510
511 /* warn if rate is too large */
512 if (rate >= INCVALUE_MASK)
513 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
514
515 inca = rate & INCVALUE_MASK;
516 if (neg_adj)
517 inca |= ISGN;
518
519 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
520
521 return 0;
522 }
523
524 /**
525 * ixgbe_ptp_adjtime
526 * @ptp: the ptp clock structure
527 * @delta: offset to adjust the cycle counter by
528 *
529 * adjust the timer by resetting the timecounter structure.
530 */
ixgbe_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)531 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
532 {
533 struct ixgbe_adapter *adapter =
534 container_of(ptp, struct ixgbe_adapter, ptp_caps);
535 unsigned long flags;
536
537 spin_lock_irqsave(&adapter->tmreg_lock, flags);
538 timecounter_adjtime(&adapter->hw_tc, delta);
539 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
540
541 if (adapter->ptp_setup_sdp)
542 adapter->ptp_setup_sdp(adapter);
543
544 return 0;
545 }
546
547 /**
548 * ixgbe_ptp_gettimex
549 * @ptp: the ptp clock structure
550 * @ts: timespec to hold the PHC timestamp
551 * @sts: structure to hold the system time before and after reading the PHC
552 *
553 * read the timecounter and return the correct value on ns,
554 * after converting it into a struct timespec.
555 */
ixgbe_ptp_gettimex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)556 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
557 struct timespec64 *ts,
558 struct ptp_system_timestamp *sts)
559 {
560 struct ixgbe_adapter *adapter =
561 container_of(ptp, struct ixgbe_adapter, ptp_caps);
562 struct ixgbe_hw *hw = &adapter->hw;
563 unsigned long flags;
564 u64 ns, stamp;
565
566 spin_lock_irqsave(&adapter->tmreg_lock, flags);
567
568 switch (adapter->hw.mac.type) {
569 case ixgbe_mac_X550:
570 case ixgbe_mac_X550EM_x:
571 case ixgbe_mac_x550em_a:
572 /* Upper 32 bits represent billions of cycles, lower 32 bits
573 * represent cycles. However, we use timespec64_to_ns for the
574 * correct math even though the units haven't been corrected
575 * yet.
576 */
577 ptp_read_system_prets(sts);
578 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
579 ptp_read_system_postts(sts);
580 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
581 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
582 stamp = timespec64_to_ns(ts);
583 break;
584 default:
585 ptp_read_system_prets(sts);
586 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
587 ptp_read_system_postts(sts);
588 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
589 break;
590 }
591
592 ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
593
594 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
595
596 *ts = ns_to_timespec64(ns);
597
598 return 0;
599 }
600
601 /**
602 * ixgbe_ptp_settime
603 * @ptp: the ptp clock structure
604 * @ts: the timespec containing the new time for the cycle counter
605 *
606 * reset the timecounter to use a new base value instead of the kernel
607 * wall timer value.
608 */
ixgbe_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)609 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
610 const struct timespec64 *ts)
611 {
612 struct ixgbe_adapter *adapter =
613 container_of(ptp, struct ixgbe_adapter, ptp_caps);
614 unsigned long flags;
615 u64 ns = timespec64_to_ns(ts);
616
617 /* reset the timecounter */
618 spin_lock_irqsave(&adapter->tmreg_lock, flags);
619 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
620 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
621
622 if (adapter->ptp_setup_sdp)
623 adapter->ptp_setup_sdp(adapter);
624 return 0;
625 }
626
627 /**
628 * ixgbe_ptp_feature_enable
629 * @ptp: the ptp clock structure
630 * @rq: the requested feature to change
631 * @on: whether to enable or disable the feature
632 *
633 * enable (or disable) ancillary features of the phc subsystem.
