• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67 
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73 
74 /******************************************************************************
75  *
76  * RX path functions
77  *
78  ******************************************************************************/
79 
80 /*
81  * Rx theory of operation
82  *
83  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84  * each of which point to Receive Buffers to be filled by the NIC.  These get
85  * used not only for Rx frames, but for any command response or notification
86  * from the NIC.  The driver and NIC manage the Rx buffers by means
87  * of indexes into the circular buffer.
88  *
89  * Rx Queue Indexes
90  * The host/firmware share two index registers for managing the Rx buffers.
91  *
92  * The READ index maps to the first position that the firmware may be writing
93  * to -- the driver can read up to (but not including) this position and get
94  * good data.
95  * The READ index is managed by the firmware once the card is enabled.
96  *
97  * The WRITE index maps to the last position the driver has read from -- the
98  * position preceding WRITE is the last slot the firmware can place a packet.
99  *
100  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101  * WRITE = READ.
102  *
103  * During initialization, the host sets up the READ queue position to the first
104  * INDEX position, and WRITE to the last (READ - 1 wrapped)
105  *
106  * When the firmware places a packet in a buffer, it will advance the READ index
107  * and fire the RX interrupt.  The driver can then query the READ index and
108  * process as many packets as possible, moving the WRITE index forward as it
109  * resets the Rx queue buffers with new memory.
110  *
111  * The management in the driver is as follows:
112  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113  *   When the interrupt handler is called, the request is processed.
114  *   The page is either stolen - transferred to the upper layer
115  *   or reused - added immediately to the iwl->rxq->rx_free list.
116  * + When the page is stolen - the driver updates the matching queue's used
117  *   count, detaches the RBD and transfers it to the queue used list.
118  *   When there are two used RBDs - they are transferred to the allocator empty
119  *   list. Work is then scheduled for the allocator to start allocating
120  *   eight buffers.
121  *   When there are another 6 used RBDs - they are transferred to the allocator
122  *   empty list and the driver tries to claim the pre-allocated buffers and
123  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124  *   until ready.
125  *   When there are 8+ buffers in the free list - either from allocation or from
126  *   8 reused unstolen pages - restock is called to update the FW and indexes.
127  * + In order to make sure the allocator always has RBDs to use for allocation
128  *   the allocator has initial pool in the size of num_queues*(8-2) - the
129  *   maximum missing RBDs per allocation request (request posted with 2
130  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131  *   The queues supplies the recycle of the rest of the RBDs.
132  * + A received packet is processed and handed to the kernel network stack,
133  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
134  * + If there are no allocated buffers in iwl->rxq->rx_free,
135  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136  *   If there were enough free buffers and RX_STALLED is set it is cleared.
137  *
138  *
139  * Driver sequence:
140  *
141  * iwl_rxq_alloc()            Allocates rx_free
142  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
143  *                            iwl_pcie_rxq_restock.
144  *                            Used only during initialization.
145  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
146  *                            queue, updates firmware pointers, and updates
147  *                            the WRITE index.
148  * iwl_pcie_rx_allocator()     Background work for allocating pages.
149  *
150  * -- enable interrupts --
151  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
152  *                            READ INDEX, detaching the SKB from the pool.
153  *                            Moves the packet buffer from queue to rx_used.
154  *                            Posts and claims requests to the allocator.
155  *                            Calls iwl_pcie_rxq_restock to refill any empty
156  *                            slots.
157  *
158  * RBD life-cycle:
159  *
160  * Init:
161  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162  *
163  * Regular Receive interrupt:
164  * Page Stolen:
165  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167  * Page not Stolen:
168  * rxq.queue -> rxq.rx_free -> rxq.queue
169  * ...
170  *
171  */
172 
173 /*
174  * iwl_rxq_space - Return number of free slots available in queue.
175  */
iwl_rxq_space(const struct iwl_rxq * rxq)176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178 	/* Make sure rx queue size is a power of 2 */
179 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180 
181 	/*
182 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 	 * between empty and completely full queues.
184 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 	 * defined for negative dividends.
186 	 */
187 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189 
190 /*
191  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192  */
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195 	return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197 
198 /*
199  * iwl_pcie_rx_stop - stops the Rx DMA
200  */
iwl_pcie_rx_stop(struct iwl_trans * trans)201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
204 		/* TODO: remove this once fw does it */
205 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 	} else if (trans->trans_cfg->mq_rx_supported) {
209 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 	} else {
213 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 					   1000);
217 	}
218 }
219 
220 /*
221  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222  */
iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans * trans,struct iwl_rxq * rxq)223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 				    struct iwl_rxq *rxq)
225 {
226 	u32 reg;
227 
228 	lockdep_assert_held(&rxq->lock);
229 
230 	/*
231 	 * explicitly wake up the NIC if:
232 	 * 1. shadow registers aren't enabled
233 	 * 2. there is a chance that the NIC is asleep
234 	 */
235 	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
236 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238 
239 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 				       reg);
242 			iwl_set_bit(trans, CSR_GP_CNTRL,
243 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
244 			rxq->need_update = true;
245 			return;
246 		}
247 	}
248 
249 	rxq->write_actual = round_down(rxq->write, 8);
250 	if (trans->trans_cfg->mq_rx_supported)
251 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
252 			    rxq->write_actual);
253 	else
254 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
255 }
256 
iwl_pcie_rxq_check_wrptr(struct iwl_trans * trans)257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
258 {
259 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
260 	int i;
261 
262 	for (i = 0; i < trans->num_rx_queues; i++) {
263 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
264 
265 		if (!rxq->need_update)
266 			continue;
267 		spin_lock(&rxq->lock);
268 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
269 		rxq->need_update = false;
270 		spin_unlock(&rxq->lock);
271 	}
272 }
273 
iwl_pcie_restock_bd(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb)274 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
275 				struct iwl_rxq *rxq,
276 				struct iwl_rx_mem_buffer *rxb)
277 {
278 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
279 		struct iwl_rx_transfer_desc *bd = rxq->bd;
280 
281 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
282 
283 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
284 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
285 	} else {
286 		__le64 *bd = rxq->bd;
287 
288 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
289 	}
290 
291 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
292 		     (u32)rxb->vid, rxq->id, rxq->write);
293 }
294 
295 /*
296  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
297  */
iwl_pcie_rxmq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
299 				  struct iwl_rxq *rxq)
300 {
301 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
302 	struct iwl_rx_mem_buffer *rxb;
303 
304 	/*
305 	 * If the device isn't enabled - no need to try to add buffers...
306 	 * This can happen when we stop the device and still have an interrupt
307 	 * pending. We stop the APM before we sync the interrupts because we
308 	 * have to (see comment there). On the other hand, since the APM is
309 	 * stopped, we cannot access the HW (in particular not prph).
310 	 * So don't try to restock if the APM has been already stopped.
311 	 */
312 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
313 		return;
314 
315 	spin_lock(&rxq->lock);
316 	while (rxq->free_count) {
317 		/* Get next free Rx buffer, remove from free list */
318 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
319 				       list);
320 		list_del(&rxb->list);
321 		rxb->invalid = false;
322 		/* some low bits are expected to be unset (depending on hw) */
323 		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
324 		/* Point to Rx buffer via next RBD in circular buffer */
325 		iwl_pcie_restock_bd(trans, rxq, rxb);
326 		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
327 		rxq->free_count--;
328 	}
329 	spin_unlock(&rxq->lock);
330 
331 	/*
332 	 * If we've added more space for the firmware to place data, tell it.
333 	 * Increment device's write pointer in multiples of 8.
334 	 */
335 	if (rxq->write_actual != (rxq->write & ~0x7)) {
336 		spin_lock(&rxq->lock);
337 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
338 		spin_unlock(&rxq->lock);
339 	}
340 }
341 
342 /*
343  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
344  */
iwl_pcie_rxsq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)345 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
346 				  struct iwl_rxq *rxq)
347 {
348 	struct iwl_rx_mem_buffer *rxb;
349 
350 	/*
351 	 * If the device isn't enabled - not need to try to add buffers...
352 	 * This can happen when we stop the device and still have an interrupt
353 	 * pending. We stop the APM before we sync the interrupts because we
354 	 * have to (see comment there). On the other hand, since the APM is
355 	 * stopped, we cannot access the HW (in particular not prph).
356 	 * So don't try to restock if the APM has been already stopped.
357 	 */
358 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
359 		return;
360 
361 	spin_lock(&rxq->lock);
362 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
363 		__le32 *bd = (__le32 *)rxq->bd;
364 		/* The overwritten rxb must be a used one */
365 		rxb = rxq->queue[rxq->write];
366 		BUG_ON(rxb && rxb->page);
367 
368 		/* Get next free Rx buffer, remove from free list */
369 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
370 				       list);
371 		list_del(&rxb->list);
372 		rxb->invalid = false;
373 
374 		/* Point to Rx buffer via next RBD in circular buffer */
375 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
376 		rxq->queue[rxq->write] = rxb;
377 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
378 		rxq->free_count--;
379 	}
380 	spin_unlock(&rxq->lock);
381 
382 	/* If we've added more space for the firmware to place data, tell it.
