1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Interfaces to retrieve and set PDC Stable options (firmware)
4 *
5 * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6 *
7 * DEV NOTE: the PDC Procedures reference states that:
8 * "A minimum of 96 bytes of Stable Storage is required. Providing more than
9 * 96 bytes of Stable Storage is optional [...]. Failure to provide the
10 * optional locations from 96 to 192 results in the loss of certain
11 * functionality during boot."
12 *
13 * Since locations between 96 and 192 are the various paths, most (if not
14 * all) PA-RISC machines should have them. Anyway, for safety reasons, the
15 * following code can deal with just 96 bytes of Stable Storage, and all
16 * sizes between 96 and 192 bytes (provided they are multiple of struct
17 * device_path size, eg: 128, 160 and 192) to provide full information.
18 * One last word: there's one path we can always count on: the primary path.
19 * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20 *
21 * The first OS-dependent area should always be available. Obviously, this is
22 * not true for the other one. Also bear in mind that reading/writing from/to
23 * osdep2 is much more expensive than from/to osdep1.
24 * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25 * 2 bytes of storage available right after OSID. That's a total of 4 bytes
26 * sacrificed: -ETOOLAZY :P
27 *
28 * The current policy wrt file permissions is:
29 * - write: root only
30 * - read: (reading triggers PDC calls) ? root only : everyone
31 * The rationale is that PDC calls could hog (DoS) the machine.
32 *
33 * TODO:
34 * - timer/fastsize write calls
35 */
36
37 #undef PDCS_DEBUG
38 #ifdef PDCS_DEBUG
39 #define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args)
40 #else
41 #define DPRINTK(fmt, args...)
42 #endif
43
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/capability.h>
49 #include <linux/ctype.h>
50 #include <linux/sysfs.h>
51 #include <linux/kobject.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55
56 #include <asm/pdc.h>
57 #include <asm/page.h>
58 #include <linux/uaccess.h>
59 #include <asm/hardware.h>
60
61 #define PDCS_VERSION "0.30"
62 #define PDCS_PREFIX "PDC Stable Storage"
63
64 #define PDCS_ADDR_PPRI 0x00
65 #define PDCS_ADDR_OSID 0x40
66 #define PDCS_ADDR_OSD1 0x48
67 #define PDCS_ADDR_DIAG 0x58
68 #define PDCS_ADDR_FSIZ 0x5C
69 #define PDCS_ADDR_PCON 0x60
70 #define PDCS_ADDR_PALT 0x80
71 #define PDCS_ADDR_PKBD 0xA0
72 #define PDCS_ADDR_OSD2 0xE0
73
74 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76 MODULE_LICENSE("GPL");
77 MODULE_VERSION(PDCS_VERSION);
78
79 /* holds Stable Storage size. Initialized once and for all, no lock needed */
80 static unsigned long pdcs_size __read_mostly;
81
82 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83 static u16 pdcs_osid __read_mostly;
84
85 /* This struct defines what we need to deal with a parisc pdc path entry */
86 struct pdcspath_entry {
87 rwlock_t rw_lock; /* to protect path entry access */
88 short ready; /* entry record is valid if != 0 */
89 unsigned long addr; /* entry address in stable storage */
90 char *name; /* entry name */
91 struct device_path devpath; /* device path in parisc representation */
92 struct device *dev; /* corresponding device */
93 struct kobject kobj;
94 };
95
96 struct pdcspath_attribute {
97 struct attribute attr;
98 ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99 ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100 };
101
102 #define PDCSPATH_ENTRY(_addr, _name) \
103 struct pdcspath_entry pdcspath_entry_##_name = { \
104 .ready = 0, \
105 .addr = _addr, \
106 .name = __stringify(_name), \
107 };
108
109 #define PDCS_ATTR(_name, _mode, _show, _store) \
110 struct kobj_attribute pdcs_attr_##_name = { \
111 .attr = {.name = __stringify(_name), .mode = _mode}, \
112 .show = _show, \
113 .store = _store, \
114 };
115
116 #define PATHS_ATTR(_name, _mode, _show, _store) \
117 struct pdcspath_attribute paths_attr_##_name = { \
118 .attr = {.name = __stringify(_name), .mode = _mode}, \
119 .show = _show, \
120 .store = _store, \
121 };
122
123 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124 #define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj)
125
126 /**
127 * pdcspath_fetch - This function populates the path entry structs.