634 * our driver only supports the PPS feature on the X540
635 */
ixgbe_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)636 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
637 struct ptp_clock_request *rq, int on)
638 {
639 struct ixgbe_adapter *adapter =
640 container_of(ptp, struct ixgbe_adapter, ptp_caps);
641
642 /**
643 * When PPS is enabled, unmask the interrupt for the ClockOut
644 * feature, so that the interrupt handler can send the PPS
645 * event when the clock SDP triggers. Clear mask when PPS is
646 * disabled
647 */
648 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
649 return -ENOTSUPP;
650
651 if (on)
652 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
653 else
654 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
655
656 adapter->ptp_setup_sdp(adapter);
657 return 0;
658 }
659
660 /**
661 * ixgbe_ptp_check_pps_event
662 * @adapter: the private adapter structure
663 *
664 * This function is called by the interrupt routine when checking for
665 * interrupts. It will check and handle a pps event.
666 */
ixgbe_ptp_check_pps_event(struct ixgbe_adapter * adapter)667 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
668 {
669 struct ixgbe_hw *hw = &adapter->hw;
670 struct ptp_clock_event event;
671
672 event.type = PTP_CLOCK_PPS;
673
674 /* this check is necessary in case the interrupt was enabled via some
675 * alternative means (ex. debug_fs). Better to check here than
676 * everywhere that calls this function.
677 */
678 if (!adapter->ptp_clock)
679 return;
680
681 switch (hw->mac.type) {
682 case ixgbe_mac_X540:
683 ptp_clock_event(adapter->ptp_clock, &event);
684 break;
685 default:
686 break;
687 }
688 }
689
690 /**
691 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
692 * @adapter: private adapter struct
693 *
694 * this watchdog task periodically reads the timecounter
695 * in order to prevent missing when the system time registers wrap
696 * around. This needs to be run approximately twice a minute.
697 */
ixgbe_ptp_overflow_check(struct ixgbe_adapter * adapter)698 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
699 {
700 bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
701 IXGBE_OVERFLOW_PERIOD);
702 unsigned long flags;
703
704 if (timeout) {
705 /* Update the timecounter */
706 spin_lock_irqsave(&adapter->tmreg_lock, flags);
707 timecounter_read(&adapter->hw_tc);
708 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
709
710 adapter->last_overflow_check = jiffies;
711 }
712 }
713
714 /**
715 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
716 * @adapter: private network adapter structure
717 *
718 * this watchdog task is scheduled to detect error case where hardware has
719 * dropped an Rx packet that was timestamped when the ring is full. The
720 * particular error is rare but leaves the device in a state unable to timestamp
721 * any future packets.
722 */
ixgbe_ptp_rx_hang(struct ixgbe_adapter * adapter)723 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
724 {
725 struct ixgbe_hw *hw = &adapter->hw;
726 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
727 struct ixgbe_ring *rx_ring;
728 unsigned long rx_event;
729 int n;
730
731 /* if we don't have a valid timestamp in the registers, just update the
732 * timeout counter and exit
733 */
734 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
735 adapter->last_rx_ptp_check = jiffies;
736 return;
737 }
738
739 /* determine the most recent watchdog or rx_timestamp event */
740 rx_event = adapter->last_rx_ptp_check;
741 for (n = 0; n < adapter->num_rx_queues; n++) {
742 rx_ring = adapter->rx_ring[n];
743 if (time_after(rx_ring->last_rx_timestamp, rx_event))
744 rx_event = rx_ring->last_rx_timestamp;
745 }
746
747 /* only need to read the high RXSTMP register to clear the lock */
748 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
749 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
750 adapter->last_rx_ptp_check = jiffies;
751
752 adapter->rx_hwtstamp_cleared++;
753 e_warn(drv, "clearing RX Timestamp hang\n");
754 }
755 }
756
757 /**
758 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
759 * @adapter: the private adapter structure
760 *
761 * This function should be called whenever the state related to a Tx timestamp
762 * needs to be cleared. This helps ensure that all related bits are reset for
763 * the next Tx timestamp event.