383 	 * Increment device's write pointer in multiples of 8. */
384 	if (rxq->write_actual != (rxq->write & ~0x7)) {
385 		spin_lock(&rxq->lock);
386 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
387 		spin_unlock(&rxq->lock);
388 	}
389 }
390 
391 /*
392  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
393  *
394  * If there are slots in the RX queue that need to be restocked,
395  * and we have free pre-allocated buffers, fill the ranks as much
396  * as we can, pulling from rx_free.
397  *
398  * This moves the 'write' index forward to catch up with 'processed', and
399  * also updates the memory address in the firmware to reference the new
400  * target buffer.
401  */
402 static
iwl_pcie_rxq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)403 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
404 {
405 	if (trans->trans_cfg->mq_rx_supported)
406 		iwl_pcie_rxmq_restock(trans, rxq);
407 	else
408 		iwl_pcie_rxsq_restock(trans, rxq);
409 }
410 
411 /*
412  * iwl_pcie_rx_alloc_page - allocates and returns a page.
413  *
414  */
iwl_pcie_rx_alloc_page(struct iwl_trans * trans,u32 * offset,gfp_t priority)415 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
416 					   u32 *offset, gfp_t priority)
417 {
418 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
419 	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
420 	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
421 	struct page *page;
422 	gfp_t gfp_mask = priority;
423 
424 	if (trans_pcie->rx_page_order > 0)
425 		gfp_mask |= __GFP_COMP;
426 
427 	if (trans_pcie->alloc_page) {
428 		spin_lock_bh(&trans_pcie->alloc_page_lock);
429 		/* recheck */
430 		if (trans_pcie->alloc_page) {
431 			*offset = trans_pcie->alloc_page_used;
432 			page = trans_pcie->alloc_page;
433 			trans_pcie->alloc_page_used += rbsize;
434 			if (trans_pcie->alloc_page_used >= allocsize)
435 				trans_pcie->alloc_page = NULL;
436 			else
437 				get_page(page);
438 			spin_unlock_bh(&trans_pcie->alloc_page_lock);
439 			return page;
440 		}
441 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
442 	}
443 
444 	/* Alloc a new receive buffer */
445 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
446 	if (!page) {
447 		if (net_ratelimit())
448 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
449 				       trans_pcie->rx_page_order);
450 		/*
451 		 * Issue an error if we don't have enough pre-allocated
452 		  * buffers.
453 		 */
454 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
455 			IWL_CRIT(trans,
456 				 "Failed to alloc_pages\n");
457 		return NULL;
458 	}
459 
460 	if (2 * rbsize <= allocsize) {
461 		spin_lock_bh(&trans_pcie->alloc_page_lock);
462 		if (!trans_pcie->alloc_page) {
463 			get_page(page);
464 			trans_pcie->alloc_page = page;
465 			trans_pcie->alloc_page_used = rbsize;
466 		}
467 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
468 	}
469 
470 	*offset = 0;
471 	return page;
472 }
473 
474 /*
475  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
476  *
477  * A used RBD is an Rx buffer that has been given to the stack. To use it again
478  * a page must be allocated and the RBD must point to the page. This function
479  * doesn't change the HW pointer but handles the list of pages that is used by
480  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
481  * allocated buffers.
482  */
iwl_pcie_rxq_alloc_rbs(struct iwl_trans * trans,gfp_t priority,struct iwl_rxq * rxq)483 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
484 			    struct iwl_rxq *rxq)
485 {
486 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
487 	struct iwl_rx_mem_buffer *rxb;
488 	struct page *page;
489 
490 	while (1) {
491 		unsigned int offset;
492 
493 		spin_lock(&rxq->lock);
494 		if (list_empty(&rxq->rx_used)) {
495 			spin_unlock(&rxq->lock);
496 			return;
497 		}
498 		spin_unlock(&rxq->lock);
499 
500 		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
501 		if (!page)
502 			return;
503 
504 		spin_lock(&rxq->lock);
505 
506 		if (list_empty(&rxq->rx_used)) {
507 			spin_unlock(&rxq->lock);
508 			__free_pages(page, trans_pcie->rx_page_order);
509 			return;
510 		}
511 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
512 				       list);
513 		list_del(&rxb->list);
514 		spin_unlock(&rxq->lock);
515 
516 		BUG_ON(rxb->page);
517 		rxb->page = page;
518 		rxb->offset = offset;
519 		/* Get physical address of the RB */
520 		rxb->page_dma =
521 			dma_map_page(trans->dev, page, rxb->offset,
522 				     trans_pcie->rx_buf_bytes,
523 				     DMA_FROM_DEVICE);
524 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
525 			rxb->page = NULL;
526 			spin_lock(&rxq->lock);
527 			list_add(&rxb->list, &rxq->rx_used);
528 			spin_unlock(&rxq->lock);
529 			__free_pages(page, trans_pcie->rx_page_order);
530 			return;
531 		}
532 
533 		spin_lock(&rxq->lock);
534 
535 		list_add_tail(&rxb->list, &rxq->rx_free);
536 		rxq->free_count++;
537 
538 		spin_unlock(&rxq->lock);
539 	}
540 }
541 
iwl_pcie_free_rbs_pool(struct iwl_trans * trans)542 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
543 {
544 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
545 	int i;
546 
547 	if (!trans_pcie->rx_pool)
548 		return;
549 
550 	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
551 		if (!trans_pcie->rx_pool[i].page)
552 			continue;
553 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
554 			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
555 		__free_pages(trans_pcie->rx_pool[i].page,
556 			     trans_pcie->rx_page_order);
557 		trans_pcie->rx_pool[i].page = NULL;
558 	}
559 }
560 
561 /*
562  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
563  *
564  * Allocates for each received request 8 pages
565  * Called as a scheduled work item.
566  */
iwl_pcie_rx_allocator(struct iwl_trans * trans)567 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
568 {
569 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
570 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
571 	struct list_head local_empty;
572 	int pending = atomic_read(&rba->req_pending);
573 
574 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
575 
576 	/* If we were scheduled - there is at least one request */
577 	spin_lock(&rba->lock);
578 	/* swap out the rba->rbd_empty to a local list */
579 	list_replace_init(&rba->rbd_empty, &local_empty);
580 	spin_unlock(&rba->lock);
581 
582 	while (pending) {
583 		int i;
584 		LIST_HEAD(local_allocated);
585 		gfp_t gfp_mask = GFP_KERNEL;
586 
587 		/* Do not post a warning if there are only a few requests */
588 		if (pending < RX_PENDING_WATERMARK)
589 			gfp_mask |= __GFP_NOWARN;
590 
591 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
592 			struct iwl_rx_mem_buffer *rxb;
593 			struct page *page;
594 
595 			/* List should never be empty - each reused RBD is
596 			 * returned to the list, and initial pool covers any
597 			 * possible gap between the time the page is allocated
598 			 * to the time the RBD is added.
599 			 */
600 			BUG_ON(list_empty(&local_empty));
601 			/* Get the first rxb from the rbd list */
602 			rxb = list_first_entry(&local_empty,
603 					       struct iwl_rx_mem_buffer, list);
604 			BUG_ON(rxb->page);
605 
606 			/* Alloc a new receive buffer */
607 			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
608 						      gfp_mask);
609 			if (!page)
610 				continue;
611 			rxb->page = page;
612 
613 			/* Get physical address of the RB */
614 			rxb->page_dma = dma_map_page(trans->dev, page,
615 						     rxb->offset,
616 						     trans_pcie->rx_buf_bytes,
617 						     DMA_FROM_DEVICE);
618 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
619 				rxb->page = NULL;
620 				__free_pages(page, trans_pcie->rx_page_order);
621 				continue;
622 			}
623 
624 			/* move the allocated entry to the out list */
625 			list_move(&rxb->list, &local_allocated);
626 			i++;
627 		}
628 
629 		atomic_dec(&rba->req_pending);
630 		pending--;
631 
632 		if (!pending) {
633 			pending = atomic_read(&rba->req_pending);
634 			if (pending)
635 				IWL_DEBUG_TPT(trans,
636 					      "Got more pending allocation requests = %d\n",
637 					      pending);
638 		}
639 
640 		spin_lock(&rba->lock);
641 		/* add the allocated rbds to the allocator allocated list */
642 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
643 		/* get more empty RBDs for current pending requests */
644 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
645 		spin_unlock(&rba->lock);
646 
647 		atomic_inc(&rba->req_ready);
648 
649 	}
650 
651 	spin_lock(&rba->lock);
652 	/* return unused rbds to the allocator empty list */
653 	list_splice_tail(&local_empty, &rba->rbd_empty);
654 	spin_unlock(&rba->lock);
655 
656 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
657 }
658 
659 /*
660  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
661 .*
662 .* Called by queue when the queue posted allocation request and
663  * has freed 8 RBDs in order to restock itself.
664  * This function directly moves the allocated RBs to the queue's ownership
665  * and updates the relevant counters.