128 * @entry: A pointer to an allocated pdcspath_entry.
129 *
130 * The general idea is that you don't read from the Stable Storage every time
131 * you access the files provided by the facilities. We store a copy of the
132 * content of the stable storage WRT various paths in these structs. We read
133 * these structs when reading the files, and we will write to these structs when
134 * writing to the files, and only then write them back to the Stable Storage.
135 *
136 * This function expects to be called with @entry->rw_lock write-hold.
137 */
138 static int
pdcspath_fetch(struct pdcspath_entry * entry)139 pdcspath_fetch(struct pdcspath_entry *entry)
140 {
141 struct device_path *devpath;
142
143 if (!entry)
144 return -EINVAL;
145
146 devpath = &entry->devpath;
147
148 DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149 entry, devpath, entry->addr);
150
151 /* addr, devpath and count must be word aligned */
152 if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153 return -EIO;
154
155 /* Find the matching device.
156 NOTE: hardware_path overlays with device_path, so the nice cast can
157 be used */
158 entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159
160 entry->ready = 1;
161
162 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163
164 return 0;
165 }
166
167 /**
168 * pdcspath_store - This function writes a path to stable storage.
169 * @entry: A pointer to an allocated pdcspath_entry.
170 *
171 * It can be used in two ways: either by passing it a preset devpath struct
172 * containing an already computed hardware path, or by passing it a device
173 * pointer, from which it'll find out the corresponding hardware path.
174 * For now we do not handle the case where there's an error in writing to the
175 * Stable Storage area, so you'd better not mess up the data :P
176 *
177 * This function expects to be called with @entry->rw_lock write-hold.
178 */
179 static void
pdcspath_store(struct pdcspath_entry * entry)180 pdcspath_store(struct pdcspath_entry *entry)
181 {
182 struct device_path *devpath;
183
184 BUG_ON(!entry);
185
186 devpath = &entry->devpath;
187
188 /* We expect the caller to set the ready flag to 0 if the hardware
189 path struct provided is invalid, so that we know we have to fill it.
190 First case, we don't have a preset hwpath... */
191 if (!entry->ready) {
192 /* ...but we have a device, map it */
193 BUG_ON(!entry->dev);
194 device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195 }
196 /* else, we expect the provided hwpath to be valid. */
197
198 DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199 entry, devpath, entry->addr);
200
201 /* addr, devpath and count must be word aligned */
202 if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203 WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204 "It is likely that the Stable Storage data has been corrupted.\n"
205 "Please check it carefully upon next reboot.\n", __func__);
206
207 /* kobject is already registered */
208 entry->ready = 2;
209
210 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211 }
212
213 /**
214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215 * @entry: An allocated and populated pdscpath_entry struct.
216 * @buf: The output buffer to write to.
217 *
218 * We will call this function to format the output of the hwpath attribute file.
219 */
220 static ssize_t
pdcspath_hwpath_read(struct pdcspath_entry * entry,char * buf)221 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222 {
223 char *out = buf;
224 struct device_path *devpath;
225 short i;
226
227 if (!entry || !buf)
228 return -EINVAL;
229
230 read_lock(&entry->rw_lock);
231 devpath = &entry->devpath;
232 i = entry->ready;
233 read_unlock(&entry->rw_lock);
234
235 if (!i) /* entry is not ready */
236 return -ENODATA;
237
238 for (i = 0; i < 6; i++) {
239 if (devpath->bc[i] >= 128)
240 continue;
241 out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
242 }
243 out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
244
245 return out - buf;
246 }
247
248 /**
249 * pdcspath_hwpath_write - This function handles hardware path modifying.
250 * @entry: An allocated and populated pdscpath_entry struct.
251 * @buf: The input buffer to read from.
252 * @count: The number of bytes to be read.
253 *
254 * We will call this function to change the current hardware path.
255 * Hardware paths are to be given '/'-delimited, without brackets.
