1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * The full GNU General Public License is included in this distribution in the
23 * file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *
63 *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73
74 /******************************************************************************
75 *
76 * RX path functions
77 *
78 ******************************************************************************/
79
80 /*
81 * Rx theory of operation
82 *
83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84 * each of which point to Receive Buffers to be filled by the NIC. These get
85 * used not only for Rx frames, but for any command response or notification
86 * from the NIC. The driver and NIC manage the Rx buffers by means
87 * of indexes into the circular buffer.
88 *
89 * Rx Queue Indexes
90 * The host/firmware share two index registers for managing the Rx buffers.
91 *
92 * The READ index maps to the first position that the firmware may be writing
93 * to -- the driver can read up to (but not including) this position and get
94 * good data.
95 * The READ index is managed by the firmware once the card is enabled.
96 *
97 * The WRITE index maps to the last position the driver has read from -- the
98 * position preceding WRITE is the last slot the firmware can place a packet.
99 *
100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101 * WRITE = READ.
102 *
103 * During initialization, the host sets up the READ queue position to the first
104 * INDEX position, and WRITE to the last (READ - 1 wrapped)
105 *
106 * When the firmware places a packet in a buffer, it will advance the READ index
107 * and fire the RX interrupt. The driver can then query the READ index and
108 * process as many packets as possible, moving the WRITE index forward as it
109 * resets the Rx queue buffers with new memory.
110 *
111 * The management in the driver is as follows:
112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113 * When the interrupt handler is called, the request is processed.
114 * The page is either stolen - transferred to the upper layer
115 * or reused - added immediately to the iwl->rxq->rx_free list.
116 * + When the page is stolen - the driver updates the matching queue's used
117 * count, detaches the RBD and transfers it to the queue used list.
118 * When there are two used RBDs - they are transferred to the allocator empty
119 * list. Work is then scheduled for the allocator to start allocating
120 * eight buffers.
121 * When there are another 6 used RBDs - they are transferred to the allocator
122 * empty list and the driver tries to claim the pre-allocated buffers and
123 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124 * until ready.
125 * When there are 8+ buffers in the free list - either from allocation or from
126 * 8 reused unstolen pages - restock is called to update the FW and indexes.
127 * + In order to make sure the allocator always has RBDs to use for allocation
128 * the allocator has initial pool in the size of num_queues*(8-2) - the
129 * maximum missing RBDs per allocation request (request posted with 2
130 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131 * The queues supplies the recycle of the rest of the RBDs.
132 * + A received packet is processed and handed to the kernel network stack,
133 * detached from the iwl->rxq. The driver 'processed' index is updated.
134 * + If there are no allocated buffers in iwl->rxq->rx_free,
135 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136 * If there were enough free buffers and RX_STALLED is set it is cleared.
137 *
138 *
139 * Driver sequence:
140 *
141 * iwl_rxq_alloc() Allocates rx_free
142 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
143 * iwl_pcie_rxq_restock.
144 * Used only during initialization.
145 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
146 * queue, updates firmware pointers, and updates
147 * the WRITE index.
148 * iwl_pcie_rx_allocator() Background work for allocating pages.
149 *
150 * -- enable interrupts --
151 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
152 * READ INDEX, detaching the SKB from the pool.
153 * Moves the packet buffer from queue to rx_used.
154 * Posts and claims requests to the allocator.
155 * Calls iwl_pcie_rxq_restock to refill any empty
156 * slots.
157 *
158 * RBD life-cycle:
159 *
160 * Init:
161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162 *
163 * Regular Receive interrupt:
164 * Page Stolen:
165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167 * Page not Stolen:
168 * rxq.queue -> rxq.rx_free -> rxq.queue
169 * ...
170 *
171 */
172
173 /*
174 * iwl_rxq_space - Return number of free slots available in queue.
175 */
iwl_rxq_space(const struct iwl_rxq * rxq)176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178 /* Make sure rx queue size is a power of 2 */
179 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180
181 /*
182 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 * between empty and completely full queues.
184 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 * defined for negative dividends.
186 */
187 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189
190 /*
191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192 */
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195 return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197
198 /*
199 * iwl_pcie_rx_stop - stops the Rx DMA
200 */
iwl_pcie_rx_stop(struct iwl_trans * trans)201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
204 /* TODO: remove this once fw does it */
205 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 } else if (trans->trans_cfg->mq_rx_supported) {
209 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 } else {
213 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 1000);
217 }
218 }
219
220 /*
221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222 */
iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans * trans,struct iwl_rxq * rxq)223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 struct iwl_rxq *rxq)
225 {
226 u32 reg;
227
228 lockdep_assert_held(&rxq->lock);
229
230 /*
231 * explicitly wake up the NIC if:
232 * 1. shadow registers aren't enabled
233 * 2. there is a chance that the NIC is asleep
234 */
235 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
236 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238
239 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 reg);
242 iwl_set_bit(trans, CSR_GP_CNTRL,
243 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
244 rxq->need_update = true;
245 return;
246 }
247 }
248
249 rxq->write_actual = round_down(rxq->write, 8);
250 if (trans->trans_cfg->mq_rx_supported)
251 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
252 rxq->write_actual);
253 else
254 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
255 }
256
iwl_pcie_rxq_check_wrptr(struct iwl_trans * trans)257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
258 {
259 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
260 int i;
261
262 for (i = 0; i < trans->num_rx_queues; i++) {
263 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
264
265 if (!rxq->need_update)
266 continue;
267 spin_lock(&rxq->lock);
268 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
269 rxq->need_update = false;
270 spin_unlock(&rxq->lock);
271 }
272 }
273
iwl_pcie_restock_bd(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb)274 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
275 struct iwl_rxq *rxq,
276 struct iwl_rx_mem_buffer *rxb)
277 {
278 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
279 struct iwl_rx_transfer_desc *bd = rxq->bd;
280
281 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
282
283 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
284 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
285 } else {
286 __le64 *bd = rxq->bd;
287
288 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
289 }
290
291 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
292 (u32)rxb->vid, rxq->id, rxq->write);
293 }
294
295 /*
296 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
297 */
iwl_pcie_rxmq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
299 struct iwl_rxq *rxq)
300 {
301 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
302 struct iwl_rx_mem_buffer *rxb;
303
304 /*
305 * If the device isn't enabled - no need to try to add buffers...
306 * This can happen when we stop the device and still have an interrupt
307 * pending. We stop the APM before we sync the interrupts because we
308 * have to (see comment there). On the other hand, since the APM is
309 * stopped, we cannot access the HW (in particular not prph).
310 * So don't try to restock if the APM has been already stopped.
311 */
312 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
313 return;
314
315 spin_lock(&rxq->lock);
316 while (rxq->free_count) {
317 /* Get next free Rx buffer, remove from free list */
318 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
319 list);
320 list_del(&rxb->list);
321 rxb->invalid = false;
322 /* some low bits are expected to be unset (depending on hw) */
323 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
324 /* Point to Rx buffer via next RBD in circular buffer */
325 iwl_pcie_restock_bd(trans, rxq, rxb);
326 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
327 rxq->free_count--;
328 }
329 spin_unlock(&rxq->lock);
330
331 /*
332 * If we've added more space for the firmware to place data, tell it.
333 * Increment device's write pointer in multiples of 8.
334 */
335 if (rxq->write_actual != (rxq->write & ~0x7)) {
336 spin_lock(&rxq->lock);
337 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
338 spin_unlock(&rxq->lock);
339 }
340 }
341
342 /*
343 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
344 */
iwl_pcie_rxsq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)345 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
346 struct iwl_rxq *rxq)
347 {
348 struct iwl_rx_mem_buffer *rxb;
349
350 /*
351 * If the device isn't enabled - not need to try to add buffers...
352 * This can happen when we stop the device and still have an interrupt
353 * pending. We stop the APM before we sync the interrupts because we
354 * have to (see comment there). On the other hand, since the APM is
355 * stopped, we cannot access the HW (in particular not prph).
356 * So don't try to restock if the APM has been already stopped.
357 */
358 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
359 return;
360
361 spin_lock(&rxq->lock);
362 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
363 __le32 *bd = (__le32 *)rxq->bd;
364 /* The overwritten rxb must be a used one */
365 rxb = rxq->queue[rxq->write];
366 BUG_ON(rxb && rxb->page);
367
368 /* Get next free Rx buffer, remove from free list */
369 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
370 list);
371 list_del(&rxb->list);
372 rxb->invalid = false;
373
374 /* Point to Rx buffer via next RBD in circular buffer */
375 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
376 rxq->queue[rxq->write] = rxb;
377 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
378 rxq->free_count--;
379 }
380 spin_unlock(&rxq->lock);
381
382 /* If we've added more space for the firmware to place data, tell it.