666  */
iwl_pcie_rx_allocator_get(struct iwl_trans * trans,struct iwl_rxq * rxq)667 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
668 				      struct iwl_rxq *rxq)
669 {
670 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
671 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
672 	int i;
673 
674 	lockdep_assert_held(&rxq->lock);
675 
676 	/*
677 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
678 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
679 	 * function will return early, as there are no ready requests.
680 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
681 	 * req_ready > 0, i.e. - there are ready requests and the function
682 	 * hands one request to the caller.
683 	 */
684 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
685 		return;
686 
687 	spin_lock(&rba->lock);
688 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
689 		/* Get next free Rx buffer, remove it from free list */
690 		struct iwl_rx_mem_buffer *rxb =
691 			list_first_entry(&rba->rbd_allocated,
692 					 struct iwl_rx_mem_buffer, list);
693 
694 		list_move(&rxb->list, &rxq->rx_free);
695 	}
696 	spin_unlock(&rba->lock);
697 
698 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
699 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
700 }
701 
iwl_pcie_rx_allocator_work(struct work_struct * data)702 void iwl_pcie_rx_allocator_work(struct work_struct *data)
703 {
704 	struct iwl_rb_allocator *rba_p =
705 		container_of(data, struct iwl_rb_allocator, rx_alloc);
706 	struct iwl_trans_pcie *trans_pcie =
707 		container_of(rba_p, struct iwl_trans_pcie, rba);
708 
709 	iwl_pcie_rx_allocator(trans_pcie->trans);
710 }
711 
iwl_pcie_free_bd_size(struct iwl_trans * trans,bool use_rx_td)712 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
713 {
714 	struct iwl_rx_transfer_desc *rx_td;
715 
716 	if (use_rx_td)
717 		return sizeof(*rx_td);
718 	else
719 		return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
720 			sizeof(__le32);
721 }
722 
iwl_pcie_free_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)723 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
724 				  struct iwl_rxq *rxq)
725 {
726 	struct device *dev = trans->dev;
727 	bool use_rx_td = (trans->trans_cfg->device_family >=
728 			  IWL_DEVICE_FAMILY_AX210);
729 	int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
730 
731 	if (rxq->bd)
732 		dma_free_coherent(trans->dev,
733 				  free_size * rxq->queue_size,
734 				  rxq->bd, rxq->bd_dma);
735 	rxq->bd_dma = 0;
736 	rxq->bd = NULL;
737 
738 	rxq->rb_stts_dma = 0;
739 	rxq->rb_stts = NULL;
740 
741 	if (rxq->used_bd)
742 		dma_free_coherent(trans->dev,
743 				  (use_rx_td ? sizeof(*rxq->cd) :
744 				   sizeof(__le32)) * rxq->queue_size,
745 				  rxq->used_bd, rxq->used_bd_dma);
746 	rxq->used_bd_dma = 0;
747 	rxq->used_bd = NULL;
748 
749 	if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
750 		return;
751 
752 	if (rxq->tr_tail)
753 		dma_free_coherent(dev, sizeof(__le16),
754 				  rxq->tr_tail, rxq->tr_tail_dma);
755 	rxq->tr_tail_dma = 0;
756 	rxq->tr_tail = NULL;
757 
758 	if (rxq->cr_tail)
759 		dma_free_coherent(dev, sizeof(__le16),
760 				  rxq->cr_tail, rxq->cr_tail_dma);
761 	rxq->cr_tail_dma = 0;
762 	rxq->cr_tail = NULL;
763 }
764 
iwl_pcie_alloc_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)765 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
766 				  struct iwl_rxq *rxq)
767 {
768 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
769 	struct device *dev = trans->dev;
770 	int i;
771 	int free_size;
772 	bool use_rx_td = (trans->trans_cfg->device_family >=
773 			  IWL_DEVICE_FAMILY_AX210);
774 	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
775 			      sizeof(struct iwl_rb_status);
776 
777 	spin_lock_init(&rxq->lock);
778 	if (trans->trans_cfg->mq_rx_supported)
779 		rxq->queue_size = trans->cfg->num_rbds;
780 	else
781 		rxq->queue_size = RX_QUEUE_SIZE;
782 
783 	free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
784 
785 	/*
786 	 * Allocate the circular buffer of Read Buffer Descriptors
787 	 * (RBDs)
788 	 */
789 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
790 				     &rxq->bd_dma, GFP_KERNEL);
791 	if (!rxq->bd)
792 		goto err;
793 
794 	if (trans->trans_cfg->mq_rx_supported) {
795 		rxq->used_bd = dma_alloc_coherent(dev,
796 						  (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
797 						  &rxq->used_bd_dma,
798 						  GFP_KERNEL);
799 		if (!rxq->used_bd)
800 			goto err;
801 	}
802 
803 	rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
804 	rxq->rb_stts_dma =
805 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
806 
807 	if (!use_rx_td)
808 		return 0;
809 
810 	/* Allocate the driver's pointer to TR tail */
811 	rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
812 					  &rxq->tr_tail_dma, GFP_KERNEL);
813 	if (!rxq->tr_tail)
814 		goto err;
815 
816 	/* Allocate the driver's pointer to CR tail */
817 	rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
818 					  &rxq->cr_tail_dma, GFP_KERNEL);
819 	if (!rxq->cr_tail)
820 		goto err;
821 
822 	return 0;
823 
824 err:
825 	for (i = 0; i < trans->num_rx_queues; i++) {
826 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
827 
828 		iwl_pcie_free_rxq_dma(trans, rxq);
829 	}
830 
831 	return -ENOMEM;
832 }
833 
iwl_pcie_rx_alloc(struct iwl_trans * trans)834 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
835 {
836 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
837 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
838 	int i, ret;
839 	size_t rb_stts_size = trans->trans_cfg->device_family >=
840 				IWL_DEVICE_FAMILY_AX210 ?
841 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
842 
843 	if (WARN_ON(trans_pcie->rxq))
844 		return -EINVAL;
845 
846 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
847 				  GFP_KERNEL);
848 	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
849 				      sizeof(trans_pcie->rx_pool[0]),
850 				      GFP_KERNEL);
851 	trans_pcie->global_table =
852 		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
853 			sizeof(trans_pcie->global_table[0]),
854 			GFP_KERNEL);
855 	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
856 	    !trans_pcie->global_table) {
857 		ret = -ENOMEM;
858 		goto err;
859 	}
860 
861 	spin_lock_init(&rba->lock);
862 
863 	/*
864 	 * Allocate the driver's pointer to receive buffer status.
865 	 * Allocate for all queues continuously (HW requirement).