764 */
ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter * adapter)765 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
766 {
767 struct ixgbe_hw *hw = &adapter->hw;
768
769 IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
770 if (adapter->ptp_tx_skb) {
771 dev_kfree_skb_any(adapter->ptp_tx_skb);
772 adapter->ptp_tx_skb = NULL;
773 }
774 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
775 }
776
777 /**
778 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
779 * @adapter: private network adapter structure
780 */
ixgbe_ptp_tx_hang(struct ixgbe_adapter * adapter)781 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
782 {
783 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
784 IXGBE_PTP_TX_TIMEOUT);
785
786 if (!adapter->ptp_tx_skb)
787 return;
788
789 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
790 return;
791
792 /* If we haven't received a timestamp within the timeout, it is
793 * reasonable to assume that it will never occur, so we can unlock the
794 * timestamp bit when this occurs.
795 */
796 if (timeout) {
797 cancel_work_sync(&adapter->ptp_tx_work);
798 ixgbe_ptp_clear_tx_timestamp(adapter);
799 adapter->tx_hwtstamp_timeouts++;
800 e_warn(drv, "clearing Tx timestamp hang\n");
801 }
802 }
803
804 /**
805 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
806 * @adapter: the private adapter struct
807 *
808 * if the timestamp is valid, we convert it into the timecounter ns
809 * value, then store that result into the shhwtstamps structure which
810 * is passed up the network stack
811 */
ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter * adapter)812 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
813 {
814 struct sk_buff *skb = adapter->ptp_tx_skb;
815 struct ixgbe_hw *hw = &adapter->hw;
816 struct skb_shared_hwtstamps shhwtstamps;
817 u64 regval = 0;
818
819 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
820 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
821 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
822
823 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
824 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
825 * well behaved applications from attempting to timestamp again prior
826 * to the lock bit being clear.
827 */
828 adapter->ptp_tx_skb = NULL;
829 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
830
831 /* Notify the stack and then free the skb after we've unlocked */
832 skb_tstamp_tx(skb, &shhwtstamps);
833 dev_kfree_skb_any(skb);
834 }
835
836 /**
837 * ixgbe_ptp_tx_hwtstamp_work
838 * @work: pointer to the work struct
839 *
840 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
841 * timestamp has been taken for the current skb. It is necessary, because the
842 * descriptor's "done" bit does not correlate with the timestamp event.
843 */
ixgbe_ptp_tx_hwtstamp_work(struct work_struct * work)844 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
845 {
846 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
847 ptp_tx_work);
848 struct ixgbe_hw *hw = &adapter->hw;
849 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
850 IXGBE_PTP_TX_TIMEOUT);
851 u32 tsynctxctl;
852
853 /* we have to have a valid skb to poll for a timestamp */
854 if (!adapter->ptp_tx_skb) {
855 ixgbe_ptp_clear_tx_timestamp(adapter);
856 return;
857 }
858
859 /* stop polling once we have a valid timestamp */
860 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
861 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
862 ixgbe_ptp_tx_hwtstamp(adapter);
863 return;
864 }
865
866 if (timeout) {
867 ixgbe_ptp_clear_tx_timestamp(adapter);
868 adapter->tx_hwtstamp_timeouts++;
869 e_warn(drv, "clearing Tx Timestamp hang\n");
870 } else {
871 /* reschedule to keep checking if it's not available yet */
872 schedule_work(&adapter->ptp_tx_work);
873 }
874 }
875
876 /**
877 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
878 * @q_vector: structure containing interrupt and ring information
879 * @skb: the packet
880 *
881 * This function will be called by the Rx routine of the timestamp for this
882 * packet is stored in the buffer. The value is stored in little endian format
883 * starting at the end of the packet data.
884 */
ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)885 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
886 struct sk_buff *skb)
887 {
888 __le64 regval;
889
890 /* copy the bits out of the skb, and then trim the skb length */
891 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val,
892 IXGBE_TS_HDR_LEN);
893 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
894
895 /* The timestamp is recorded in little endian format, and is stored at
896 * the end of the packet.