256 * We make sure that the provided path actually maps to an existing
257 * device, BUT nothing would prevent some foolish user to set the path to some
258 * PCI bridge or even a CPU...
259 * A better work around would be to make sure we are at the end of a device tree
260 * for instance, but it would be IMHO beyond the simple scope of that driver.
261 * The aim is to provide a facility. Data correctness is left to userland.
262 */
263 static ssize_t
pdcspath_hwpath_write(struct pdcspath_entry * entry,const char * buf,size_t count)264 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265 {
266 struct hardware_path hwpath;
267 unsigned short i;
268 char in[64], *temp;
269 struct device *dev;
270 int ret;
271
272 if (!entry || !buf || !count)
273 return -EINVAL;
274
275 /* We'll use a local copy of buf */
276 count = min_t(size_t, count, sizeof(in)-1);
277 strncpy(in, buf, count);
278 in[count] = '\0';
279
280 /* Let's clean up the target. 0xff is a blank pattern */
281 memset(&hwpath, 0xff, sizeof(hwpath));
282
283 /* First, pick the mod field (the last one of the input string) */
284 if (!(temp = strrchr(in, '/')))
285 return -EINVAL;
286
287 hwpath.mod = simple_strtoul(temp+1, NULL, 10);
288 in[temp-in] = '\0'; /* truncate the remaining string. just precaution */
289 DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
290
291 /* Then, loop for each delimiter, making sure we don't have too many.
292 we write the bc fields in a down-top way. No matter what, we stop
293 before writing the last field. If there are too many fields anyway,
294 then the user is a moron and it'll be caught up later when we'll
295 check the consistency of the given hwpath. */
296 for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
297 hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
298 in[temp-in] = '\0';
299 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
300 }
301
302 /* Store the final field */
303 hwpath.bc[i] = simple_strtoul(in, NULL, 10);
304 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
305
306 /* Now we check that the user isn't trying to lure us */
307 if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
308 printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
309 "hardware path: %s\n", __func__, entry->name, buf);
310 return -EINVAL;
311 }
312
313 /* So far so good, let's get in deep */
314 write_lock(&entry->rw_lock);
315 entry->ready = 0;
316 entry->dev = dev;
317
318 /* Now, dive in. Write back to the hardware */
319 pdcspath_store(entry);
320
321 /* Update the symlink to the real device */
322 sysfs_remove_link(&entry->kobj, "device");
323 write_unlock(&entry->rw_lock);
324
325 ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
326 WARN_ON(ret);
327
328 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
329 entry->name, buf);
330
331 return count;
332 }
333
334 /**
335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
336 * @entry: An allocated and populated pdscpath_entry struct.
337 * @buf: The output buffer to write to.
338 *
339 * We will call this function to format the output of the layer attribute file.
340 */
341 static ssize_t
pdcspath_layer_read(struct pdcspath_entry * entry,char * buf)342 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
343 {
344 char *out = buf;
345 struct device_path *devpath;
346 short i;
347
348 if (!entry || !buf)
349 return -EINVAL;
350
351 read_lock(&entry->rw_lock);
352 devpath = &entry->devpath;
353 i = entry->ready;
354 read_unlock(&entry->rw_lock);
355
356 if (!i) /* entry is not ready */
357 return -ENODATA;
358
359 for (i = 0; i < 6 && devpath->layers[i]; i++)
360 out += sprintf(out, "%u ", devpath->layers[i]);
361
362 out += sprintf(out, "\n");
363
364 return out - buf;
365 }
366
367 /**
368 * pdcspath_layer_write - This function handles extended layer modifying.
369 * @entry: An allocated and populated pdscpath_entry struct.
370 * @buf: The input buffer to read from.
371 * @count: The number of bytes to be read.
372 *
373 * We will call this function to change the current layer value.
374 * Layers are to be given '.'-delimited, without brackets.
375 * XXX beware we are far less checky WRT input data provided than for hwpath.
376 * Potential harm can be done, since there's no way to check the validity of
377 * the layer fields.