866 	 */
867 	trans_pcie->base_rb_stts =
868 			dma_alloc_coherent(trans->dev,
869 					   rb_stts_size * trans->num_rx_queues,
870 					   &trans_pcie->base_rb_stts_dma,
871 					   GFP_KERNEL);
872 	if (!trans_pcie->base_rb_stts) {
873 		ret = -ENOMEM;
874 		goto err;
875 	}
876 
877 	for (i = 0; i < trans->num_rx_queues; i++) {
878 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
879 
880 		rxq->id = i;
881 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
882 		if (ret)
883 			goto err;
884 	}
885 	return 0;
886 
887 err:
888 	if (trans_pcie->base_rb_stts) {
889 		dma_free_coherent(trans->dev,
890 				  rb_stts_size * trans->num_rx_queues,
891 				  trans_pcie->base_rb_stts,
892 				  trans_pcie->base_rb_stts_dma);
893 		trans_pcie->base_rb_stts = NULL;
894 		trans_pcie->base_rb_stts_dma = 0;
895 	}
896 	kfree(trans_pcie->rx_pool);
897 	kfree(trans_pcie->global_table);
898 	kfree(trans_pcie->rxq);
899 
900 	return ret;
901 }
902 
iwl_pcie_rx_hw_init(struct iwl_trans * trans,struct iwl_rxq * rxq)903 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
904 {
905 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
906 	u32 rb_size;
907 	unsigned long flags;
908 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
909 
910 	switch (trans_pcie->rx_buf_size) {
911 	case IWL_AMSDU_4K:
912 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
913 		break;
914 	case IWL_AMSDU_8K:
915 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
916 		break;
917 	case IWL_AMSDU_12K:
918 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
919 		break;
920 	default:
921 		WARN_ON(1);
922 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
923 	}
924 
925 	if (!iwl_trans_grab_nic_access(trans, &flags))
926 		return;
927 
928 	/* Stop Rx DMA */
929 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
930 	/* reset and flush pointers */
931 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
932 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
933 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
934 
935 	/* Reset driver's Rx queue write index */
936 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
937 
938 	/* Tell device where to find RBD circular buffer in DRAM */
939 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
940 		    (u32)(rxq->bd_dma >> 8));
941 
942 	/* Tell device where in DRAM to update its Rx status */
943 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
944 		    rxq->rb_stts_dma >> 4);
945 
946 	/* Enable Rx DMA
947 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
948 	 *      the credit mechanism in 5000 HW RX FIFO
949 	 * Direct rx interrupts to hosts
950 	 * Rx buffer size 4 or 8k or 12k
951 	 * RB timeout 0x10
952 	 * 256 RBDs
953 	 */
954 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
955 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
956 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
957 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
958 		    rb_size |
959 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
960 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
961 
962 	iwl_trans_release_nic_access(trans, &flags);
963 
964 	/* Set interrupt coalescing timer to default (2048 usecs) */
965 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
966 
967 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
968 	if (trans->cfg->host_interrupt_operation_mode)
969 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
970 }
971 
iwl_pcie_rx_mq_hw_init(struct iwl_trans * trans)972 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
973 {
974 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
975 	u32 rb_size, enabled = 0;
976 	unsigned long flags;
977 	int i;
978 
979 	switch (trans_pcie->rx_buf_size) {
980 	case IWL_AMSDU_2K:
981 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
982 		break;
983 	case IWL_AMSDU_4K:
984 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
985 		break;
986 	case IWL_AMSDU_8K:
987 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
988 		break;
989 	case IWL_AMSDU_12K:
990 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
991 		break;
992 	default:
993 		WARN_ON(1);
994 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
995 	}
996 
997 	if (!iwl_trans_grab_nic_access(trans, &flags))
998 		return;
999 
1000 	/* Stop Rx DMA */
1001 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
1002 	/* disable free amd used rx queue operation */
1003 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
1004 
1005 	for (i = 0; i < trans->num_rx_queues; i++) {
1006 		/* Tell device where to find RBD free table in DRAM */
1007 		iwl_write_prph64_no_grab(trans,
1008 					 RFH_Q_FRBDCB_BA_LSB(i),
1009 					 trans_pcie->rxq[i].bd_dma);
1010 		/* Tell device where to find RBD used table in DRAM */
1011 		iwl_write_prph64_no_grab(trans,
1012 					 RFH_Q_URBDCB_BA_LSB(i),
1013 					 trans_pcie->rxq[i].used_bd_dma);
1014 		/* Tell device where in DRAM to update its Rx status */
1015 		iwl_write_prph64_no_grab(trans,
1016 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
1017 					 trans_pcie->rxq[i].rb_stts_dma);
1018 		/* Reset device indice tables */
1019 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
1020 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
1021 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
1022 
1023 		enabled |= BIT(i) | BIT(i + 16);
1024 	}
1025 
1026 	/*
1027 	 * Enable Rx DMA
1028 	 * Rx buffer size 4 or 8k or 12k
1029 	 * Min RB size 4 or 8
1030 	 * Drop frames that exceed RB size
1031 	 * 512 RBDs
1032 	 */
1033 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
1034 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
1035 			       RFH_RXF_DMA_MIN_RB_4_8 |
1036 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
1037 			       RFH_RXF_DMA_RBDCB_SIZE_512);
1038 
1039 	/*
1040 	 * Activate DMA snooping.
1041 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1042 	 * Default queue is 0
1043 	 */
1044 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1045 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
1046 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1047 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1048 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1049 					       trans->trans_cfg->integrated ?
1050 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1051 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1052 	/* Enable the relevant rx queues */
1053 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1054 
1055 	iwl_trans_release_nic_access(trans, &flags);
1056 
1057 	/* Set interrupt coalescing timer to default (2048 usecs) */
1058 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1059 }
1060 
iwl_pcie_rx_init_rxb_lists(struct iwl_rxq * rxq)1061 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1062 {
1063 	lockdep_assert_held(&rxq->lock);
1064 
1065 	INIT_LIST_HEAD(&rxq->rx_free);
1066 	INIT_LIST_HEAD(&rxq->rx_used);
1067 	rxq->free_count = 0;
1068 	rxq->used_count = 0;
1069 }
1070 
iwl_pcie_dummy_napi_poll(struct napi_struct * napi,int budget)1071 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1072 {
1073 	WARN_ON(1);
1074 	return 0;
1075 }
1076 
_iwl_pcie_rx_init(struct iwl_trans * trans)1077 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1078 {
1079 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1080 	struct iwl_rxq *def_rxq;
1081 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1082 	int i, err, queue_size, allocator_pool_size, num_alloc;
1083 
1084 	if (!trans_pcie->rxq) {
1085 		err = iwl_pcie_rx_alloc(trans);
1086 		if (err)
1087 			return err;
1088 	}
1089 	def_rxq = trans_pcie->rxq;
1090 
1091 	cancel_work_sync(&rba->rx_alloc);
1092 
1093 	spin_lock(&rba->lock);
1094 	atomic_set(&rba->req_pending, 0);
1095 	atomic_set(&rba->req_ready, 0);
1096 	INIT_LIST_HEAD(&rba->rbd_allocated);
1097 	INIT_LIST_HEAD(&rba->rbd_empty);
1098 	spin_unlock(&rba->lock);
1099 
1100 	/* free all first - we overwrite everything here */
1101 	iwl_pcie_free_rbs_pool(trans);
1102 
1103 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1104 		def_rxq->queue[i] = NULL;
1105 
1106 	for (i = 0; i < trans->num_rx_queues; i++) {
1107 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1108 
1109 		spin_lock(&rxq->lock);
1110 		/*
1111 		 * Set read write pointer to reflect that we have processed
1112 		 * and used all buffers, but have not restocked the Rx queue
1113 		 * with fresh buffers
1114 		 */
1115 		rxq->read = 0;
1116 		rxq->write = 0;
1117 		rxq->write_actual = 0;
1118 		memset(rxq->rb_stts, 0,
1119 		       (trans->trans_cfg->device_family >=
1120 			IWL_DEVICE_FAMILY_AX210) ?
1121 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1122 
1123 		iwl_pcie_rx_init_rxb_lists(rxq);
1124 
1125 		if (!rxq->napi.poll)
1126 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1127 				       iwl_pcie_dummy_napi_poll, 64);
1128 
1129 		spin_unlock(&rxq->lock);
1130 	}
1131 
1132 	/* move the pool to the default queue and allocator ownerships */
1133 	queue_size = trans->trans_cfg->mq_rx_supported ?
1134 			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1135 	allocator_pool_size = trans->num_rx_queues *
1136 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1137 	num_alloc = queue_size + allocator_pool_size;
1138 
1139 	for (i = 0; i < num_alloc; i++) {
1140 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1141 
1142 		if (i < allocator_pool_size)
1143 			list_add(&rxb->list, &rba->rbd_empty);
1144 		else
1145 			list_add(&rxb->list, &def_rxq->rx_used);
1146 		trans_pcie->global_table[i] = rxb;
1147 		rxb->vid = (u16)(i + 1);
1148 		rxb->invalid = true;
1149 	}
1150 
1151 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1152 
1153 	return 0;
1154 }
1155 
iwl_pcie_rx_init(struct iwl_trans * trans)1156 int iwl_pcie_rx_init(struct iwl_trans *trans)
1157 {
1158 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1159 	int ret = _iwl_pcie_rx_init(trans);
1160 
1161 	if (ret)
1162 		return ret;
1163 
1164 	if (trans->trans_cfg->mq_rx_supported)
1165 		iwl_pcie_rx_mq_hw_init(trans);
1166 	else
1167 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1168 
1169 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1170 
1171 	spin_lock(&trans_pcie->rxq->lock);
1172 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1173 	spin_unlock(&trans_pcie->rxq->lock);
1174 
1175 	return 0;
1176 }
1177 
iwl_pcie_gen2_rx_init(struct iwl_trans * trans)1178 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1179 {
1180 	/* Set interrupt coalescing timer to default (2048 usecs) */
1181 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1182 
1183 	/*
1184 	 * We don't configure the RFH.
1185 	 * Restock will be done at alive, after firmware configured the RFH.
1186 	 */
1187 	return _iwl_pcie_rx_init(trans);
1188 }
1189 
iwl_pcie_rx_free(struct iwl_trans * trans)1190 void iwl_pcie_rx_free(struct iwl_trans *trans)
1191 {
1192 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1193 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1194 	int i;