383 * Increment device's write pointer in multiples of 8. */
384 if (rxq->write_actual != (rxq->write & ~0x7)) {
385 spin_lock(&rxq->lock);
386 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
387 spin_unlock(&rxq->lock);
388 }
389 }
390
391 /*
392 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
393 *
394 * If there are slots in the RX queue that need to be restocked,
395 * and we have free pre-allocated buffers, fill the ranks as much
396 * as we can, pulling from rx_free.
397 *
398 * This moves the 'write' index forward to catch up with 'processed', and
399 * also updates the memory address in the firmware to reference the new
400 * target buffer.
401 */
402 static
iwl_pcie_rxq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)403 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
404 {
405 if (trans->trans_cfg->mq_rx_supported)
406 iwl_pcie_rxmq_restock(trans, rxq);
407 else
408 iwl_pcie_rxsq_restock(trans, rxq);
409 }
410
411 /*
412 * iwl_pcie_rx_alloc_page - allocates and returns a page.
413 *
414 */
iwl_pcie_rx_alloc_page(struct iwl_trans * trans,u32 * offset,gfp_t priority)415 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
416 u32 *offset, gfp_t priority)
417 {
418 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
419 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
420 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
421 struct page *page;
422 gfp_t gfp_mask = priority;
423
424 if (trans_pcie->rx_page_order > 0)
425 gfp_mask |= __GFP_COMP;
426
427 if (trans_pcie->alloc_page) {
428 spin_lock_bh(&trans_pcie->alloc_page_lock);
429 /* recheck */
430 if (trans_pcie->alloc_page) {
431 *offset = trans_pcie->alloc_page_used;
432 page = trans_pcie->alloc_page;
433 trans_pcie->alloc_page_used += rbsize;
434 if (trans_pcie->alloc_page_used >= allocsize)
435 trans_pcie->alloc_page = NULL;
436 else
437 get_page(page);
438 spin_unlock_bh(&trans_pcie->alloc_page_lock);
439 return page;
440 }
441 spin_unlock_bh(&trans_pcie->alloc_page_lock);
442 }
443
444 /* Alloc a new receive buffer */
445 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
446 if (!page) {
447 if (net_ratelimit())
448 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
449 trans_pcie->rx_page_order);
450 /*
451 * Issue an error if we don't have enough pre-allocated
452 * buffers.
453 */
454 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
455 IWL_CRIT(trans,
456 "Failed to alloc_pages\n");
457 return NULL;
458 }
459
460 if (2 * rbsize <= allocsize) {
461 spin_lock_bh(&trans_pcie->alloc_page_lock);
462 if (!trans_pcie->alloc_page) {
463 get_page(page);
464 trans_pcie->alloc_page = page;
465 trans_pcie->alloc_page_used = rbsize;
466 }
467 spin_unlock_bh(&trans_pcie->alloc_page_lock);
468 }
469
470 *offset = 0;
471 return page;
472 }
473
474 /*
475 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
476 *
477 * A used RBD is an Rx buffer that has been given to the stack. To use it again
478 * a page must be allocated and the RBD must point to the page. This function
479 * doesn't change the HW pointer but handles the list of pages that is used by
480 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
481 * allocated buffers.
482 */
iwl_pcie_rxq_alloc_rbs(struct iwl_trans * trans,gfp_t priority,struct iwl_rxq * rxq)483 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
484 struct iwl_rxq *rxq)
485 {
486 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
487 struct iwl_rx_mem_buffer *rxb;
488 struct page *page;
489
490 while (1) {
491 unsigned int offset;
492
493 spin_lock(&rxq->lock);
494 if (list_empty(&rxq->rx_used)) {
495 spin_unlock(&rxq->lock);
496 return;
497 }
498 spin_unlock(&rxq->lock);
499
500 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
501 if (!page)
502 return;
503
504 spin_lock(&rxq->lock);
505
506 if (list_empty(&rxq->rx_used)) {
507 spin_unlock(&rxq->lock);
508 __free_pages(page, trans_pcie->rx_page_order);
509 return;
510 }
511 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
512 list);
513 list_del(&rxb->list);
514 spin_unlock(&rxq->lock);
515
516 BUG_ON(rxb->page);
517 rxb->page = page;
518 rxb->offset = offset;
519 /* Get physical address of the RB */
520 rxb->page_dma =
521 dma_map_page(trans->dev, page, rxb->offset,
522 trans_pcie->rx_buf_bytes,
523 DMA_FROM_DEVICE);
524 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
525 rxb->page = NULL;
526 spin_lock(&rxq->lock);
527 list_add(&rxb->list, &rxq->rx_used);
528 spin_unlock(&rxq->lock);
529 __free_pages(page, trans_pcie->rx_page_order);
530 return;
531 }
532
533 spin_lock(&rxq->lock);
534
535 list_add_tail(&rxb->list, &rxq->rx_free);
536 rxq->free_count++;
537
538 spin_unlock(&rxq->lock);
539 }
540 }
541
iwl_pcie_free_rbs_pool(struct iwl_trans * trans)542 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
543 {
544 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
545 int i;
546
547 if (!trans_pcie->rx_pool)
548 return;
549
550 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
551 if (!trans_pcie->rx_pool[i].page)
552 continue;
553 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
554 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
555 __free_pages(trans_pcie->rx_pool[i].page,
556 trans_pcie->rx_page_order);
557 trans_pcie->rx_pool[i].page = NULL;
558 }
559 }
560
561 /*
562 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
563 *
564 * Allocates for each received request 8 pages
565 * Called as a scheduled work item.
566 */
iwl_pcie_rx_allocator(struct iwl_trans * trans)567 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
568 {
569 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
570 struct iwl_rb_allocator *rba = &trans_pcie->rba;
571 struct list_head local_empty;
572 int pending = atomic_read(&rba->req_pending);
573
574 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
575
576 /* If we were scheduled - there is at least one request */
577 spin_lock(&rba->lock);
578 /* swap out the rba->rbd_empty to a local list */
579 list_replace_init(&rba->rbd_empty, &local_empty);
580 spin_unlock(&rba->lock);
581
582 while (pending) {
583 int i;
584 LIST_HEAD(local_allocated);
585 gfp_t gfp_mask = GFP_KERNEL;
586
587 /* Do not post a warning if there are only a few requests */
588 if (pending < RX_PENDING_WATERMARK)
589 gfp_mask |= __GFP_NOWARN;
590
591 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
592 struct iwl_rx_mem_buffer *rxb;
593 struct page *page;
594
595 /* List should never be empty - each reused RBD is
596 * returned to the list, and initial pool covers any
597 * possible gap between the time the page is allocated
598 * to the time the RBD is added.
599 */
600 BUG_ON(list_empty(&local_empty));
601 /* Get the first rxb from the rbd list */
602 rxb = list_first_entry(&local_empty,
603 struct iwl_rx_mem_buffer, list);
604 BUG_ON(rxb->page);
605
606 /* Alloc a new receive buffer */
607 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
608 gfp_mask);
609 if (!page)
610 continue;
611 rxb->page = page;
612
613 /* Get physical address of the RB */
614 rxb->page_dma = dma_map_page(trans->dev, page,
615 rxb->offset,
616 trans_pcie->rx_buf_bytes,
617 DMA_FROM_DEVICE);
618 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
619 rxb->page = NULL;
620 __free_pages(page, trans_pcie->rx_page_order);
621 continue;
622 }
623
624 /* move the allocated entry to the out list */
625 list_move(&rxb->list, &local_allocated);
626 i++;
627 }
628
629 atomic_dec(&rba->req_pending);
630 pending--;
631
632 if (!pending) {
633 pending = atomic_read(&rba->req_pending);
634 if (pending)
635 IWL_DEBUG_TPT(trans,
636 "Got more pending allocation requests = %d\n",
637 pending);
638 }
639
640 spin_lock(&rba->lock);
641 /* add the allocated rbds to the allocator allocated list */
642 list_splice_tail(&local_allocated, &rba->rbd_allocated);
643 /* get more empty RBDs for current pending requests */
644 list_splice_tail_init(&rba->rbd_empty, &local_empty);
645 spin_unlock(&rba->lock);
646
647 atomic_inc(&rba->req_ready);
648
649 }
650
651 spin_lock(&rba->lock);
652 /* return unused rbds to the allocator empty list */
653 list_splice_tail(&local_empty, &rba->rbd_empty);
654 spin_unlock(&rba->lock);
655
656 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
657 }
658
659 /*
660 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
661 .*
662 .* Called by queue when the queue posted allocation request and
663 * has freed 8 RBDs in order to restock itself.
664 * This function directly moves the allocated RBs to the queue's ownership
665 * and updates the relevant counters.