897 *
898 * DWORD: N N + 1 N + 2
899 * Field: End of Packet SYSTIMH SYSTIML
900 */
901 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
902 le64_to_cpu(regval));
903 }
904
905 /**
906 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
907 * @q_vector: structure containing interrupt and ring information
908 * @skb: particular skb to send timestamp with
909 *
910 * if the timestamp is valid, we convert it into the timecounter ns
911 * value, then store that result into the shhwtstamps structure which
912 * is passed up the network stack
913 */
ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector * q_vector,struct sk_buff * skb)914 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
915 struct sk_buff *skb)
916 {
917 struct ixgbe_adapter *adapter;
918 struct ixgbe_hw *hw;
919 u64 regval = 0;
920 u32 tsyncrxctl;
921
922 /* we cannot process timestamps on a ring without a q_vector */
923 if (!q_vector || !q_vector->adapter)
924 return;
925
926 adapter = q_vector->adapter;
927 hw = &adapter->hw;
928
929 /* Read the tsyncrxctl register afterwards in order to prevent taking an
930 * I/O hit on every packet.
931 */
932
933 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
934 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
935 return;
936
937 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
938 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
939
940 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
941 }
942
943 /**
944 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
945 * @adapter: pointer to adapter structure
946 * @ifr: ioctl data
947 *
948 * This function returns the current timestamping settings. Rather than
949 * attempt to deconstruct registers to fill in the values, simply keep a copy
950 * of the old settings around, and return a copy when requested.
951 */
ixgbe_ptp_get_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)952 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
953 {
954 struct hwtstamp_config *config = &adapter->tstamp_config;
955
956 return copy_to_user(ifr->ifr_data, config,
957 sizeof(*config)) ? -EFAULT : 0;
958 }
959
960 /**
961 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
962 * @adapter: the private ixgbe adapter structure
963 * @config: the hwtstamp configuration requested
964 *
965 * Outgoing time stamping can be enabled and disabled. Play nice and
966 * disable it when requested, although it shouldn't cause any overhead
967 * when no packet needs it. At most one packet in the queue may be
968 * marked for time stamping, otherwise it would be impossible to tell
969 * for sure to which packet the hardware time stamp belongs.
970 *
971 * Incoming time stamping has to be configured via the hardware
972 * filters. Not all combinations are supported, in particular event
973 * type has to be specified. Matching the kind of event packet is
974 * not supported, with the exception of "all V2 events regardless of
975 * level 2 or 4".
976 *
977 * Since hardware always timestamps Path delay packets when timestamping V2
978 * packets, regardless of the type specified in the register, only use V2
979 * Event mode. This more accurately tells the user what the hardware is going
980 * to do anyways.
981 *
982 * Note: this may modify the hwtstamp configuration towards a more general
983 * mode, if required to support the specifically requested mode.
984 */
ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter * adapter,struct hwtstamp_config * config)985 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
986 struct hwtstamp_config *config)
987 {
988 struct ixgbe_hw *hw = &adapter->hw;
989 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
990 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
991 u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
992 bool is_l2 = false;
993 u32 regval;
994
995 /* reserved for future extensions */
996 if (config->flags)
997 return -EINVAL;
998
999 switch (config->tx_type) {
1000 case HWTSTAMP_TX_OFF:
1001 tsync_tx_ctl = 0;
1002 case HWTSTAMP_TX_ON:
1003 break;
1004 default:
1005 return -ERANGE;
1006 }
1007
1008 switch (config->rx_filter) {
1009 case HWTSTAMP_FILTER_NONE:
1010 tsync_rx_ctl = 0;
1011 tsync_rx_mtrl = 0;
1012 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1013 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1014 break;
1015 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1016 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1017 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1018 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1019 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1020 break;
1021 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1022 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1023 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1024 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1025 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1026 break;
1027 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1028 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1029 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1030 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1031 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1032 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1033 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1034 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1035 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1036 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1037 is_l2 = true;
1038 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1039 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1040 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1041 break;
1042 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1043 case HWTSTAMP_FILTER_NTP_ALL:
1044 case HWTSTAMP_FILTER_ALL:
1045 /* The X550 controller is capable of timestamping all packets,
1046 * which allows it to accept any filter.