378 */
379 static ssize_t
pdcspath_layer_write(struct pdcspath_entry * entry,const char * buf,size_t count)380 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
381 {
382 unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
383 unsigned short i;
384 char in[64], *temp;
385
386 if (!entry || !buf || !count)
387 return -EINVAL;
388
389 /* We'll use a local copy of buf */
390 count = min_t(size_t, count, sizeof(in)-1);
391 strncpy(in, buf, count);
392 in[count] = '\0';
393
394 /* Let's clean up the target. 0 is a blank pattern */
395 memset(&layers, 0, sizeof(layers));
396
397 /* First, pick the first layer */
398 if (unlikely(!isdigit(*in)))
399 return -EINVAL;
400 layers[0] = simple_strtoul(in, NULL, 10);
401 DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
402
403 temp = in;
404 for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
405 if (unlikely(!isdigit(*(++temp))))
406 return -EINVAL;
407 layers[i] = simple_strtoul(temp, NULL, 10);
408 DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
409 }
410
411 /* So far so good, let's get in deep */
412 write_lock(&entry->rw_lock);
413
414 /* First, overwrite the current layers with the new ones, not touching
415 the hardware path. */
416 memcpy(&entry->devpath.layers, &layers, sizeof(layers));
417
418 /* Now, dive in. Write back to the hardware */
419 pdcspath_store(entry);
420 write_unlock(&entry->rw_lock);
421
422 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
423 entry->name, buf);
424
425 return count;
426 }
427
428 /**
429 * pdcspath_attr_show - Generic read function call wrapper.
430 * @kobj: The kobject to get info from.
431 * @attr: The attribute looked upon.
432 * @buf: The output buffer.
433 */
434 static ssize_t
pdcspath_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)435 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
436 {
437 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
438 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
439 ssize_t ret = 0;
440
441 if (pdcs_attr->show)
442 ret = pdcs_attr->show(entry, buf);
443
444 return ret;
445 }
446
447 /**
448 * pdcspath_attr_store - Generic write function call wrapper.
449 * @kobj: The kobject to write info to.
450 * @attr: The attribute to be modified.
451 * @buf: The input buffer.
452 * @count: The size of the buffer.
453 */
454 static ssize_t
pdcspath_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)455 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
456 const char *buf, size_t count)
457 {
458 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
459 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
460 ssize_t ret = 0;
461
462 if (!capable(CAP_SYS_ADMIN))
463 return -EACCES;
464
465 if (pdcs_attr->store)
466 ret = pdcs_attr->store(entry, buf, count);
467
468 return ret;
469 }
470
471 static const struct sysfs_ops pdcspath_attr_ops = {
472 .show = pdcspath_attr_show,
473 .store = pdcspath_attr_store,
474 };
475
476 /* These are the two attributes of any PDC path. */
477 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
478 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
479
480 static struct attribute *paths_subsys_attrs[] = {
481 &paths_attr_hwpath.attr,
482 &paths_attr_layer.attr,
483 NULL,
484 };
485
486 /* Specific kobject type for our PDC paths */
487 static struct kobj_type ktype_pdcspath = {
488 .sysfs_ops = &pdcspath_attr_ops,
489 .default_attrs = paths_subsys_attrs,
490 };
491
492 /* We hard define the 4 types of path we expect to find */
493 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
494 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
495 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
496 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
497
498 /* An array containing all PDC paths we will deal with */
499 static struct pdcspath_entry *pdcspath_entries[] = {
500 &pdcspath_entry_primary,
501 &pdcspath_entry_alternative,
502 &pdcspath_entry_console,
503 &pdcspath_entry_keyboard,
504 NULL,
505 };
506
507
508 /* For more insight of what's going on here, refer to PDC Procedures doc,
509 * Section PDC_STABLE */
510
511 /**
512 * pdcs_size_read - Stable Storage size output.
513 * @buf: The output buffer to write to.
514 */
pdcs_size_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)515 static ssize_t pdcs_size_read(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 char *buf)
518 {
519 char *out = buf;
520
521 if (!buf)
522 return -EINVAL;
523
524 /* show the size of the stable storage */
525 out += sprintf(out, "%ld\n", pdcs_size);
526
527 return out - buf;
528 }
529
530 /**
531 * pdcs_auto_read - Stable Storage autoboot/search flag output.