1195 	size_t rb_stts_size = trans->trans_cfg->device_family >=
1196 				IWL_DEVICE_FAMILY_AX210 ?
1197 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1198 
1199 	/*
1200 	 * if rxq is NULL, it means that nothing has been allocated,
1201 	 * exit now
1202 	 */
1203 	if (!trans_pcie->rxq) {
1204 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1205 		return;
1206 	}
1207 
1208 	cancel_work_sync(&rba->rx_alloc);
1209 
1210 	iwl_pcie_free_rbs_pool(trans);
1211 
1212 	if (trans_pcie->base_rb_stts) {
1213 		dma_free_coherent(trans->dev,
1214 				  rb_stts_size * trans->num_rx_queues,
1215 				  trans_pcie->base_rb_stts,
1216 				  trans_pcie->base_rb_stts_dma);
1217 		trans_pcie->base_rb_stts = NULL;
1218 		trans_pcie->base_rb_stts_dma = 0;
1219 	}
1220 
1221 	for (i = 0; i < trans->num_rx_queues; i++) {
1222 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1223 
1224 		iwl_pcie_free_rxq_dma(trans, rxq);
1225 
1226 		if (rxq->napi.poll)
1227 			netif_napi_del(&rxq->napi);
1228 	}
1229 	kfree(trans_pcie->rx_pool);
1230 	kfree(trans_pcie->global_table);
1231 	kfree(trans_pcie->rxq);
1232 
1233 	if (trans_pcie->alloc_page)
1234 		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1235 }
1236 
iwl_pcie_rx_move_to_allocator(struct iwl_rxq * rxq,struct iwl_rb_allocator * rba)1237 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1238 					  struct iwl_rb_allocator *rba)
1239 {
1240 	spin_lock(&rba->lock);
1241 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1242 	spin_unlock(&rba->lock);
1243 }
1244 
1245 /*
1246  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1247  *
1248  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1249  * When there are 2 empty RBDs - a request for allocation is posted
1250  */
iwl_pcie_rx_reuse_rbd(struct iwl_trans * trans,struct iwl_rx_mem_buffer * rxb,struct iwl_rxq * rxq,bool emergency)1251 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1252 				  struct iwl_rx_mem_buffer *rxb,
1253 				  struct iwl_rxq *rxq, bool emergency)
1254 {
1255 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1256 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1257 
1258 	/* Move the RBD to the used list, will be moved to allocator in batches
1259 	 * before claiming or posting a request*/
1260 	list_add_tail(&rxb->list, &rxq->rx_used);
1261 
1262 	if (unlikely(emergency))
1263 		return;
1264 
1265 	/* Count the allocator owned RBDs */
1266 	rxq->used_count++;
1267 
1268 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1269 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1270 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1271 	 * after but we still need to post another request.
1272 	 */
1273 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1274 		/* Move the 2 RBDs to the allocator ownership.
1275 		 Allocator has another 6 from pool for the request completion*/
1276 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1277 
1278 		atomic_inc(&rba->req_pending);
1279 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1280 	}
1281 }
1282 
iwl_pcie_rx_handle_rb(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb,bool emergency,int i)1283 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1284 				struct iwl_rxq *rxq,
1285 				struct iwl_rx_mem_buffer *rxb,
1286 				bool emergency,
1287 				int i)
1288 {
1289 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1290 	struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1291 	bool page_stolen = false;
1292 	int max_len = trans_pcie->rx_buf_bytes;
1293 	u32 offset = 0;
1294 
1295 	if (WARN_ON(!rxb))
1296 		return;
1297 
1298 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1299 
1300 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1301 		struct iwl_rx_packet *pkt;
1302 		u16 sequence;
1303 		bool reclaim;
1304 		int index, cmd_index, len;
1305 		struct iwl_rx_cmd_buffer rxcb = {
1306 			._offset = rxb->offset + offset,
1307 			._rx_page_order = trans_pcie->rx_page_order,
1308 			._page = rxb->page,
1309 			._page_stolen = false,
1310 			.truesize = max_len,
1311 		};
1312 
1313 		pkt = rxb_addr(&rxcb);
1314 
1315 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1316 			IWL_DEBUG_RX(trans,
1317 				     "Q %d: RB end marker at offset %d\n",
1318 				     rxq->id, offset);
1319 			break;
1320 		}
1321 
1322 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1323 			FH_RSCSR_RXQ_POS != rxq->id,
1324 		     "frame on invalid queue - is on %d and indicates %d\n",
1325 		     rxq->id,
1326 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1327 			FH_RSCSR_RXQ_POS);
1328 
1329 		IWL_DEBUG_RX(trans,
1330 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1331 			     rxq->id, offset,
1332 			     iwl_get_cmd_string(trans,
1333 						iwl_cmd_id(pkt->hdr.cmd,
1334 							   pkt->hdr.group_id,
1335 							   0)),
1336 			     pkt->hdr.group_id, pkt->hdr.cmd,
1337 			     le16_to_cpu(pkt->hdr.sequence));
1338 
1339 		len = iwl_rx_packet_len(pkt);
1340 		len += sizeof(u32); /* account for status word */
1341 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1342 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1343 
1344 		/* Reclaim a command buffer only if this packet is a response
1345 		 *   to a (driver-originated) command.
1346 		 * If the packet (e.g. Rx frame) originated from uCode,
1347 		 *   there is no command buffer to reclaim.
1348 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1349 		 *   but apparently a few don't get set; catch them here. */
1350 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1351 		if (reclaim && !pkt->hdr.group_id) {
1352 			int i;
1353 
1354 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1355 				if (trans_pcie->no_reclaim_cmds[i] ==
1356 							pkt->hdr.cmd) {
1357 					reclaim = false;
1358 					break;
1359 				}
1360 			}
1361 		}
1362 
1363 		sequence = le16_to_cpu(pkt->hdr.sequence);
1364 		index = SEQ_TO_INDEX(sequence);
1365 		cmd_index = iwl_txq_get_cmd_index(txq, index);
1366 
1367 		if (rxq->id == trans_pcie->def_rx_queue)
1368 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1369 				       &rxcb);
1370 		else
1371 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1372 					   &rxcb, rxq->id);
1373 
1374 		if (reclaim) {
1375 			kfree_sensitive(txq->entries[cmd_index].free_buf);
1376 			txq->entries[cmd_index].free_buf = NULL;
1377 		}
1378 
1379 		/*
1380 		 * After here, we should always check rxcb._page_stolen,
1381 		 * if it is true then one of the handlers took the page.
1382 		 */
1383 
1384 		if (reclaim) {
1385 			/* Invoke any callbacks, transfer the buffer to caller,
1386 			 * and fire off the (possibly) blocking
1387 			 * iwl_trans_send_cmd()
1388 			 * as we reclaim the driver command queue */
1389 			if (!rxcb._page_stolen)
1390 				iwl_pcie_hcmd_complete(trans, &rxcb);
1391 			else
1392 				IWL_WARN(trans, "Claim null rxb?\n");
1393 		}
1394 
1395 		page_stolen |= rxcb._page_stolen;
1396 		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1397 			break;
1398 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1399 	}
1400 
1401 	/* page was stolen from us -- free our reference */
1402 	if (page_stolen) {
1403 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1404 		rxb->page = NULL;
1405 	}
1406 
1407 	/* Reuse the page if possible. For notification packets and
1408 	 * SKBs that fail to Rx correctly, add them back into the
1409 	 * rx_free list for reuse later. */
1410 	if (rxb->page != NULL) {
1411 		rxb->page_dma =
1412 			dma_map_page(trans->dev, rxb->page, rxb->offset,
1413 				     trans_pcie->rx_buf_bytes,
1414 				     DMA_FROM_DEVICE);
1415 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1416 			/*
1417 			 * free the page(s) as well to not break
1418 			 * the invariant that the items on the used
1419 			 * list have no page(s)
1420 			 */
1421 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1422 			rxb->page = NULL;
1423 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1424 		} else {
1425 			list_add_tail(&rxb->list, &rxq->rx_free);
1426 			rxq->free_count++;
1427 		}
1428 	} else
1429 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1430 }
1431 
iwl_pcie_get_rxb(struct iwl_trans * trans,struct iwl_rxq * rxq,int i,bool * join)1432 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1433 						  struct iwl_rxq *rxq, int i,
1434 						  bool *join)
1435 {
1436 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1437 	struct iwl_rx_mem_buffer *rxb;
1438 	u16 vid;
1439 
1440 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1441 
1442 	if (!trans->trans_cfg->mq_rx_supported) {
1443 		rxb = rxq->queue[i];
1444 		rxq->queue[i] = NULL;
1445 		return rxb;
1446 	}
1447 
1448 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1449 		vid = le16_to_cpu(rxq->cd[i].rbid);
1450 		*join = rxq->cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1451 	} else {
1452 		vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1453 	}
1454 
1455 	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1456 		goto out_err;
1457 
1458 	rxb = trans_pcie->global_table[vid - 1];
1459 	if (rxb->invalid)
1460 		goto out_err;
1461 
1462 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1463 
1464 	rxb->invalid = true;
1465 
1466 	return rxb;
1467 
1468 out_err:
1469 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1470 	iwl_force_nmi(trans);
1471 	return NULL;
1472 }
1473 
1474 /*
1475  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1476  */
iwl_pcie_rx_handle(struct iwl_trans * trans,int queue)1477 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1478 {
1479 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1480 	struct napi_struct *napi;
1481 	struct iwl_rxq *rxq;
1482 	u32 r, i, count = 0;
1483 	bool emergency = false;
1484 
1485 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1486 		return;
1487 
1488 	rxq = &trans_pcie->rxq[queue];
1489 
1490 restart:
1491 	spin_lock(&rxq->lock);
1492 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1493 	 * buffer that the driver may process (last buffer filled by ucode). */
1494 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1495 	i = rxq->read;
1496 
1497 	/* W/A 9000 device step A0 wrap-around bug */
1498 	r &= (rxq->queue_size - 1);
1499 
1500 	/* Rx interrupt, but nothing sent from uCode */
1501 	if (i == r)
1502 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1503 
1504 	while (i != r) {
1505 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1506 		struct iwl_rx_mem_buffer *rxb;
1507 		/* number of RBDs still waiting for page allocation */
1508 		u32 rb_pending_alloc =
1509 			atomic_read(&trans_pcie->rba.req_pending) *
1510 			RX_CLAIM_REQ_ALLOC;
1511 		bool join = false;
1512 
1513 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1514 			     !emergency)) {
1515 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1516 			emergency = true;
1517 			IWL_DEBUG_TPT(trans,
1518 				      "RX path is in emergency. Pending allocations %d\n",
1519 				      rb_pending_alloc);
1520 		}
1521 
1522 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1523 
1524 		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1525 		if (!rxb)
1526 			goto out;
1527 
1528 		if (unlikely(join || rxq->next_rb_is_fragment)) {
1529 			rxq->next_rb_is_fragment = join;
1530 			/*
1531 			 * We can only get a multi-RB in the following cases:
1532 			 *  - firmware issue, sending a too big notification
1533 			 *  - sniffer mode with a large A-MSDU
1534 			 *  - large MTU frames (>2k)
1535 			 * since the multi-RB functionality is limited to newer
1536 			 * hardware that cannot put multiple entries into a
1537 			 * single RB.