666 */
iwl_pcie_rx_allocator_get(struct iwl_trans * trans,struct iwl_rxq * rxq)667 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
668 struct iwl_rxq *rxq)
669 {
670 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
671 struct iwl_rb_allocator *rba = &trans_pcie->rba;
672 int i;
673
674 lockdep_assert_held(&rxq->lock);
675
676 /*
677 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
678 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
679 * function will return early, as there are no ready requests.
680 * atomic_dec_if_positive will perofrm the *actual* decrement only if
681 * req_ready > 0, i.e. - there are ready requests and the function
682 * hands one request to the caller.
683 */
684 if (atomic_dec_if_positive(&rba->req_ready) < 0)
685 return;
686
687 spin_lock(&rba->lock);
688 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
689 /* Get next free Rx buffer, remove it from free list */
690 struct iwl_rx_mem_buffer *rxb =
691 list_first_entry(&rba->rbd_allocated,
692 struct iwl_rx_mem_buffer, list);
693
694 list_move(&rxb->list, &rxq->rx_free);
695 }
696 spin_unlock(&rba->lock);
697
698 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
699 rxq->free_count += RX_CLAIM_REQ_ALLOC;
700 }
701
iwl_pcie_rx_allocator_work(struct work_struct * data)702 void iwl_pcie_rx_allocator_work(struct work_struct *data)
703 {
704 struct iwl_rb_allocator *rba_p =
705 container_of(data, struct iwl_rb_allocator, rx_alloc);
706 struct iwl_trans_pcie *trans_pcie =
707 container_of(rba_p, struct iwl_trans_pcie, rba);
708
709 iwl_pcie_rx_allocator(trans_pcie->trans);
710 }
711
iwl_pcie_free_bd_size(struct iwl_trans * trans,bool use_rx_td)712 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
713 {
714 struct iwl_rx_transfer_desc *rx_td;
715
716 if (use_rx_td)
717 return sizeof(*rx_td);
718 else
719 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
720 sizeof(__le32);
721 }
722
iwl_pcie_free_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)723 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
724 struct iwl_rxq *rxq)
725 {
726 struct device *dev = trans->dev;
727 bool use_rx_td = (trans->trans_cfg->device_family >=
728 IWL_DEVICE_FAMILY_AX210);
729 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
730
731 if (rxq->bd)
732 dma_free_coherent(trans->dev,
733 free_size * rxq->queue_size,
734 rxq->bd, rxq->bd_dma);
735 rxq->bd_dma = 0;
736 rxq->bd = NULL;
737
738 rxq->rb_stts_dma = 0;
739 rxq->rb_stts = NULL;
740
741 if (rxq->used_bd)
742 dma_free_coherent(trans->dev,
743 (use_rx_td ? sizeof(*rxq->cd) :
744 sizeof(__le32)) * rxq->queue_size,
745 rxq->used_bd, rxq->used_bd_dma);
746 rxq->used_bd_dma = 0;
747 rxq->used_bd = NULL;
748
749 if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
750 return;
751
752 if (rxq->tr_tail)
753 dma_free_coherent(dev, sizeof(__le16),
754 rxq->tr_tail, rxq->tr_tail_dma);
755 rxq->tr_tail_dma = 0;
756 rxq->tr_tail = NULL;
757
758 if (rxq->cr_tail)
759 dma_free_coherent(dev, sizeof(__le16),
760 rxq->cr_tail, rxq->cr_tail_dma);
761 rxq->cr_tail_dma = 0;
762 rxq->cr_tail = NULL;
763 }
764
iwl_pcie_alloc_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)765 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
766 struct iwl_rxq *rxq)
767 {
768 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
769 struct device *dev = trans->dev;
770 int i;
771 int free_size;
772 bool use_rx_td = (trans->trans_cfg->device_family >=
773 IWL_DEVICE_FAMILY_AX210);
774 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
775 sizeof(struct iwl_rb_status);
776
777 spin_lock_init(&rxq->lock);
778 if (trans->trans_cfg->mq_rx_supported)
779 rxq->queue_size = trans->cfg->num_rbds;
780 else
781 rxq->queue_size = RX_QUEUE_SIZE;
782
783 free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
784
785 /*
786 * Allocate the circular buffer of Read Buffer Descriptors
787 * (RBDs)
788 */
789 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
790 &rxq->bd_dma, GFP_KERNEL);
791 if (!rxq->bd)
792 goto err;
793
794 if (trans->trans_cfg->mq_rx_supported) {
795 rxq->used_bd = dma_alloc_coherent(dev,
796 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
797 &rxq->used_bd_dma,
798 GFP_KERNEL);
799 if (!rxq->used_bd)
800 goto err;
801 }
802
803 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
804 rxq->rb_stts_dma =
805 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
806
807 if (!use_rx_td)
808 return 0;
809
810 /* Allocate the driver's pointer to TR tail */
811 rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
812 &rxq->tr_tail_dma, GFP_KERNEL);
813 if (!rxq->tr_tail)
814 goto err;
815
816 /* Allocate the driver's pointer to CR tail */
817 rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
818 &rxq->cr_tail_dma, GFP_KERNEL);
819 if (!rxq->cr_tail)
820 goto err;
821
822 return 0;
823
824 err:
825 for (i = 0; i < trans->num_rx_queues; i++) {
826 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
827
828 iwl_pcie_free_rxq_dma(trans, rxq);
829 }
830
831 return -ENOMEM;
832 }
833
iwl_pcie_rx_alloc(struct iwl_trans * trans)834 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
835 {
836 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
837 struct iwl_rb_allocator *rba = &trans_pcie->rba;
838 int i, ret;
839 size_t rb_stts_size = trans->trans_cfg->device_family >=
840 IWL_DEVICE_FAMILY_AX210 ?
841 sizeof(__le16) : sizeof(struct iwl_rb_status);
842
843 if (WARN_ON(trans_pcie->rxq))
844 return -EINVAL;
845
846 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
847 GFP_KERNEL);
848 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
849 sizeof(trans_pcie->rx_pool[0]),
850 GFP_KERNEL);
851 trans_pcie->global_table =
852 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
853 sizeof(trans_pcie->global_table[0]),
854 GFP_KERNEL);
855 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
856 !trans_pcie->global_table) {
857 ret = -ENOMEM;
858 goto err;
859 }
860
861 spin_lock_init(&rba->lock);
862
863 /*
864 * Allocate the driver's pointer to receive buffer status.
865 * Allocate for all queues continuously (HW requirement).