532 * @buf: The output buffer to write to.
533 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
534 */
pdcs_auto_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf,int knob)535 static ssize_t pdcs_auto_read(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf, int knob)
538 {
539 char *out = buf;
540 struct pdcspath_entry *pathentry;
541
542 if (!buf)
543 return -EINVAL;
544
545 /* Current flags are stored in primary boot path entry */
546 pathentry = &pdcspath_entry_primary;
547
548 read_lock(&pathentry->rw_lock);
549 out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
550 "On" : "Off");
551 read_unlock(&pathentry->rw_lock);
552
553 return out - buf;
554 }
555
556 /**
557 * pdcs_autoboot_read - Stable Storage autoboot flag output.
558 * @buf: The output buffer to write to.
559 */
pdcs_autoboot_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)560 static ssize_t pdcs_autoboot_read(struct kobject *kobj,
561 struct kobj_attribute *attr, char *buf)
562 {
563 return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
564 }
565
566 /**
567 * pdcs_autosearch_read - Stable Storage autoboot flag output.
568 * @buf: The output buffer to write to.
569 */
pdcs_autosearch_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)570 static ssize_t pdcs_autosearch_read(struct kobject *kobj,
571 struct kobj_attribute *attr, char *buf)
572 {
573 return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
574 }
575
576 /**
577 * pdcs_timer_read - Stable Storage timer count output (in seconds).
578 * @buf: The output buffer to write to.
579 *
580 * The value of the timer field correponds to a number of seconds in powers of 2.
581 */
pdcs_timer_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)582 static ssize_t pdcs_timer_read(struct kobject *kobj,
583 struct kobj_attribute *attr, char *buf)
584 {
585 char *out = buf;
586 struct pdcspath_entry *pathentry;
587
588 if (!buf)
589 return -EINVAL;
590
591 /* Current flags are stored in primary boot path entry */
592 pathentry = &pdcspath_entry_primary;
593
594 /* print the timer value in seconds */
595 read_lock(&pathentry->rw_lock);
596 out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
597 (1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
598 read_unlock(&pathentry->rw_lock);
599
600 return out - buf;
601 }
602
603 /**
604 * pdcs_osid_read - Stable Storage OS ID register output.
605 * @buf: The output buffer to write to.
606 */
pdcs_osid_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)607 static ssize_t pdcs_osid_read(struct kobject *kobj,
608 struct kobj_attribute *attr, char *buf)
609 {
610 char *out = buf;
611
612 if (!buf)
613 return -EINVAL;
614
615 out += sprintf(out, "%s dependent data (0x%.4x)\n",
616 os_id_to_string(pdcs_osid), pdcs_osid);
617
618 return out - buf;
619 }
620
621 /**
622 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
623 * @buf: The output buffer to write to.
624 *
625 * This can hold 16 bytes of OS-Dependent data.
626 */
pdcs_osdep1_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)627 static ssize_t pdcs_osdep1_read(struct kobject *kobj,
628 struct kobj_attribute *attr, char *buf)
629 {
630 char *out = buf;
631 u32 result[4];
632
633 if (!buf)
634 return -EINVAL;
635
636 if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
637 return -EIO;
638
639 out += sprintf(out, "0x%.8x\n", result[0]);
640 out += sprintf(out, "0x%.8x\n", result[1]);
641 out += sprintf(out, "0x%.8x\n", result[2]);
642 out += sprintf(out, "0x%.8x\n", result[3]);
643
644 return out - buf;
645 }
646
647 /**
648 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
649 * @buf: The output buffer to write to.
650 *
651 * I have NFC how to interpret the content of that register ;-).
652 */
pdcs_diagnostic_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)653 static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
654 struct kobj_attribute *attr, char *buf)
655 {
656 char *out = buf;
657 u32 result;
658
659 if (!buf)
660 return -EINVAL;
661
662 /* get diagnostic */
663 if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
664 return -EIO;
665
666 out += sprintf(out, "0x%.4x\n", (result >> 16));
667
668 return out - buf;
669 }
670
671 /**
672 * pdcs_fastsize_read - Stable Storage FastSize register output.
673 * @buf: The output buffer to write to.