1538 			 *
1539 			 * Right now, the higher layers aren't set up to deal
1540 			 * with that, so discard all of these.
1541 			 */
1542 			list_add_tail(&rxb->list, &rxq->rx_free);
1543 			rxq->free_count++;
1544 		} else {
1545 			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1546 		}
1547 
1548 		i = (i + 1) & (rxq->queue_size - 1);
1549 
1550 		/*
1551 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1552 		 * try to claim the pre-allocated buffers from the allocator.
1553 		 * If not ready - will try to reclaim next time.
1554 		 * There is no need to reschedule work - allocator exits only
1555 		 * on success
1556 		 */
1557 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1558 			iwl_pcie_rx_allocator_get(trans, rxq);
1559 
1560 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1561 			/* Add the remaining empty RBDs for allocator use */
1562 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1563 		} else if (emergency) {
1564 			count++;
1565 			if (count == 8) {
1566 				count = 0;
1567 				if (rb_pending_alloc < rxq->queue_size / 3) {
1568 					IWL_DEBUG_TPT(trans,
1569 						      "RX path exited emergency. Pending allocations %d\n",
1570 						      rb_pending_alloc);
1571 					emergency = false;
1572 				}
1573 
1574 				rxq->read = i;
1575 				spin_unlock(&rxq->lock);
1576 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1577 				iwl_pcie_rxq_restock(trans, rxq);
1578 				goto restart;
1579 			}
1580 		}
1581 	}
1582 out:
1583 	/* Backtrack one entry */
1584 	rxq->read = i;
1585 	/* update cr tail with the rxq read pointer */
1586 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1587 		*rxq->cr_tail = cpu_to_le16(r);
1588 	spin_unlock(&rxq->lock);
1589 
1590 	/*
1591 	 * handle a case where in emergency there are some unallocated RBDs.
1592 	 * those RBDs are in the used list, but are not tracked by the queue's
1593 	 * used_count which counts allocator owned RBDs.
1594 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1595 	 * when called again the function may not be in emergency mode and
1596 	 * they will be handed to the allocator with no tracking in the RBD
1597 	 * allocator counters, which will lead to them never being claimed back
1598 	 * by the queue.
1599 	 * by allocating them here, they are now in the queue free list, and
1600 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1601 	 */
1602 	if (unlikely(emergency && count))
1603 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1604 
1605 	napi = &rxq->napi;
1606 	if (napi->poll) {
1607 		napi_gro_flush(napi, false);
1608 
1609 		if (napi->rx_count) {
1610 			netif_receive_skb_list(&napi->rx_list);
1611 			INIT_LIST_HEAD(&napi->rx_list);
1612 			napi->rx_count = 0;
1613 		}
1614 	}
1615 
1616 	iwl_pcie_rxq_restock(trans, rxq);
1617 }
1618 
iwl_pcie_get_trans_pcie(struct msix_entry * entry)1619 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1620 {
1621 	u8 queue = entry->entry;
1622 	struct msix_entry *entries = entry - queue;
1623 
1624 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1625 }
1626 
1627 /*
1628  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1629  * This interrupt handler should be used with RSS queue only.
1630  */
iwl_pcie_irq_rx_msix_handler(int irq,void * dev_id)1631 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1632 {
1633 	struct msix_entry *entry = dev_id;
1634 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1635 	struct iwl_trans *trans = trans_pcie->trans;
1636 
1637 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1638 
1639 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1640 		return IRQ_NONE;
1641 
1642 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1643 
1644 	local_bh_disable();
1645 	iwl_pcie_rx_handle(trans, entry->entry);
1646 	local_bh_enable();
1647 
1648 	iwl_pcie_clear_irq(trans, entry);
1649 
1650 	lock_map_release(&trans->sync_cmd_lockdep_map);
1651 
1652 	return IRQ_HANDLED;
1653 }
1654 
1655 /*
1656  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1657  */
iwl_pcie_irq_handle_error(struct iwl_trans * trans)1658 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1659 {
1660 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1661 	int i;
1662 
1663 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1664 	if (trans->cfg->internal_wimax_coex &&
1665 	    !trans->cfg->apmg_not_supported &&
1666 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1667 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1668 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1669 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1670 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1671 		iwl_op_mode_wimax_active(trans->op_mode);
1672 		wake_up(&trans_pcie->wait_command_queue);
1673 		return;
1674 	}
1675 
1676 	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1677 		if (!trans->txqs.txq[i])
1678 			continue;
1679 		del_timer(&trans->txqs.txq[i]->stuck_timer);
1680 	}
1681 
1682 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1683 	 * before we wake up the command caller, to ensure a proper cleanup. */
1684 	iwl_trans_fw_error(trans);
1685 
1686 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1687 	wake_up(&trans_pcie->wait_command_queue);
1688 }
1689 
iwl_pcie_int_cause_non_ict(struct iwl_trans * trans)1690 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1691 {
1692 	u32 inta;
1693 
1694 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1695 
1696 	trace_iwlwifi_dev_irq(trans->dev);
1697 
1698 	/* Discover which interrupts are active/pending */
1699 	inta = iwl_read32(trans, CSR_INT);
1700 
1701 	/* the thread will service interrupts and re-enable them */
1702 	return inta;
1703 }
1704 
1705 /* a device (PCI-E) page is 4096 bytes long */
1706 #define ICT_SHIFT	12
1707 #define ICT_SIZE	(1 << ICT_SHIFT)
1708 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1709 
1710 /* interrupt handler using ict table, with this interrupt driver will
1711  * stop using INTA register to get device's interrupt, reading this register
1712  * is expensive, device will write interrupts in ICT dram table, increment
1713  * index then will fire interrupt to driver, driver will OR all ICT table
1714  * entries from current index up to table entry with 0 value. the result is
1715  * the interrupt we need to service, driver will set the entries back to 0 and
1716  * set index.
1717  */
iwl_pcie_int_cause_ict(struct iwl_trans * trans)1718 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1719 {
1720 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1721 	u32 inta;
1722 	u32 val = 0;
1723 	u32 read;
1724 
1725 	trace_iwlwifi_dev_irq(trans->dev);
1726 
1727 	/* Ignore interrupt if there's nothing in NIC to service.
1728 	 * This may be due to IRQ shared with another device,
1729 	 * or due to sporadic interrupts thrown from our NIC. */
1730 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1731 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1732 	if (!read)
1733 		return 0;
1734 
1735 	/*
1736 	 * Collect all entries up to the first 0, starting from ict_index;
1737 	 * note we already read at ict_index.
1738 	 */
1739 	do {
1740 		val |= read;
1741 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1742 				trans_pcie->ict_index, read);
1743 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1744 		trans_pcie->ict_index =
1745 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1746 
1747 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1748 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1749 					   read);
1750 	} while (read);
1751 
1752 	/* We should not get this value, just ignore it. */
1753 	if (val == 0xffffffff)
1754 		val = 0;
1755 
1756 	/*
1757 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1758 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1759 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1760 	 * so we use them to decide on the real state of the Rx bit.
1761 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1762 	 */
1763 	if (val & 0xC0000)
1764 		val |= 0x8000;
1765 
1766 	inta = (0xff & val) | ((0xff00 & val) << 16);
1767 	return inta;
1768 }
1769 
iwl_pcie_handle_rfkill_irq(struct iwl_trans * trans)1770 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1771 {
1772 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1773 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1774 	bool hw_rfkill, prev, report;
1775 
1776 	mutex_lock(&trans_pcie->mutex);
1777 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1778 	hw_rfkill = iwl_is_rfkill_set(trans);
1779 	if (hw_rfkill) {
1780 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1781 		set_bit(STATUS_RFKILL_HW, &trans->status);
1782 	}
1783 	if (trans_pcie->opmode_down)
1784 		report = hw_rfkill;
1785 	else
1786 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1787 
1788 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1789 		 hw_rfkill ? "disable radio" : "enable radio");
1790 
1791 	isr_stats->rfkill++;
1792 
1793 	if (prev != report)
1794 		iwl_trans_pcie_rf_kill(trans, report);
1795 	mutex_unlock(&trans_pcie->mutex);
1796 
1797 	if (hw_rfkill) {
1798 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1799 				       &trans->status))
1800 			IWL_DEBUG_RF_KILL(trans,
1801 					  "Rfkill while SYNC HCMD in flight\n");
1802 		wake_up(&trans_pcie->wait_command_queue);
1803 	} else {
1804 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1805 		if (trans_pcie->opmode_down)
1806 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1807 	}
1808 }
1809 
iwl_pcie_irq_handler(int irq,void * dev_id)1810 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1811 {
1812 	struct iwl_trans *trans = dev_id;
1813 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1814 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1815 	u32 inta = 0;
1816 	u32 handled = 0;
1817 
1818 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1819 
1820 	spin_lock(&trans_pcie->irq_lock);
1821 
1822 	/* dram interrupt table not set yet,
1823 	 * use legacy interrupt.