866 */
867 trans_pcie->base_rb_stts =
868 dma_alloc_coherent(trans->dev,
869 rb_stts_size * trans->num_rx_queues,
870 &trans_pcie->base_rb_stts_dma,
871 GFP_KERNEL);
872 if (!trans_pcie->base_rb_stts) {
873 ret = -ENOMEM;
874 goto err;
875 }
876
877 for (i = 0; i < trans->num_rx_queues; i++) {
878 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
879
880 rxq->id = i;
881 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
882 if (ret)
883 goto err;
884 }
885 return 0;
886
887 err:
888 if (trans_pcie->base_rb_stts) {
889 dma_free_coherent(trans->dev,
890 rb_stts_size * trans->num_rx_queues,
891 trans_pcie->base_rb_stts,
892 trans_pcie->base_rb_stts_dma);
893 trans_pcie->base_rb_stts = NULL;
894 trans_pcie->base_rb_stts_dma = 0;
895 }
896 kfree(trans_pcie->rx_pool);
897 kfree(trans_pcie->global_table);
898 kfree(trans_pcie->rxq);
899
900 return ret;
901 }
902
iwl_pcie_rx_hw_init(struct iwl_trans * trans,struct iwl_rxq * rxq)903 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
904 {
905 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
906 u32 rb_size;
907 unsigned long flags;
908 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
909
910 switch (trans_pcie->rx_buf_size) {
911 case IWL_AMSDU_4K:
912 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
913 break;
914 case IWL_AMSDU_8K:
915 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
916 break;
917 case IWL_AMSDU_12K:
918 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
919 break;
920 default:
921 WARN_ON(1);
922 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
923 }
924
925 if (!iwl_trans_grab_nic_access(trans, &flags))
926 return;
927
928 /* Stop Rx DMA */
929 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
930 /* reset and flush pointers */
931 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
932 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
933 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
934
935 /* Reset driver's Rx queue write index */
936 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
937
938 /* Tell device where to find RBD circular buffer in DRAM */
939 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
940 (u32)(rxq->bd_dma >> 8));
941
942 /* Tell device where in DRAM to update its Rx status */
943 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
944 rxq->rb_stts_dma >> 4);
945
946 /* Enable Rx DMA
947 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
948 * the credit mechanism in 5000 HW RX FIFO
949 * Direct rx interrupts to hosts
950 * Rx buffer size 4 or 8k or 12k
951 * RB timeout 0x10
952 * 256 RBDs
953 */
954 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
955 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
956 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
957 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
958 rb_size |
959 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
960 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
961
962 iwl_trans_release_nic_access(trans, &flags);
963
964 /* Set interrupt coalescing timer to default (2048 usecs) */
965 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
966
967 /* W/A for interrupt coalescing bug in 7260 and 3160 */
968 if (trans->cfg->host_interrupt_operation_mode)
969 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
970 }
971
iwl_pcie_rx_mq_hw_init(struct iwl_trans * trans)972 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
973 {
974 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
975 u32 rb_size, enabled = 0;
976 unsigned long flags;
977 int i;
978
979 switch (trans_pcie->rx_buf_size) {
980 case IWL_AMSDU_2K:
981 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
982 break;
983 case IWL_AMSDU_4K:
984 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
985 break;
986 case IWL_AMSDU_8K:
987 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
988 break;
989 case IWL_AMSDU_12K:
990 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
991 break;
992 default:
993 WARN_ON(1);
994 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
995 }
996
997 if (!iwl_trans_grab_nic_access(trans, &flags))
998 return;
999
1000 /* Stop Rx DMA */
1001 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
1002 /* disable free amd used rx queue operation */
1003 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
1004
1005 for (i = 0; i < trans->num_rx_queues; i++) {
1006 /* Tell device where to find RBD free table in DRAM */
1007 iwl_write_prph64_no_grab(trans,
1008 RFH_Q_FRBDCB_BA_LSB(i),
1009 trans_pcie->rxq[i].bd_dma);
1010 /* Tell device where to find RBD used table in DRAM */
1011 iwl_write_prph64_no_grab(trans,
1012 RFH_Q_URBDCB_BA_LSB(i),
1013 trans_pcie->rxq[i].used_bd_dma);
1014 /* Tell device where in DRAM to update its Rx status */
1015 iwl_write_prph64_no_grab(trans,
1016 RFH_Q_URBD_STTS_WPTR_LSB(i),
1017 trans_pcie->rxq[i].rb_stts_dma);
1018 /* Reset device indice tables */
1019 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
1020 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
1021 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
1022
1023 enabled |= BIT(i) | BIT(i + 16);
1024 }
1025
1026 /*
1027 * Enable Rx DMA
1028 * Rx buffer size 4 or 8k or 12k
1029 * Min RB size 4 or 8
1030 * Drop frames that exceed RB size
1031 * 512 RBDs
1032 */
1033 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
1034 RFH_DMA_EN_ENABLE_VAL | rb_size |
1035 RFH_RXF_DMA_MIN_RB_4_8 |
1036 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
1037 RFH_RXF_DMA_RBDCB_SIZE_512);
1038
1039 /*
1040 * Activate DMA snooping.
1041 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1042 * Default queue is 0
1043 */
1044 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1045 RFH_GEN_CFG_RFH_DMA_SNOOP |
1046 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1047 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1048 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1049 trans->trans_cfg->integrated ?
1050 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1051 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1052 /* Enable the relevant rx queues */
1053 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1054
1055 iwl_trans_release_nic_access(trans, &flags);
1056
1057 /* Set interrupt coalescing timer to default (2048 usecs) */
1058 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1059 }
1060
iwl_pcie_rx_init_rxb_lists(struct iwl_rxq * rxq)1061 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1062 {
1063 lockdep_assert_held(&rxq->lock);
1064
1065 INIT_LIST_HEAD(&rxq->rx_free);
1066 INIT_LIST_HEAD(&rxq->rx_used);
1067 rxq->free_count = 0;
1068 rxq->used_count = 0;
1069 }
1070
iwl_pcie_dummy_napi_poll(struct napi_struct * napi,int budget)1071 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1072 {
1073 WARN_ON(1);
1074 return 0;
1075 }
1076
_iwl_pcie_rx_init(struct iwl_trans * trans)1077 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1078 {
1079 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1080 struct iwl_rxq *def_rxq;
1081 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1082 int i, err, queue_size, allocator_pool_size, num_alloc;
1083
1084 if (!trans_pcie->rxq) {
1085 err = iwl_pcie_rx_alloc(trans);
1086 if (err)
1087 return err;
1088 }
1089 def_rxq = trans_pcie->rxq;
1090
1091 cancel_work_sync(&rba->rx_alloc);
1092
1093 spin_lock(&rba->lock);
1094 atomic_set(&rba->req_pending, 0);
1095 atomic_set(&rba->req_ready, 0);
1096 INIT_LIST_HEAD(&rba->rbd_allocated);
1097 INIT_LIST_HEAD(&rba->rbd_empty);
1098 spin_unlock(&rba->lock);
1099
1100 /* free all first - we overwrite everything here */
1101 iwl_pcie_free_rbs_pool(trans);
1102
1103 for (i = 0; i < RX_QUEUE_SIZE; i++)
1104 def_rxq->queue[i] = NULL;
1105
1106 for (i = 0; i < trans->num_rx_queues; i++) {
1107 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1108
1109 spin_lock(&rxq->lock);
1110 /*
1111 * Set read write pointer to reflect that we have processed
1112 * and used all buffers, but have not restocked the Rx queue
1113 * with fresh buffers
1114 */
1115 rxq->read = 0;
1116 rxq->write = 0;
1117 rxq->write_actual = 0;
1118 memset(rxq->rb_stts, 0,
1119 (trans->trans_cfg->device_family >=
1120 IWL_DEVICE_FAMILY_AX210) ?
1121 sizeof(__le16) : sizeof(struct iwl_rb_status));
1122
1123 iwl_pcie_rx_init_rxb_lists(rxq);
1124
1125 if (!rxq->napi.poll)
1126 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1127 iwl_pcie_dummy_napi_poll, 64);
1128
1129 spin_unlock(&rxq->lock);
1130 }
1131
1132 /* move the pool to the default queue and allocator ownerships */
1133 queue_size = trans->trans_cfg->mq_rx_supported ?
1134 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1135 allocator_pool_size = trans->num_rx_queues *
1136 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1137 num_alloc = queue_size + allocator_pool_size;
1138
1139 for (i = 0; i < num_alloc; i++) {
1140 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1141
1142 if (i < allocator_pool_size)
1143 list_add(&rxb->list, &rba->rbd_empty);
1144 else
1145 list_add(&rxb->list, &def_rxq->rx_used);
1146 trans_pcie->global_table[i] = rxb;
1147 rxb->vid = (u16)(i + 1);
1148 rxb->invalid = true;
1149 }
1150
1151 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1152
1153 return 0;
1154 }
1155
iwl_pcie_rx_init(struct iwl_trans * trans)1156 int iwl_pcie_rx_init(struct iwl_trans *trans)
1157 {
1158 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1159 int ret = _iwl_pcie_rx_init(trans);
1160
1161 if (ret)
1162 return ret;
1163
1164 if (trans->trans_cfg->mq_rx_supported)
1165 iwl_pcie_rx_mq_hw_init(trans);
1166 else
1167 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1168
1169 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1170
1171 spin_lock(&trans_pcie->rxq->lock);
1172 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1173 spin_unlock(&trans_pcie->rxq->lock);
1174
1175 return 0;
1176 }
1177
iwl_pcie_gen2_rx_init(struct iwl_trans * trans)1178 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1179 {
1180 /* Set interrupt coalescing timer to default (2048 usecs) */
1181 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1182
1183 /*
1184 * We don't configure the RFH.
1185 * Restock will be done at alive, after firmware configured the RFH.
1186 */
1187 return _iwl_pcie_rx_init(trans);
1188 }
1189
iwl_pcie_rx_free(struct iwl_trans * trans)1190 void iwl_pcie_rx_free(struct iwl_trans *trans)
1191 {
1192 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1193 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1194 int i;