1047 */
1048 if (hw->mac.type >= ixgbe_mac_X550) {
1049 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1050 config->rx_filter = HWTSTAMP_FILTER_ALL;
1051 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1052 break;
1053 }
1054 fallthrough;
1055 default:
1056 /*
1057 * register RXMTRL must be set in order to do V1 packets,
1058 * therefore it is not possible to time stamp both V1 Sync and
1059 * Delay_Req messages and hardware does not support
1060 * timestamping all packets => return error
1061 */
1062 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1063 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1064 config->rx_filter = HWTSTAMP_FILTER_NONE;
1065 return -ERANGE;
1066 }
1067
1068 if (hw->mac.type == ixgbe_mac_82598EB) {
1069 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1070 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1071 if (tsync_rx_ctl | tsync_tx_ctl)
1072 return -ERANGE;
1073 return 0;
1074 }
1075
1076 /* Per-packet timestamping only works if the filter is set to all
1077 * packets. Since this is desired, always timestamp all packets as long
1078 * as any Rx filter was configured.
1079 */
1080 switch (hw->mac.type) {
1081 case ixgbe_mac_X550:
1082 case ixgbe_mac_X550EM_x:
1083 case ixgbe_mac_x550em_a:
1084 /* enable timestamping all packets only if at least some
1085 * packets were requested. Otherwise, play nice and disable
1086 * timestamping
1087 */
1088 if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1089 break;
1090
1091 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1092 IXGBE_TSYNCRXCTL_TYPE_ALL |
1093 IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1094 config->rx_filter = HWTSTAMP_FILTER_ALL;
1095 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1096 adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1097 is_l2 = true;
1098 break;
1099 default:
1100 break;
1101 }
1102
1103 /* define ethertype filter for timestamping L2 packets */
1104 if (is_l2)
1105 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1106 (IXGBE_ETQF_FILTER_EN | /* enable filter */
1107 IXGBE_ETQF_1588 | /* enable timestamping */
1108 ETH_P_1588)); /* 1588 eth protocol type */
1109 else
1110 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1111
1112 /* enable/disable TX */
1113 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1114 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1115 regval |= tsync_tx_ctl;
1116 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1117
1118 /* enable/disable RX */
1119 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1120 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1121 regval |= tsync_rx_ctl;
1122 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1123
1124 /* define which PTP packets are time stamped */
1125 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1126
1127 IXGBE_WRITE_FLUSH(hw);
1128
1129 /* clear TX/RX time stamp registers, just to be sure */
1130 ixgbe_ptp_clear_tx_timestamp(adapter);
1131 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1138 * @adapter: pointer to adapter struct
1139 * @ifr: ioctl data
1140 *
1141 * Set hardware to requested mode. If unsupported, return an error with no
1142 * changes. Otherwise, store the mode for future reference.