1824 	 */
1825 	if (likely(trans_pcie->use_ict))
1826 		inta = iwl_pcie_int_cause_ict(trans);
1827 	else
1828 		inta = iwl_pcie_int_cause_non_ict(trans);
1829 
1830 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1831 		IWL_DEBUG_ISR(trans,
1832 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1833 			      inta, trans_pcie->inta_mask,
1834 			      iwl_read32(trans, CSR_INT_MASK),
1835 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1836 		if (inta & (~trans_pcie->inta_mask))
1837 			IWL_DEBUG_ISR(trans,
1838 				      "We got a masked interrupt (0x%08x)\n",
1839 				      inta & (~trans_pcie->inta_mask));
1840 	}
1841 
1842 	inta &= trans_pcie->inta_mask;
1843 
1844 	/*
1845 	 * Ignore interrupt if there's nothing in NIC to service.
1846 	 * This may be due to IRQ shared with another device,
1847 	 * or due to sporadic interrupts thrown from our NIC.
1848 	 */
1849 	if (unlikely(!inta)) {
1850 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1851 		/*
1852 		 * Re-enable interrupts here since we don't
1853 		 * have anything to service
1854 		 */
1855 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1856 			_iwl_enable_interrupts(trans);
1857 		spin_unlock(&trans_pcie->irq_lock);
1858 		lock_map_release(&trans->sync_cmd_lockdep_map);
1859 		return IRQ_NONE;
1860 	}
1861 
1862 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1863 		/*
1864 		 * Hardware disappeared. It might have
1865 		 * already raised an interrupt.
1866 		 */
1867 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1868 		spin_unlock(&trans_pcie->irq_lock);
1869 		goto out;
1870 	}
1871 
1872 	/* Ack/clear/reset pending uCode interrupts.
1873 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1874 	 */
1875 	/* There is a hardware bug in the interrupt mask function that some
1876 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1877 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1878 	 * ICT interrupt handling mechanism has another bug that might cause
1879 	 * these unmasked interrupts fail to be detected. We workaround the
1880 	 * hardware bugs here by ACKing all the possible interrupts so that
1881 	 * interrupt coalescing can still be achieved.
1882 	 */
1883 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1884 
1885 	if (iwl_have_debug_level(IWL_DL_ISR))
1886 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1887 			      inta, iwl_read32(trans, CSR_INT_MASK));
1888 
1889 	spin_unlock(&trans_pcie->irq_lock);
1890 
1891 	/* Now service all interrupt bits discovered above. */
1892 	if (inta & CSR_INT_BIT_HW_ERR) {
1893 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1894 
1895 		/* Tell the device to stop sending interrupts */
1896 		iwl_disable_interrupts(trans);
1897 
1898 		isr_stats->hw++;
1899 		iwl_pcie_irq_handle_error(trans);
1900 
1901 		handled |= CSR_INT_BIT_HW_ERR;
1902 
1903 		goto out;
1904 	}
1905 
1906 	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1907 	if (inta & CSR_INT_BIT_SCD) {
1908 		IWL_DEBUG_ISR(trans,
1909 			      "Scheduler finished to transmit the frame/frames.\n");
1910 		isr_stats->sch++;
1911 	}
1912 
1913 	/* Alive notification via Rx interrupt will do the real work */
1914 	if (inta & CSR_INT_BIT_ALIVE) {
1915 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1916 		isr_stats->alive++;
1917 		if (trans->trans_cfg->gen2) {
1918 			/*
1919 			 * We can restock, since firmware configured
1920 			 * the RFH
1921 			 */
1922 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1923 		}
1924 
1925 		handled |= CSR_INT_BIT_ALIVE;
1926 	}
1927 
1928 	/* Safely ignore these bits for debug checks below */
1929 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1930 
1931 	/* HW RF KILL switch toggled */
1932 	if (inta & CSR_INT_BIT_RF_KILL) {
1933 		iwl_pcie_handle_rfkill_irq(trans);
1934 		handled |= CSR_INT_BIT_RF_KILL;
1935 	}
1936 
1937 	/* Chip got too hot and stopped itself */
1938 	if (inta & CSR_INT_BIT_CT_KILL) {
1939 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1940 		isr_stats->ctkill++;
1941 		handled |= CSR_INT_BIT_CT_KILL;
1942 	}
1943 
1944 	/* Error detected by uCode */
1945 	if (inta & CSR_INT_BIT_SW_ERR) {
1946 		IWL_ERR(trans, "Microcode SW error detected. "
1947 			" Restarting 0x%X.\n", inta);
1948 		isr_stats->sw++;
1949 		iwl_pcie_irq_handle_error(trans);
1950 		handled |= CSR_INT_BIT_SW_ERR;
1951 	}
1952 
1953 	/* uCode wakes up after power-down sleep */
1954 	if (inta & CSR_INT_BIT_WAKEUP) {
1955 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1956 		iwl_pcie_rxq_check_wrptr(trans);
1957 		iwl_pcie_txq_check_wrptrs(trans);
1958 
1959 		isr_stats->wakeup++;
1960 
1961 		handled |= CSR_INT_BIT_WAKEUP;
1962 	}
1963 
1964 	/* All uCode command responses, including Tx command responses,
1965 	 * Rx "responses" (frame-received notification), and other
1966 	 * notifications from uCode come through here*/
1967 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1968 		    CSR_INT_BIT_RX_PERIODIC)) {
1969 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1970 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1971 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1972 			iwl_write32(trans, CSR_FH_INT_STATUS,
1973 					CSR_FH_INT_RX_MASK);
1974 		}
1975 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1976 			handled |= CSR_INT_BIT_RX_PERIODIC;
1977 			iwl_write32(trans,
1978 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1979 		}
1980 		/* Sending RX interrupt require many steps to be done in the
1981 		 * the device:
1982 		 * 1- write interrupt to current index in ICT table.
1983 		 * 2- dma RX frame.
1984 		 * 3- update RX shared data to indicate last write index.
1985 		 * 4- send interrupt.
1986 		 * This could lead to RX race, driver could receive RX interrupt
1987 		 * but the shared data changes does not reflect this;
1988 		 * periodic interrupt will detect any dangling Rx activity.
1989 		 */
1990 
1991 		/* Disable periodic interrupt; we use it as just a one-shot. */
1992 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1993 			    CSR_INT_PERIODIC_DIS);
1994 
1995 		/*
1996 		 * Enable periodic interrupt in 8 msec only if we received
1997 		 * real RX interrupt (instead of just periodic int), to catch
1998 		 * any dangling Rx interrupt.  If it was just the periodic
1999 		 * interrupt, there was no dangling Rx activity, and no need
2000 		 * to extend the periodic interrupt; one-shot is enough.
2001 		 */
2002 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2003 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
2004 				   CSR_INT_PERIODIC_ENA);
2005 
2006 		isr_stats->rx++;
2007 
2008 		local_bh_disable();
2009 		iwl_pcie_rx_handle(trans, 0);
2010 		local_bh_enable();
2011 	}
2012 
2013 	/* This "Tx" DMA channel is used only for loading uCode */
2014 	if (inta & CSR_INT_BIT_FH_TX) {
2015 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2016 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2017 		isr_stats->tx++;
2018 		handled |= CSR_INT_BIT_FH_TX;
2019 		/* Wake up uCode load routine, now that load is complete */
2020 		trans_pcie->ucode_write_complete = true;
2021 		wake_up(&trans_pcie->ucode_write_waitq);
2022 	}
2023 
2024 	if (inta & ~handled) {
2025 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2026 		isr_stats->unhandled++;
2027 	}
2028 
2029 	if (inta & ~(trans_pcie->inta_mask)) {
2030 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2031 			 inta & ~trans_pcie->inta_mask);
2032 	}
2033 
2034 	spin_lock(&trans_pcie->irq_lock);
2035 	/* only Re-enable all interrupt if disabled by irq */
2036 	if (test_bit(STATUS_INT_ENABLED, &trans->status))
2037 		_iwl_enable_interrupts(trans);
2038 	/* we are loading the firmware, enable FH_TX interrupt only */
2039 	else if (handled & CSR_INT_BIT_FH_TX)
2040 		iwl_enable_fw_load_int(trans);
2041 	/* Re-enable RF_KILL if it occurred */
2042 	else if (handled & CSR_INT_BIT_RF_KILL)
2043 		iwl_enable_rfkill_int(trans);
2044 	/* Re-enable the ALIVE / Rx interrupt if it occurred */
2045 	else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2046 		iwl_enable_fw_load_int_ctx_info(trans);
2047 	spin_unlock(&trans_pcie->irq_lock);
2048 
2049 out:
2050 	lock_map_release(&trans->sync_cmd_lockdep_map);
2051 	return IRQ_HANDLED;
2052 }
2053 
2054 /******************************************************************************
2055  *
2056  * ICT functions
2057  *
2058  ******************************************************************************/
2059 
2060 /* Free dram table */
iwl_pcie_free_ict(struct iwl_trans * trans)2061 void iwl_pcie_free_ict(struct iwl_trans *trans)
2062 {
2063 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2064 
2065 	if (trans_pcie->ict_tbl) {
2066 		dma_free_coherent(trans->dev, ICT_SIZE,
2067 				  trans_pcie->ict_tbl,
2068 				  trans_pcie->ict_tbl_dma);
2069 		trans_pcie->ict_tbl = NULL;
2070 		trans_pcie->ict_tbl_dma = 0;
2071 	}
2072 }
2073 
2074 /*
2075  * allocate dram shared table, it is an aligned memory
2076  * block of ICT_SIZE.