1195 size_t rb_stts_size = trans->trans_cfg->device_family >=
1196 IWL_DEVICE_FAMILY_AX210 ?
1197 sizeof(__le16) : sizeof(struct iwl_rb_status);
1198
1199 /*
1200 * if rxq is NULL, it means that nothing has been allocated,
1201 * exit now
1202 */
1203 if (!trans_pcie->rxq) {
1204 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1205 return;
1206 }
1207
1208 cancel_work_sync(&rba->rx_alloc);
1209
1210 iwl_pcie_free_rbs_pool(trans);
1211
1212 if (trans_pcie->base_rb_stts) {
1213 dma_free_coherent(trans->dev,
1214 rb_stts_size * trans->num_rx_queues,
1215 trans_pcie->base_rb_stts,
1216 trans_pcie->base_rb_stts_dma);
1217 trans_pcie->base_rb_stts = NULL;
1218 trans_pcie->base_rb_stts_dma = 0;
1219 }
1220
1221 for (i = 0; i < trans->num_rx_queues; i++) {
1222 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1223
1224 iwl_pcie_free_rxq_dma(trans, rxq);
1225
1226 if (rxq->napi.poll)
1227 netif_napi_del(&rxq->napi);
1228 }
1229 kfree(trans_pcie->rx_pool);
1230 kfree(trans_pcie->global_table);
1231 kfree(trans_pcie->rxq);
1232
1233 if (trans_pcie->alloc_page)
1234 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1235 }
1236
iwl_pcie_rx_move_to_allocator(struct iwl_rxq * rxq,struct iwl_rb_allocator * rba)1237 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1238 struct iwl_rb_allocator *rba)
1239 {
1240 spin_lock(&rba->lock);
1241 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1242 spin_unlock(&rba->lock);
1243 }
1244
1245 /*
1246 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1247 *
1248 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1249 * When there are 2 empty RBDs - a request for allocation is posted
1250 */
iwl_pcie_rx_reuse_rbd(struct iwl_trans * trans,struct iwl_rx_mem_buffer * rxb,struct iwl_rxq * rxq,bool emergency)1251 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1252 struct iwl_rx_mem_buffer *rxb,
1253 struct iwl_rxq *rxq, bool emergency)
1254 {
1255 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1256 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1257
1258 /* Move the RBD to the used list, will be moved to allocator in batches
1259 * before claiming or posting a request*/
1260 list_add_tail(&rxb->list, &rxq->rx_used);
1261
1262 if (unlikely(emergency))
1263 return;
1264
1265 /* Count the allocator owned RBDs */
1266 rxq->used_count++;
1267
1268 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1269 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1270 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1271 * after but we still need to post another request.
1272 */
1273 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1274 /* Move the 2 RBDs to the allocator ownership.
1275 Allocator has another 6 from pool for the request completion*/
1276 iwl_pcie_rx_move_to_allocator(rxq, rba);
1277
1278 atomic_inc(&rba->req_pending);
1279 queue_work(rba->alloc_wq, &rba->rx_alloc);
1280 }
1281 }
1282
iwl_pcie_rx_handle_rb(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb,bool emergency,int i)1283 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1284 struct iwl_rxq *rxq,
1285 struct iwl_rx_mem_buffer *rxb,
1286 bool emergency,
1287 int i)
1288 {
1289 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1290 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1291 bool page_stolen = false;
1292 int max_len = trans_pcie->rx_buf_bytes;
1293 u32 offset = 0;
1294
1295 if (WARN_ON(!rxb))
1296 return;
1297
1298 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1299
1300 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1301 struct iwl_rx_packet *pkt;
1302 u16 sequence;
1303 bool reclaim;
1304 int index, cmd_index, len;
1305 struct iwl_rx_cmd_buffer rxcb = {
1306 ._offset = rxb->offset + offset,
1307 ._rx_page_order = trans_pcie->rx_page_order,
1308 ._page = rxb->page,
1309 ._page_stolen = false,
1310 .truesize = max_len,
1311 };
1312
1313 pkt = rxb_addr(&rxcb);
1314
1315 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1316 IWL_DEBUG_RX(trans,
1317 "Q %d: RB end marker at offset %d\n",
1318 rxq->id, offset);
1319 break;
1320 }
1321
1322 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1323 FH_RSCSR_RXQ_POS != rxq->id,
1324 "frame on invalid queue - is on %d and indicates %d\n",
1325 rxq->id,
1326 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1327 FH_RSCSR_RXQ_POS);
1328
1329 IWL_DEBUG_RX(trans,
1330 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1331 rxq->id, offset,
1332 iwl_get_cmd_string(trans,
1333 iwl_cmd_id(pkt->hdr.cmd,
1334 pkt->hdr.group_id,
1335 0)),
1336 pkt->hdr.group_id, pkt->hdr.cmd,
1337 le16_to_cpu(pkt->hdr.sequence));
1338
1339 len = iwl_rx_packet_len(pkt);
1340 len += sizeof(u32); /* account for status word */
1341 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1342 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1343
1344 /* Reclaim a command buffer only if this packet is a response
1345 * to a (driver-originated) command.
1346 * If the packet (e.g. Rx frame) originated from uCode,
1347 * there is no command buffer to reclaim.
1348 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1349 * but apparently a few don't get set; catch them here. */
1350 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1351 if (reclaim && !pkt->hdr.group_id) {
1352 int i;
1353
1354 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1355 if (trans_pcie->no_reclaim_cmds[i] ==
1356 pkt->hdr.cmd) {
1357 reclaim = false;
1358 break;
1359 }
1360 }
1361 }
1362
1363 sequence = le16_to_cpu(pkt->hdr.sequence);
1364 index = SEQ_TO_INDEX(sequence);
1365 cmd_index = iwl_txq_get_cmd_index(txq, index);
1366
1367 if (rxq->id == trans_pcie->def_rx_queue)
1368 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1369 &rxcb);
1370 else
1371 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1372 &rxcb, rxq->id);
1373
1374 if (reclaim) {
1375 kfree_sensitive(txq->entries[cmd_index].free_buf);
1376 txq->entries[cmd_index].free_buf = NULL;
1377 }
1378
1379 /*
1380 * After here, we should always check rxcb._page_stolen,
1381 * if it is true then one of the handlers took the page.
1382 */
1383
1384 if (reclaim) {
1385 /* Invoke any callbacks, transfer the buffer to caller,
1386 * and fire off the (possibly) blocking
1387 * iwl_trans_send_cmd()
1388 * as we reclaim the driver command queue */
1389 if (!rxcb._page_stolen)
1390 iwl_pcie_hcmd_complete(trans, &rxcb);
1391 else
1392 IWL_WARN(trans, "Claim null rxb?\n");
1393 }
1394
1395 page_stolen |= rxcb._page_stolen;
1396 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1397 break;
1398 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1399 }
1400
1401 /* page was stolen from us -- free our reference */
1402 if (page_stolen) {
1403 __free_pages(rxb->page, trans_pcie->rx_page_order);
1404 rxb->page = NULL;
1405 }
1406
1407 /* Reuse the page if possible. For notification packets and
1408 * SKBs that fail to Rx correctly, add them back into the
1409 * rx_free list for reuse later. */
1410 if (rxb->page != NULL) {
1411 rxb->page_dma =
1412 dma_map_page(trans->dev, rxb->page, rxb->offset,
1413 trans_pcie->rx_buf_bytes,
1414 DMA_FROM_DEVICE);
1415 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1416 /*
1417 * free the page(s) as well to not break
1418 * the invariant that the items on the used
1419 * list have no page(s)
1420 */
1421 __free_pages(rxb->page, trans_pcie->rx_page_order);
1422 rxb->page = NULL;
1423 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1424 } else {
1425 list_add_tail(&rxb->list, &rxq->rx_free);
1426 rxq->free_count++;
1427 }
1428 } else
1429 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1430 }
1431
iwl_pcie_get_rxb(struct iwl_trans * trans,struct iwl_rxq * rxq,int i,bool * join)1432 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1433 struct iwl_rxq *rxq, int i,
1434 bool *join)
1435 {
1436 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1437 struct iwl_rx_mem_buffer *rxb;
1438 u16 vid;
1439
1440 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1441
1442 if (!trans->trans_cfg->mq_rx_supported) {
1443 rxb = rxq->queue[i];
1444 rxq->queue[i] = NULL;
1445 return rxb;
1446 }
1447
1448 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1449 vid = le16_to_cpu(rxq->cd[i].rbid);
1450 *join = rxq->cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1451 } else {
1452 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1453 }
1454
1455 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1456 goto out_err;
1457
1458 rxb = trans_pcie->global_table[vid - 1];
1459 if (rxb->invalid)
1460 goto out_err;
1461
1462 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1463
1464 rxb->invalid = true;
1465
1466 return rxb;
1467
1468 out_err:
1469 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1470 iwl_force_nmi(trans);
1471 return NULL;
1472 }
1473
1474 /*
1475 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1476 */
iwl_pcie_rx_handle(struct iwl_trans * trans,int queue)1477 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1478 {
1479 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1480 struct napi_struct *napi;
1481 struct iwl_rxq *rxq;
1482 u32 r, i, count = 0;
1483 bool emergency = false;
1484
1485 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1486 return;
1487
1488 rxq = &trans_pcie->rxq[queue];
1489
1490 restart:
1491 spin_lock(&rxq->lock);
1492 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1493 * buffer that the driver may process (last buffer filled by ucode). */
1494 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1495 i = rxq->read;
1496
1497 /* W/A 9000 device step A0 wrap-around bug */
1498 r &= (rxq->queue_size - 1);
1499
1500 /* Rx interrupt, but nothing sent from uCode */
1501 if (i == r)
1502 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1503
1504 while (i != r) {
1505 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1506 struct iwl_rx_mem_buffer *rxb;
1507 /* number of RBDs still waiting for page allocation */
1508 u32 rb_pending_alloc =
1509 atomic_read(&trans_pcie->rba.req_pending) *
1510 RX_CLAIM_REQ_ALLOC;
1511 bool join = false;
1512
1513 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1514 !emergency)) {
1515 iwl_pcie_rx_move_to_allocator(rxq, rba);
1516 emergency = true;
1517 IWL_DEBUG_TPT(trans,
1518 "RX path is in emergency. Pending allocations %d\n",
1519 rb_pending_alloc);
1520 }
1521
1522 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1523
1524 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1525 if (!rxb)
1526 goto out;
1527
1528 if (unlikely(join || rxq->next_rb_is_fragment)) {
1529 rxq->next_rb_is_fragment = join;
1530 /*
1531 * We can only get a multi-RB in the following cases:
1532 * - firmware issue, sending a too big notification
1533 * - sniffer mode with a large A-MSDU
1534 * - large MTU frames (>2k)
1535 * since the multi-RB functionality is limited to newer
1536 * hardware that cannot put multiple entries into a
1537 * single RB.