1143 */
ixgbe_ptp_set_ts_config(struct ixgbe_adapter * adapter,struct ifreq * ifr)1144 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1145 {
1146 struct hwtstamp_config config;
1147 int err;
1148
1149 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1150 return -EFAULT;
1151
1152 err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1153 if (err)
1154 return err;
1155
1156 /* save these settings for future reference */
1157 memcpy(&adapter->tstamp_config, &config,
1158 sizeof(adapter->tstamp_config));
1159
1160 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1161 -EFAULT : 0;
1162 }
1163
ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter * adapter,u32 * shift,u32 * incval)1164 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1165 u32 *shift, u32 *incval)
1166 {
1167 /**
1168 * Scale the NIC cycle counter by a large factor so that
1169 * relatively small corrections to the frequency can be added
1170 * or subtracted. The drawbacks of a large factor include
1171 * (a) the clock register overflows more quickly, (b) the cycle
1172 * counter structure must be able to convert the systime value
1173 * to nanoseconds using only a multiplier and a right-shift,
1174 * and (c) the value must fit within the timinca register space
1175 * => math based on internal DMA clock rate and available bits
1176 *
1177 * Note that when there is no link, internal DMA clock is same as when
1178 * link speed is 10Gb. Set the registers correctly even when link is
1179 * down to preserve the clock setting
1180 */
1181 switch (adapter->link_speed) {
1182 case IXGBE_LINK_SPEED_100_FULL:
1183 *shift = IXGBE_INCVAL_SHIFT_100;
1184 *incval = IXGBE_INCVAL_100;
1185 break;
1186 case IXGBE_LINK_SPEED_1GB_FULL:
1187 *shift = IXGBE_INCVAL_SHIFT_1GB;
1188 *incval = IXGBE_INCVAL_1GB;
1189 break;
1190 case IXGBE_LINK_SPEED_10GB_FULL:
1191 default:
1192 *shift = IXGBE_INCVAL_SHIFT_10GB;
1193 *incval = IXGBE_INCVAL_10GB;
1194 break;
1195 }
1196 }
1197
1198 /**
1199 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1200 * @adapter: pointer to the adapter structure
1201 *
1202 * This function should be called to set the proper values for the TIMINCA
1203 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1204 * is. It does not directly modify SYSTIME registers or the timecounter
1205 * structure. It should be called whenever a new TIMINCA value is necessary,
1206 * such as during initialization or when the link speed changes.
1207 */
ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter * adapter)1208 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1209 {
1210 struct ixgbe_hw *hw = &adapter->hw;
1211 struct cyclecounter cc;
1212 unsigned long flags;
1213 u32 incval = 0;
1214 u32 tsauxc = 0;
1215 u32 fuse0 = 0;
1216
1217 /* For some of the boards below this mask is technically incorrect.
1218 * The timestamp mask overflows at approximately 61bits. However the
1219 * particular hardware does not overflow on an even bitmask value.
1220 * Instead, it overflows due to conversion of upper 32bits billions of
1221 * cycles. Timecounters are not really intended for this purpose so
1222 * they do not properly function if the overflow point isn't 2^N-1.
1223 * However, the actual SYSTIME values in question take ~138 years to
1224 * overflow. In practice this means they won't actually overflow. A
1225 * proper fix to this problem would require modification of the
1226 * timecounter delta calculations.
1227 */
1228 cc.mask = CLOCKSOURCE_MASK(64);
1229 cc.mult = 1;
1230 cc.shift = 0;
1231
1232 switch (hw->mac.type) {
1233 case ixgbe_mac_X550EM_x:
1234 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1235 * designed to represent seconds and nanoseconds when this is
1236 * the case. However, some revisions of hardware have a 400Mhz
1237 * clock and we have to compensate for this frequency
1238 * variation using corrected mult and shift values.
1239 */
1240 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1241 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1242 cc.mult = 3;
1243 cc.shift = 2;
1244 }
1245 fallthrough;
1246 case ixgbe_mac_x550em_a:
1247 case ixgbe_mac_X550:
1248 cc.read = ixgbe_ptp_read_X550;
1249
1250 /* enable SYSTIME counter */
1251 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1252 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1253 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1254 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1255 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1256 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1257 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1258 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1259
1260 IXGBE_WRITE_FLUSH(hw);
1261 break;
1262 case ixgbe_mac_X540:
1263 cc.read = ixgbe_ptp_read_82599;
1264
1265 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1266 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1267 break;
1268 case ixgbe_mac_82599EB:
1269 cc.read = ixgbe_ptp_read_82599;
1270
1271 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1272 incval >>= IXGBE_INCVAL_SHIFT_82599;
1273 cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1274 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1275 BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1276 break;
1277 default:
1278 /* other devices aren't supported */
1279 return;
1280 }
1281
1282 /* update the base incval used to calculate frequency adjustment */
1283 WRITE_ONCE(adapter->base_incval, incval);
1284 smp_mb();
1285
1286 /* need lock to prevent incorrect read while modifying cyclecounter */
1287 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1288 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1289 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1290 }
1291
1292 /**
1293 * ixgbe_ptp_reset
1294 * @adapter: the ixgbe private board structure
1295 *
1296 * When the MAC resets, all the hardware bits for timesync are reset. This
1297 * function is used to re-enable the device for PTP based on current settings.