674 *
675 * This register holds the amount of system RAM to be tested during boot sequence.
676 */
pdcs_fastsize_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)677 static ssize_t pdcs_fastsize_read(struct kobject *kobj,
678 struct kobj_attribute *attr, char *buf)
679 {
680 char *out = buf;
681 u32 result;
682
683 if (!buf)
684 return -EINVAL;
685
686 /* get fast-size */
687 if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
688 return -EIO;
689
690 if ((result & 0x0F) < 0x0E)
691 out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
692 else
693 out += sprintf(out, "All");
694 out += sprintf(out, "\n");
695
696 return out - buf;
697 }
698
699 /**
700 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
701 * @buf: The output buffer to write to.
702 *
703 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
704 */
pdcs_osdep2_read(struct kobject * kobj,struct kobj_attribute * attr,char * buf)705 static ssize_t pdcs_osdep2_read(struct kobject *kobj,
706 struct kobj_attribute *attr, char *buf)
707 {
708 char *out = buf;
709 unsigned long size;
710 unsigned short i;
711 u32 result;
712
713 if (unlikely(pdcs_size <= 224))
714 return -ENODATA;
715
716 size = pdcs_size - 224;
717
718 if (!buf)
719 return -EINVAL;
720
721 for (i=0; i<size; i+=4) {
722 if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
723 sizeof(result)) != PDC_OK))
724 return -EIO;
725 out += sprintf(out, "0x%.8x\n", result);
726 }
727
728 return out - buf;
729 }
730
731 /**
732 * pdcs_auto_write - This function handles autoboot/search flag modifying.
733 * @buf: The input buffer to read from.
734 * @count: The number of bytes to be read.
735 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
736 *
737 * We will call this function to change the current autoboot flag.
738 * We expect a precise syntax:
739 * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
740 */
pdcs_auto_write(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,int knob)741 static ssize_t pdcs_auto_write(struct kobject *kobj,
742 struct kobj_attribute *attr, const char *buf,
743 size_t count, int knob)
744 {
745 struct pdcspath_entry *pathentry;
746 unsigned char flags;
747 char in[8], *temp;
748 char c;
749
750 if (!capable(CAP_SYS_ADMIN))
751 return -EACCES;
752
753 if (!buf || !count)
754 return -EINVAL;
755
756 /* We'll use a local copy of buf */
757 count = min_t(size_t, count, sizeof(in)-1);
758 strncpy(in, buf, count);
759 in[count] = '\0';
760
761 /* Current flags are stored in primary boot path entry */
762 pathentry = &pdcspath_entry_primary;
763
764 /* Be nice to the existing flag record */
765 read_lock(&pathentry->rw_lock);
766 flags = pathentry->devpath.flags;
767 read_unlock(&pathentry->rw_lock);
768
769 DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
770
771 temp = skip_spaces(in);
772
773 c = *temp++ - '0';
774 if ((c != 0) && (c != 1))
775 goto parse_error;
776 if (c == 0)
777 flags &= ~knob;
778 else
779 flags |= knob;
780
781 DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
782
783 /* So far so good, let's get in deep */
784 write_lock(&pathentry->rw_lock);
785
786 /* Change the path entry flags first */
787 pathentry->devpath.flags = flags;
788
789 /* Now, dive in. Write back to the hardware */
790 pdcspath_store(pathentry);
791 write_unlock(&pathentry->rw_lock);
792
793 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
794 (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
795 (flags & knob) ? "On" : "Off");
796
797 return count;
798
799 parse_error:
800 printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
801 return -EINVAL;
802 }
803
804 /**
805 * pdcs_autoboot_write - This function handles autoboot flag modifying.
806 * @buf: The input buffer to read from.
807 * @count: The number of bytes to be read.
808 *
809 * We will call this function to change the current boot flags.
810 * We expect a precise syntax:
811 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
812 */
pdcs_autoboot_write(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)813 static ssize_t pdcs_autoboot_write(struct kobject *kobj,
814 struct kobj_attribute *attr,
815 const char *buf, size_t count)
816 {
817 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
818 }
819
820 /**
821 * pdcs_autosearch_write - This function handles autosearch flag modifying.