1538 *
1539 * Right now, the higher layers aren't set up to deal
1540 * with that, so discard all of these.
1541 */
1542 list_add_tail(&rxb->list, &rxq->rx_free);
1543 rxq->free_count++;
1544 } else {
1545 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1546 }
1547
1548 i = (i + 1) & (rxq->queue_size - 1);
1549
1550 /*
1551 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1552 * try to claim the pre-allocated buffers from the allocator.
1553 * If not ready - will try to reclaim next time.
1554 * There is no need to reschedule work - allocator exits only
1555 * on success
1556 */
1557 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1558 iwl_pcie_rx_allocator_get(trans, rxq);
1559
1560 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1561 /* Add the remaining empty RBDs for allocator use */
1562 iwl_pcie_rx_move_to_allocator(rxq, rba);
1563 } else if (emergency) {
1564 count++;
1565 if (count == 8) {
1566 count = 0;
1567 if (rb_pending_alloc < rxq->queue_size / 3) {
1568 IWL_DEBUG_TPT(trans,
1569 "RX path exited emergency. Pending allocations %d\n",
1570 rb_pending_alloc);
1571 emergency = false;
1572 }
1573
1574 rxq->read = i;
1575 spin_unlock(&rxq->lock);
1576 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1577 iwl_pcie_rxq_restock(trans, rxq);
1578 goto restart;
1579 }
1580 }
1581 }
1582 out:
1583 /* Backtrack one entry */
1584 rxq->read = i;
1585 /* update cr tail with the rxq read pointer */
1586 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1587 *rxq->cr_tail = cpu_to_le16(r);
1588 spin_unlock(&rxq->lock);
1589
1590 /*
1591 * handle a case where in emergency there are some unallocated RBDs.
1592 * those RBDs are in the used list, but are not tracked by the queue's
1593 * used_count which counts allocator owned RBDs.
1594 * unallocated emergency RBDs must be allocated on exit, otherwise
1595 * when called again the function may not be in emergency mode and
1596 * they will be handed to the allocator with no tracking in the RBD
1597 * allocator counters, which will lead to them never being claimed back
1598 * by the queue.
1599 * by allocating them here, they are now in the queue free list, and
1600 * will be restocked by the next call of iwl_pcie_rxq_restock.
1601 */
1602 if (unlikely(emergency && count))
1603 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1604
1605 napi = &rxq->napi;
1606 if (napi->poll) {
1607 napi_gro_flush(napi, false);
1608
1609 if (napi->rx_count) {
1610 netif_receive_skb_list(&napi->rx_list);
1611 INIT_LIST_HEAD(&napi->rx_list);
1612 napi->rx_count = 0;
1613 }
1614 }
1615
1616 iwl_pcie_rxq_restock(trans, rxq);
1617 }
1618
iwl_pcie_get_trans_pcie(struct msix_entry * entry)1619 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1620 {
1621 u8 queue = entry->entry;
1622 struct msix_entry *entries = entry - queue;
1623
1624 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1625 }
1626
1627 /*
1628 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1629 * This interrupt handler should be used with RSS queue only.
1630 */
iwl_pcie_irq_rx_msix_handler(int irq,void * dev_id)1631 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1632 {
1633 struct msix_entry *entry = dev_id;
1634 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1635 struct iwl_trans *trans = trans_pcie->trans;
1636
1637 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1638
1639 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1640 return IRQ_NONE;
1641
1642 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1643
1644 local_bh_disable();
1645 iwl_pcie_rx_handle(trans, entry->entry);
1646 local_bh_enable();
1647
1648 iwl_pcie_clear_irq(trans, entry);
1649
1650 lock_map_release(&trans->sync_cmd_lockdep_map);
1651
1652 return IRQ_HANDLED;
1653 }
1654
1655 /*
1656 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1657 */
iwl_pcie_irq_handle_error(struct iwl_trans * trans)1658 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1659 {
1660 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1661 int i;
1662
1663 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1664 if (trans->cfg->internal_wimax_coex &&
1665 !trans->cfg->apmg_not_supported &&
1666 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1667 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1668 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1669 APMG_PS_CTRL_VAL_RESET_REQ))) {
1670 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1671 iwl_op_mode_wimax_active(trans->op_mode);
1672 wake_up(&trans_pcie->wait_command_queue);
1673 return;
1674 }
1675
1676 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1677 if (!trans->txqs.txq[i])
1678 continue;
1679 del_timer(&trans->txqs.txq[i]->stuck_timer);
1680 }
1681
1682 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1683 * before we wake up the command caller, to ensure a proper cleanup. */
1684 iwl_trans_fw_error(trans);
1685
1686 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1687 wake_up(&trans_pcie->wait_command_queue);
1688 }
1689
iwl_pcie_int_cause_non_ict(struct iwl_trans * trans)1690 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1691 {
1692 u32 inta;
1693
1694 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1695
1696 trace_iwlwifi_dev_irq(trans->dev);
1697
1698 /* Discover which interrupts are active/pending */
1699 inta = iwl_read32(trans, CSR_INT);
1700
1701 /* the thread will service interrupts and re-enable them */
1702 return inta;
1703 }
1704
1705 /* a device (PCI-E) page is 4096 bytes long */
1706 #define ICT_SHIFT 12
1707 #define ICT_SIZE (1 << ICT_SHIFT)
1708 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1709
1710 /* interrupt handler using ict table, with this interrupt driver will
1711 * stop using INTA register to get device's interrupt, reading this register
1712 * is expensive, device will write interrupts in ICT dram table, increment
1713 * index then will fire interrupt to driver, driver will OR all ICT table
1714 * entries from current index up to table entry with 0 value. the result is
1715 * the interrupt we need to service, driver will set the entries back to 0 and
1716 * set index.
1717 */
iwl_pcie_int_cause_ict(struct iwl_trans * trans)1718 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1719 {
1720 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1721 u32 inta;
1722 u32 val = 0;
1723 u32 read;
1724
1725 trace_iwlwifi_dev_irq(trans->dev);
1726
1727 /* Ignore interrupt if there's nothing in NIC to service.
1728 * This may be due to IRQ shared with another device,
1729 * or due to sporadic interrupts thrown from our NIC. */
1730 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1731 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1732 if (!read)
1733 return 0;
1734
1735 /*
1736 * Collect all entries up to the first 0, starting from ict_index;
1737 * note we already read at ict_index.
1738 */
1739 do {
1740 val |= read;
1741 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1742 trans_pcie->ict_index, read);
1743 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1744 trans_pcie->ict_index =
1745 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1746
1747 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1748 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1749 read);
1750 } while (read);
1751
1752 /* We should not get this value, just ignore it. */
1753 if (val == 0xffffffff)
1754 val = 0;
1755
1756 /*
1757 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1758 * (bit 15 before shifting it to 31) to clear when using interrupt
1759 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1760 * so we use them to decide on the real state of the Rx bit.