1298 * We do lose the current clock time, so just reset the cyclecounter to the
1299 * system real clock time.
1300 *
1301 * This function will maintain hwtstamp_config settings, and resets the SDP
1302 * output if it was enabled.
1303 */
ixgbe_ptp_reset(struct ixgbe_adapter * adapter)1304 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1305 {
1306 struct ixgbe_hw *hw = &adapter->hw;
1307 unsigned long flags;
1308
1309 /* reset the hardware timestamping mode */
1310 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1311
1312 /* 82598 does not support PTP */
1313 if (hw->mac.type == ixgbe_mac_82598EB)
1314 return;
1315
1316 ixgbe_ptp_start_cyclecounter(adapter);
1317
1318 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1319 timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1320 ktime_to_ns(ktime_get_real()));
1321 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1322
1323 adapter->last_overflow_check = jiffies;
1324
1325 /* Now that the shift has been calculated and the systime
1326 * registers reset, (re-)enable the Clock out feature
1327 */
1328 if (adapter->ptp_setup_sdp)
1329 adapter->ptp_setup_sdp(adapter);
1330 }
1331
1332 /**
1333 * ixgbe_ptp_create_clock
1334 * @adapter: the ixgbe private adapter structure
1335 *
1336 * This function performs setup of the user entry point function table and
1337 * initializes the PTP clock device, which is used to access the clock-like
1338 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1339 * reuse a previously initialized clock (such as during a suspend/resume
1340 * cycle).
1341 */
ixgbe_ptp_create_clock(struct ixgbe_adapter * adapter)1342 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1343 {
1344 struct net_device *netdev = adapter->netdev;
1345 long err;
1346
1347 /* do nothing if we already have a clock device */
1348 if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1349 return 0;
1350
1351 switch (adapter->hw.mac.type) {
1352 case ixgbe_mac_X540:
1353 snprintf(adapter->ptp_caps.name,
1354 sizeof(adapter->ptp_caps.name),
1355 "%s", netdev->name);
1356 adapter->ptp_caps.owner = THIS_MODULE;
1357 adapter->ptp_caps.max_adj = 250000000;
1358 adapter->ptp_caps.n_alarm = 0;
1359 adapter->ptp_caps.n_ext_ts = 0;
1360 adapter->ptp_caps.n_per_out = 0;
1361 adapter->ptp_caps.pps = 1;
1362 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1363 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1364 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1365 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1366 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1367 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1368 break;
1369 case ixgbe_mac_82599EB:
1370 snprintf(adapter->ptp_caps.name,
1371 sizeof(adapter->ptp_caps.name),
1372 "%s", netdev->name);
1373 adapter->ptp_caps.owner = THIS_MODULE;
1374 adapter->ptp_caps.max_adj = 250000000;
1375 adapter->ptp_caps.n_alarm = 0;
1376 adapter->ptp_caps.n_ext_ts = 0;
1377 adapter->ptp_caps.n_per_out = 0;
1378 adapter->ptp_caps.pps = 0;
1379 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1380 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1381 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1382 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1383 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1384 break;
1385 case ixgbe_mac_X550:
1386 case ixgbe_mac_X550EM_x:
1387 case ixgbe_mac_x550em_a:
1388 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1389 adapter->ptp_caps.owner = THIS_MODULE;
1390 adapter->ptp_caps.max_adj = 30000000;
1391 adapter->ptp_caps.n_alarm = 0;
1392 adapter->ptp_caps.n_ext_ts = 0;
1393 adapter->ptp_caps.n_per_out = 0;
1394 adapter->ptp_caps.pps = 1;