2077  * also reset all data related to ICT table interrupt.
2078  */
iwl_pcie_alloc_ict(struct iwl_trans * trans)2079 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2080 {
2081 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2082 
2083 	trans_pcie->ict_tbl =
2084 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2085 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2086 	if (!trans_pcie->ict_tbl)
2087 		return -ENOMEM;
2088 
2089 	/* just an API sanity check ... it is guaranteed to be aligned */
2090 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2091 		iwl_pcie_free_ict(trans);
2092 		return -EINVAL;
2093 	}
2094 
2095 	return 0;
2096 }
2097 
2098 /* Device is going up inform it about using ICT interrupt table,
2099  * also we need to tell the driver to start using ICT interrupt.
2100  */
iwl_pcie_reset_ict(struct iwl_trans * trans)2101 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2102 {
2103 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2104 	u32 val;
2105 
2106 	if (!trans_pcie->ict_tbl)
2107 		return;
2108 
2109 	spin_lock(&trans_pcie->irq_lock);
2110 	_iwl_disable_interrupts(trans);
2111 
2112 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2113 
2114 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2115 
2116 	val |= CSR_DRAM_INT_TBL_ENABLE |
2117 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2118 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2119 
2120 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2121 
2122 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2123 	trans_pcie->use_ict = true;
2124 	trans_pcie->ict_index = 0;
2125 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2126 	_iwl_enable_interrupts(trans);
2127 	spin_unlock(&trans_pcie->irq_lock);
2128 }
2129 
2130 /* Device is going down disable ict interrupt usage */
iwl_pcie_disable_ict(struct iwl_trans * trans)2131 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2132 {
2133 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2134 
2135 	spin_lock(&trans_pcie->irq_lock);
2136 	trans_pcie->use_ict = false;
2137 	spin_unlock(&trans_pcie->irq_lock);
2138 }
2139 
iwl_pcie_isr(int irq,void * data)2140 irqreturn_t iwl_pcie_isr(int irq, void *data)
2141 {
2142 	struct iwl_trans *trans = data;
2143 
2144 	if (!trans)
2145 		return IRQ_NONE;
2146 
2147 	/* Disable (but don't clear!) interrupts here to avoid
2148 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2149 	 * If we have something to service, the tasklet will re-enable ints.
2150 	 * If we *don't* have something, we'll re-enable before leaving here.
2151 	 */
2152 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2153 
2154 	return IRQ_WAKE_THREAD;
2155 }
2156 
iwl_pcie_msix_isr(int irq,void * data)2157 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2158 {
2159 	return IRQ_WAKE_THREAD;
2160 }
2161 
iwl_pcie_irq_msix_handler(int irq,void * dev_id)2162 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2163 {
2164 	struct msix_entry *entry = dev_id;
2165 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2166 	struct iwl_trans *trans = trans_pcie->trans;
2167 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2168 	u32 inta_fh, inta_hw;
2169 
2170 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2171 
2172 	spin_lock(&trans_pcie->irq_lock);
2173 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2174 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2175 	/*
2176 	 * Clear causes registers to avoid being handling the same cause.
2177 	 */
2178 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2179 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2180 	spin_unlock(&trans_pcie->irq_lock);
2181 
2182 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2183 
2184 	if (unlikely(!(inta_fh | inta_hw))) {
2185 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2186 		lock_map_release(&trans->sync_cmd_lockdep_map);
2187 		return IRQ_NONE;
2188 	}
2189 
2190 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2191 		IWL_DEBUG_ISR(trans,
2192 			      "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2193 			      inta_fh, trans_pcie->fh_mask,
2194 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2195 		if (inta_fh & ~trans_pcie->fh_mask)
2196 			IWL_DEBUG_ISR(trans,
2197 				      "We got a masked interrupt (0x%08x)\n",
2198 				      inta_fh & ~trans_pcie->fh_mask);
2199 	}
2200 
2201 	inta_fh &= trans_pcie->fh_mask;
2202 
2203 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2204 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2205 		local_bh_disable();
2206 		iwl_pcie_rx_handle(trans, 0);
2207 		local_bh_enable();
2208 	}
2209 
2210 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2211 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2212 		local_bh_disable();
2213 		iwl_pcie_rx_handle(trans, 1);
2214 		local_bh_enable();
2215 	}
2216 
2217 	/* This "Tx" DMA channel is used only for loading uCode */
2218 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2219 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2220 		isr_stats->tx++;
2221 		/*
2222 		 * Wake up uCode load routine,
2223 		 * now that load is complete
2224 		 */
2225 		trans_pcie->ucode_write_complete = true;
2226 		wake_up(&trans_pcie->ucode_write_waitq);
2227 	}
2228 
2229 	/* Error detected by uCode */
2230 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2231 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2232 		IWL_ERR(trans,
2233 			"Microcode SW error detected. Restarting 0x%X.\n",
2234 			inta_fh);
2235 		isr_stats->sw++;
2236 		iwl_pcie_irq_handle_error(trans);
2237 	}
2238 
2239 	/* After checking FH register check HW register */
2240 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2241 		IWL_DEBUG_ISR(trans,
2242 			      "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2243 			      inta_hw, trans_pcie->hw_mask,
2244 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2245 		if (inta_hw & ~trans_pcie->hw_mask)
2246 			IWL_DEBUG_ISR(trans,
2247 				      "We got a masked interrupt 0x%08x\n",
2248 				      inta_hw & ~trans_pcie->hw_mask);
2249 	}
2250 
2251 	inta_hw &= trans_pcie->hw_mask;
2252 
2253 	/* Alive notification via Rx interrupt will do the real work */
2254 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2255 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2256 		isr_stats->alive++;
2257 		if (trans->trans_cfg->gen2) {
2258 			/* We can restock, since firmware configured the RFH */
2259 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2260 		}
2261 	}
2262 
2263 	/*
2264 	 * In some rare cases when the HW is in a bad state, we may
2265 	 * get this interrupt too early, when prph_info is still NULL.
2266 	 * So make sure that it's not NULL to prevent crashing.
2267 	 */
2268 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2269 		u32 sleep_notif =
2270 			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2271 		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2272 		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2273 			IWL_DEBUG_ISR(trans,
2274 				      "Sx interrupt: sleep notification = 0x%x\n",
2275 				      sleep_notif);
2276 			trans_pcie->sx_complete = true;
2277 			wake_up(&trans_pcie->sx_waitq);
2278 		} else {
2279 			/* uCode wakes up after power-down sleep */
2280 			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2281 			iwl_pcie_rxq_check_wrptr(trans);
2282 			iwl_pcie_txq_check_wrptrs(trans);
2283 
2284 			isr_stats->wakeup++;
2285 		}
2286 	}
2287 
2288 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2289 		/* Reflect IML transfer status */
2290 		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2291 
2292 		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2293 		if (res == IWL_IMAGE_RESP_FAIL) {
2294 			isr_stats->sw++;
2295 			iwl_pcie_irq_handle_error(trans);
2296 		}
2297 	}
2298 
2299 	/* Chip got too hot and stopped itself */
2300 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2301 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2302 		isr_stats->ctkill++;
2303 	}
2304 
2305 	/* HW RF KILL switch toggled */
2306 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2307 		iwl_pcie_handle_rfkill_irq(trans);
2308 
2309 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2310 		IWL_ERR(trans,
2311 			"Hardware error detected. Restarting.\n");
2312 
2313 		isr_stats->hw++;
2314 		trans->dbg.hw_error = true;
2315 		iwl_pcie_irq_handle_error(trans);
2316 	}
2317 
2318 	iwl_pcie_clear_irq(trans, entry);
2319 
2320 	lock_map_release(&trans->sync_cmd_lockdep_map);
2321 
2322 	return IRQ_HANDLED;
2323 }
2324