1761 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1762 */
1763 if (val & 0xC0000)
1764 val |= 0x8000;
1765
1766 inta = (0xff & val) | ((0xff00 & val) << 16);
1767 return inta;
1768 }
1769
iwl_pcie_handle_rfkill_irq(struct iwl_trans * trans)1770 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1771 {
1772 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1773 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1774 bool hw_rfkill, prev, report;
1775
1776 mutex_lock(&trans_pcie->mutex);
1777 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1778 hw_rfkill = iwl_is_rfkill_set(trans);
1779 if (hw_rfkill) {
1780 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1781 set_bit(STATUS_RFKILL_HW, &trans->status);
1782 }
1783 if (trans_pcie->opmode_down)
1784 report = hw_rfkill;
1785 else
1786 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1787
1788 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1789 hw_rfkill ? "disable radio" : "enable radio");
1790
1791 isr_stats->rfkill++;
1792
1793 if (prev != report)
1794 iwl_trans_pcie_rf_kill(trans, report);
1795 mutex_unlock(&trans_pcie->mutex);
1796
1797 if (hw_rfkill) {
1798 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1799 &trans->status))
1800 IWL_DEBUG_RF_KILL(trans,
1801 "Rfkill while SYNC HCMD in flight\n");
1802 wake_up(&trans_pcie->wait_command_queue);
1803 } else {
1804 clear_bit(STATUS_RFKILL_HW, &trans->status);
1805 if (trans_pcie->opmode_down)
1806 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1807 }
1808 }
1809
iwl_pcie_irq_handler(int irq,void * dev_id)1810 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1811 {
1812 struct iwl_trans *trans = dev_id;
1813 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1814 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1815 u32 inta = 0;
1816 u32 handled = 0;
1817
1818 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1819
1820 spin_lock(&trans_pcie->irq_lock);
1821
1822 /* dram interrupt table not set yet,
1823 * use legacy interrupt.
1824 */
1825 if (likely(trans_pcie->use_ict))
1826 inta = iwl_pcie_int_cause_ict(trans);
1827 else
1828 inta = iwl_pcie_int_cause_non_ict(trans);
1829
1830 if (iwl_have_debug_level(IWL_DL_ISR)) {
1831 IWL_DEBUG_ISR(trans,
1832 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1833 inta, trans_pcie->inta_mask,
1834 iwl_read32(trans, CSR_INT_MASK),
1835 iwl_read32(trans, CSR_FH_INT_STATUS));
1836 if (inta & (~trans_pcie->inta_mask))
1837 IWL_DEBUG_ISR(trans,
1838 "We got a masked interrupt (0x%08x)\n",
1839 inta & (~trans_pcie->inta_mask));
1840 }
1841
1842 inta &= trans_pcie->inta_mask;
1843
1844 /*
1845 * Ignore interrupt if there's nothing in NIC to service.
1846 * This may be due to IRQ shared with another device,
1847 * or due to sporadic interrupts thrown from our NIC.
1848 */
1849 if (unlikely(!inta)) {
1850 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1851 /*
1852 * Re-enable interrupts here since we don't
1853 * have anything to service
1854 */
1855 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1856 _iwl_enable_interrupts(trans);
1857 spin_unlock(&trans_pcie->irq_lock);
1858 lock_map_release(&trans->sync_cmd_lockdep_map);
1859 return IRQ_NONE;
1860 }
1861
1862 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1863 /*
1864 * Hardware disappeared. It might have
1865 * already raised an interrupt.
1866 */
1867 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1868 spin_unlock(&trans_pcie->irq_lock);
1869 goto out;
1870 }
1871
1872 /* Ack/clear/reset pending uCode interrupts.
1873 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1874 */
1875 /* There is a hardware bug in the interrupt mask function that some
1876 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1877 * they are disabled in the CSR_INT_MASK register. Furthermore the
1878 * ICT interrupt handling mechanism has another bug that might cause
1879 * these unmasked interrupts fail to be detected. We workaround the
1880 * hardware bugs here by ACKing all the possible interrupts so that
1881 * interrupt coalescing can still be achieved.
1882 */
1883 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1884
1885 if (iwl_have_debug_level(IWL_DL_ISR))
1886 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1887 inta, iwl_read32(trans, CSR_INT_MASK));
1888
1889 spin_unlock(&trans_pcie->irq_lock);
1890
1891 /* Now service all interrupt bits discovered above. */
1892 if (inta & CSR_INT_BIT_HW_ERR) {
1893 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1894
1895 /* Tell the device to stop sending interrupts */
1896 iwl_disable_interrupts(trans);
1897
1898 isr_stats->hw++;
1899 iwl_pcie_irq_handle_error(trans);
1900
1901 handled |= CSR_INT_BIT_HW_ERR;
1902
1903 goto out;
1904 }
1905
1906 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1907 if (inta & CSR_INT_BIT_SCD) {
1908 IWL_DEBUG_ISR(trans,
1909 "Scheduler finished to transmit the frame/frames.\n");
1910 isr_stats->sch++;
1911 }
1912
1913 /* Alive notification via Rx interrupt will do the real work */
1914 if (inta & CSR_INT_BIT_ALIVE) {
1915 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1916 isr_stats->alive++;
1917 if (trans->trans_cfg->gen2) {
1918 /*
1919 * We can restock, since firmware configured
1920 * the RFH
1921 */
1922 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1923 }
1924
1925 handled |= CSR_INT_BIT_ALIVE;
1926 }
1927
1928 /* Safely ignore these bits for debug checks below */
1929 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1930
1931 /* HW RF KILL switch toggled */
1932 if (inta & CSR_INT_BIT_RF_KILL) {
1933 iwl_pcie_handle_rfkill_irq(trans);
1934 handled |= CSR_INT_BIT_RF_KILL;
1935 }
1936
1937 /* Chip got too hot and stopped itself */
1938 if (inta & CSR_INT_BIT_CT_KILL) {
1939 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1940 isr_stats->ctkill++;
1941 handled |= CSR_INT_BIT_CT_KILL;
1942 }
1943
1944 /* Error detected by uCode */
1945 if (inta & CSR_INT_BIT_SW_ERR) {
1946 IWL_ERR(trans, "Microcode SW error detected. "
1947 " Restarting 0x%X.\n", inta);
1948 isr_stats->sw++;
1949 iwl_pcie_irq_handle_error(trans);
1950 handled |= CSR_INT_BIT_SW_ERR;
1951 }
1952
1953 /* uCode wakes up after power-down sleep */
1954 if (inta & CSR_INT_BIT_WAKEUP) {
1955 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1956 iwl_pcie_rxq_check_wrptr(trans);
1957 iwl_pcie_txq_check_wrptrs(trans);
1958
1959 isr_stats->wakeup++;
1960
1961 handled |= CSR_INT_BIT_WAKEUP;
1962 }
1963
1964 /* All uCode command responses, including Tx command responses,
1965 * Rx "responses" (frame-received notification), and other
1966 * notifications from uCode come through here*/
1967 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1968 CSR_INT_BIT_RX_PERIODIC)) {
1969 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1970 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1971 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1972 iwl_write32(trans, CSR_FH_INT_STATUS,
1973 CSR_FH_INT_RX_MASK);
1974 }
1975 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1976 handled |= CSR_INT_BIT_RX_PERIODIC;
1977 iwl_write32(trans,
1978 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1979 }
1980 /* Sending RX interrupt require many steps to be done in the
1981 * the device:
1982 * 1- write interrupt to current index in ICT table.
1983 * 2- dma RX frame.
1984 * 3- update RX shared data to indicate last write index.
1985 * 4- send interrupt.
1986 * This could lead to RX race, driver could receive RX interrupt
1987 * but the shared data changes does not reflect this;
1988 * periodic interrupt will detect any dangling Rx activity.
1989 */
1990
1991 /* Disable periodic interrupt; we use it as just a one-shot. */
1992 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1993 CSR_INT_PERIODIC_DIS);
1994
1995 /*
1996 * Enable periodic interrupt in 8 msec only if we received
1997 * real RX interrupt (instead of just periodic int), to catch
1998 * any dangling Rx interrupt. If it was just the periodic
1999 * interrupt, there was no dangling Rx activity, and no need
2000 * to extend the periodic interrupt; one-shot is enough.
2001 */
2002 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2003 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2004 CSR_INT_PERIODIC_ENA);
2005
2006 isr_stats->rx++;
2007
2008 local_bh_disable();
2009 iwl_pcie_rx_handle(trans, 0);
2010 local_bh_enable();
2011 }
2012
2013 /* This "Tx" DMA channel is used only for loading uCode */
2014 if (inta & CSR_INT_BIT_FH_TX) {
2015 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2016 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2017 isr_stats->tx++;
2018 handled |= CSR_INT_BIT_FH_TX;
2019 /* Wake up uCode load routine, now that load is complete */
2020 trans_pcie->ucode_write_complete = true;
2021 wake_up(&trans_pcie->ucode_write_waitq);
2022 }
2023
2024 if (inta & ~handled) {
2025 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2026 isr_stats->unhandled++;
2027 }
2028
2029 if (inta & ~(trans_pcie->inta_mask)) {
2030 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2031 inta & ~trans_pcie->inta_mask);
2032 }
2033
2034 spin_lock(&trans_pcie->irq_lock);
2035 /* only Re-enable all interrupt if disabled by irq */
2036 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2037 _iwl_enable_interrupts(trans);
2038 /* we are loading the firmware, enable FH_TX interrupt only */
2039 else if (handled & CSR_INT_BIT_FH_TX)
2040 iwl_enable_fw_load_int(trans);
2041 /* Re-enable RF_KILL if it occurred */
2042 else if (handled & CSR_INT_BIT_RF_KILL)
2043 iwl_enable_rfkill_int(trans);
2044 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2045 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2046 iwl_enable_fw_load_int_ctx_info(trans);
2047 spin_unlock(&trans_pcie->irq_lock);
2048
2049 out:
2050 lock_map_release(&trans->sync_cmd_lockdep_map);
2051 return IRQ_HANDLED;
2052 }
2053
2054 /******************************************************************************
2055 *
2056 * ICT functions
2057 *
2058 ******************************************************************************/
2059
2060 /* Free dram table */
iwl_pcie_free_ict(struct iwl_trans * trans)2061 void iwl_pcie_free_ict(struct iwl_trans *trans)
2062 {
2063 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2064
2065 if (trans_pcie->ict_tbl) {
2066 dma_free_coherent(trans->dev, ICT_SIZE,
2067 trans_pcie->ict_tbl,
2068 trans_pcie->ict_tbl_dma);
2069 trans_pcie->ict_tbl = NULL;
2070 trans_pcie->ict_tbl_dma = 0;
2071 }
2072 }
2073
2074 /*
2075 * allocate dram shared table, it is an aligned memory
2076 * block of ICT_SIZE.