1395 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1396 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1397 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1398 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1399 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1400 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1401 break;
1402 default:
1403 adapter->ptp_clock = NULL;
1404 adapter->ptp_setup_sdp = NULL;
1405 return -EOPNOTSUPP;
1406 }
1407
1408 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1409 &adapter->pdev->dev);
1410 if (IS_ERR(adapter->ptp_clock)) {
1411 err = PTR_ERR(adapter->ptp_clock);
1412 adapter->ptp_clock = NULL;
1413 e_dev_err("ptp_clock_register failed\n");
1414 return err;
1415 } else if (adapter->ptp_clock)
1416 e_dev_info("registered PHC device on %s\n", netdev->name);
1417
1418 /* set default timestamp mode to disabled here. We do this in
1419 * create_clock instead of init, because we don't want to override the
1420 * previous settings during a resume cycle.
1421 */
1422 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1423 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1424
1425 return 0;
1426 }
1427
1428 /**
1429 * ixgbe_ptp_init
1430 * @adapter: the ixgbe private adapter structure
1431 *
1432 * This function performs the required steps for enabling PTP
1433 * support. If PTP support has already been loaded it simply calls the
1434 * cyclecounter init routine and exits.
1435 */
ixgbe_ptp_init(struct ixgbe_adapter * adapter)1436 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1437 {
1438 /* initialize the spin lock first since we can't control when a user
1439 * will call the entry functions once we have initialized the clock
1440 * device
1441 */
1442 spin_lock_init(&adapter->tmreg_lock);
1443
1444 /* obtain a PTP device, or re-use an existing device */
1445 if (ixgbe_ptp_create_clock(adapter))
1446 return;
1447
1448 /* we have a clock so we can initialize work now */
1449 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1450
1451 /* reset the PTP related hardware bits */
1452 ixgbe_ptp_reset(adapter);
1453
1454 /* enter the IXGBE_PTP_RUNNING state */
1455 set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1456
1457 return;
1458 }
1459
1460 /**
1461 * ixgbe_ptp_suspend - stop PTP work items
1462 * @adapter: pointer to adapter struct
1463 *
1464 * this function suspends PTP activity, and prevents more PTP work from being
1465 * generated, but does not destroy the PTP clock device.
1466 */
ixgbe_ptp_suspend(struct ixgbe_adapter * adapter)1467 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1468 {
1469 /* Leave the IXGBE_PTP_RUNNING state. */
1470 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1471 return;
1472
1473 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1474 if (adapter->ptp_setup_sdp)
1475 adapter->ptp_setup_sdp(adapter);
1476
1477 /* ensure that we cancel any pending PTP Tx work item in progress */
1478 cancel_work_sync(&adapter->ptp_tx_work);
1479 ixgbe_ptp_clear_tx_timestamp(adapter);
1480 }
1481
1482 /**
1483 * ixgbe_ptp_stop - close the PTP device
1484 * @adapter: pointer to adapter struct
1485 *
1486 * completely destroy the PTP device, should only be called when the device is
1487 * being fully closed.
1488 */
ixgbe_ptp_stop(struct ixgbe_adapter * adapter)1489 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1490 {
1491 /* first, suspend PTP activity */
1492 ixgbe_ptp_suspend(adapter);
1493
1494 /* disable the PTP clock device */
1495 if (adapter->ptp_clock) {
1496 ptp_clock_unregister(adapter->ptp_clock);
1497 adapter->ptp_clock = NULL;
1498 e_dev_info("removed PHC on %s\n",
1499 adapter->netdev->name);
1500 }
1501 }
1502