2077 * also reset all data related to ICT table interrupt.
2078 */
iwl_pcie_alloc_ict(struct iwl_trans * trans)2079 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2080 {
2081 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2082
2083 trans_pcie->ict_tbl =
2084 dma_alloc_coherent(trans->dev, ICT_SIZE,
2085 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2086 if (!trans_pcie->ict_tbl)
2087 return -ENOMEM;
2088
2089 /* just an API sanity check ... it is guaranteed to be aligned */
2090 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2091 iwl_pcie_free_ict(trans);
2092 return -EINVAL;
2093 }
2094
2095 return 0;
2096 }
2097
2098 /* Device is going up inform it about using ICT interrupt table,
2099 * also we need to tell the driver to start using ICT interrupt.
2100 */
iwl_pcie_reset_ict(struct iwl_trans * trans)2101 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2102 {
2103 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2104 u32 val;
2105
2106 if (!trans_pcie->ict_tbl)
2107 return;
2108
2109 spin_lock(&trans_pcie->irq_lock);
2110 _iwl_disable_interrupts(trans);
2111
2112 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2113
2114 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2115
2116 val |= CSR_DRAM_INT_TBL_ENABLE |
2117 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2118 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2119
2120 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2121
2122 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2123 trans_pcie->use_ict = true;
2124 trans_pcie->ict_index = 0;
2125 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2126 _iwl_enable_interrupts(trans);
2127 spin_unlock(&trans_pcie->irq_lock);
2128 }
2129
2130 /* Device is going down disable ict interrupt usage */
iwl_pcie_disable_ict(struct iwl_trans * trans)2131 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2132 {
2133 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2134
2135 spin_lock(&trans_pcie->irq_lock);
2136 trans_pcie->use_ict = false;
2137 spin_unlock(&trans_pcie->irq_lock);
2138 }
2139
iwl_pcie_isr(int irq,void * data)2140 irqreturn_t iwl_pcie_isr(int irq, void *data)
2141 {
2142 struct iwl_trans *trans = data;
2143
2144 if (!trans)
2145 return IRQ_NONE;
2146
2147 /* Disable (but don't clear!) interrupts here to avoid
2148 * back-to-back ISRs and sporadic interrupts from our NIC.
2149 * If we have something to service, the tasklet will re-enable ints.
2150 * If we *don't* have something, we'll re-enable before leaving here.
2151 */
2152 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2153
2154 return IRQ_WAKE_THREAD;
2155 }
2156
iwl_pcie_msix_isr(int irq,void * data)2157 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2158 {
2159 return IRQ_WAKE_THREAD;
2160 }
2161
iwl_pcie_irq_msix_handler(int irq,void * dev_id)2162 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2163 {
2164 struct msix_entry *entry = dev_id;
2165 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2166 struct iwl_trans *trans = trans_pcie->trans;
2167 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2168 u32 inta_fh, inta_hw;
2169
2170 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2171
2172 spin_lock(&trans_pcie->irq_lock);
2173 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2174 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2175 /*
2176 * Clear causes registers to avoid being handling the same cause.
2177 */
2178 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2179 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2180 spin_unlock(&trans_pcie->irq_lock);
2181
2182 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2183
2184 if (unlikely(!(inta_fh | inta_hw))) {
2185 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2186 lock_map_release(&trans->sync_cmd_lockdep_map);
2187 return IRQ_NONE;
2188 }
2189
2190 if (iwl_have_debug_level(IWL_DL_ISR)) {
2191 IWL_DEBUG_ISR(trans,
2192 "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2193 inta_fh, trans_pcie->fh_mask,
2194 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2195 if (inta_fh & ~trans_pcie->fh_mask)
2196 IWL_DEBUG_ISR(trans,
2197 "We got a masked interrupt (0x%08x)\n",
2198 inta_fh & ~trans_pcie->fh_mask);
2199 }
2200
2201 inta_fh &= trans_pcie->fh_mask;
2202
2203 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2204 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2205 local_bh_disable();
2206 iwl_pcie_rx_handle(trans, 0);
2207 local_bh_enable();
2208 }
2209
2210 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2211 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2212 local_bh_disable();
2213 iwl_pcie_rx_handle(trans, 1);
2214 local_bh_enable();
2215 }
2216
2217 /* This "Tx" DMA channel is used only for loading uCode */
2218 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2219 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2220 isr_stats->tx++;
2221 /*
2222 * Wake up uCode load routine,
2223 * now that load is complete
2224 */
2225 trans_pcie->ucode_write_complete = true;
2226 wake_up(&trans_pcie->ucode_write_waitq);
2227 }
2228
2229 /* Error detected by uCode */
2230 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2231 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2232 IWL_ERR(trans,
2233 "Microcode SW error detected. Restarting 0x%X.\n",
2234 inta_fh);
2235 isr_stats->sw++;
2236 iwl_pcie_irq_handle_error(trans);
2237 }
2238
2239 /* After checking FH register check HW register */
2240 if (iwl_have_debug_level(IWL_DL_ISR)) {
2241 IWL_DEBUG_ISR(trans,
2242 "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2243 inta_hw, trans_pcie->hw_mask,
2244 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2245 if (inta_hw & ~trans_pcie->hw_mask)
2246 IWL_DEBUG_ISR(trans,
2247 "We got a masked interrupt 0x%08x\n",
2248 inta_hw & ~trans_pcie->hw_mask);
2249 }
2250
2251 inta_hw &= trans_pcie->hw_mask;
2252
2253 /* Alive notification via Rx interrupt will do the real work */
2254 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2255 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2256 isr_stats->alive++;
2257 if (trans->trans_cfg->gen2) {
2258 /* We can restock, since firmware configured the RFH */
2259 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2260 }
2261 }
2262
2263 /*
2264 * In some rare cases when the HW is in a bad state, we may
2265 * get this interrupt too early, when prph_info is still NULL.
2266 * So make sure that it's not NULL to prevent crashing.
2267 */
2268 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2269 u32 sleep_notif =
2270 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2271 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2272 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2273 IWL_DEBUG_ISR(trans,
2274 "Sx interrupt: sleep notification = 0x%x\n",
2275 sleep_notif);
2276 trans_pcie->sx_complete = true;
2277 wake_up(&trans_pcie->sx_waitq);
2278 } else {
2279 /* uCode wakes up after power-down sleep */
2280 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2281 iwl_pcie_rxq_check_wrptr(trans);
2282 iwl_pcie_txq_check_wrptrs(trans);
2283
2284 isr_stats->wakeup++;
2285 }
2286 }
2287
2288 if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2289 /* Reflect IML transfer status */
2290 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2291
2292 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2293 if (res == IWL_IMAGE_RESP_FAIL) {
2294 isr_stats->sw++;
2295 iwl_pcie_irq_handle_error(trans);
2296 }
2297 }
2298
2299 /* Chip got too hot and stopped itself */
2300 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2301 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2302 isr_stats->ctkill++;
2303 }
2304
2305 /* HW RF KILL switch toggled */
2306 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2307 iwl_pcie_handle_rfkill_irq(trans);
2308
2309 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2310 IWL_ERR(trans,
2311 "Hardware error detected. Restarting.\n");
2312
2313 isr_stats->hw++;
2314 trans->dbg.hw_error = true;
2315 iwl_pcie_irq_handle_error(trans);
2316 }
2317
2318 iwl_pcie_clear_irq(trans, entry);
2319
2320 lock_map_release(&trans->sync_cmd_lockdep_map);
2321
2322 return IRQ_HANDLED;
2323 }
2324