822 * @buf: The input buffer to read from.
823 * @count: The number of bytes to be read.
824 *
825 * We will call this function to change the current boot flags.
826 * We expect a precise syntax:
827 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
828 */
pdcs_autosearch_write(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)829 static ssize_t pdcs_autosearch_write(struct kobject *kobj,
830 struct kobj_attribute *attr,
831 const char *buf, size_t count)
832 {
833 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
834 }
835
836 /**
837 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
838 * @buf: The input buffer to read from.
839 * @count: The number of bytes to be read.
840 *
841 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
842 * write approach. It's up to userspace to deal with it when constructing
843 * its input buffer.
844 */
pdcs_osdep1_write(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)845 static ssize_t pdcs_osdep1_write(struct kobject *kobj,
846 struct kobj_attribute *attr,
847 const char *buf, size_t count)
848 {
849 u8 in[16];
850
851 if (!capable(CAP_SYS_ADMIN))
852 return -EACCES;
853
854 if (!buf || !count)
855 return -EINVAL;
856
857 if (unlikely(pdcs_osid != OS_ID_LINUX))
858 return -EPERM;
859
860 if (count > 16)
861 return -EMSGSIZE;
862
863 /* We'll use a local copy of buf */
864 memset(in, 0, 16);
865 memcpy(in, buf, count);
866
867 if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
868 return -EIO;
869
870 return count;
871 }
872
873 /**
874 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
875 * @buf: The input buffer to read from.
876 * @count: The number of bytes to be read.
877 *
878 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
879 * byte-by-byte write approach. It's up to userspace to deal with it when
880 * constructing its input buffer.
881 */
pdcs_osdep2_write(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)882 static ssize_t pdcs_osdep2_write(struct kobject *kobj,
883 struct kobj_attribute *attr,
884 const char *buf, size_t count)
885 {
886 unsigned long size;
887 unsigned short i;
888 u8 in[4];
889
890 if (!capable(CAP_SYS_ADMIN))
891 return -EACCES;
892
893 if (!buf || !count)
894 return -EINVAL;
895
896 if (unlikely(pdcs_size <= 224))
897 return -ENOSYS;
898
899 if (unlikely(pdcs_osid != OS_ID_LINUX))
900 return -EPERM;
901
902 size = pdcs_size - 224;
903
904 if (count > size)
905 return -EMSGSIZE;
906
907 /* We'll use a local copy of buf */
908
909 for (i=0; i<count; i+=4) {
910 memset(in, 0, 4);
911 memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
912 if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
913 sizeof(in)) != PDC_OK))
914 return -EIO;
915 }
916
917 return count;
918 }
919
920 /* The remaining attributes. */
921 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
922 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
923 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
924 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
925 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
926 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
927 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
928 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
929 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
930
931 static struct attribute *pdcs_subsys_attrs[] = {
932 &pdcs_attr_size.attr,
933 &pdcs_attr_autoboot.attr,
934 &pdcs_attr_autosearch.attr,
935 &pdcs_attr_timer.attr,
936 &pdcs_attr_osid.attr,
937 &pdcs_attr_osdep1.attr,
938 &pdcs_attr_diagnostic.attr,
939 &pdcs_attr_fastsize.attr,
940 &pdcs_attr_osdep2.attr,
941 NULL,
942 };
943
944 static const struct attribute_group pdcs_attr_group = {
945 .attrs = pdcs_subsys_attrs,
946 };
947
948 static struct kobject *stable_kobj;
949 static struct kset *paths_kset;
950
951 /**
952 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
953 *
954 * It creates kobjects corresponding to each path entry with nice sysfs
955 * links to the real device. This is where the magic takes place: when
956 * registering the subsystem attributes during module init, each kobject hereby
957 * created will show in the sysfs tree as a folder containing files as defined
958 * by path_subsys_attr[].
959 */
960 static inline int __init
pdcs_register_pathentries(void)961 pdcs_register_pathentries(void)
962 {
963 unsigned short i;
964 struct pdcspath_entry *entry;
965 int err;
966
967 /* Initialize the entries rw_lock before anything else */
968 for (i = 0; (entry = pdcspath_entries[i]); i++)
969 rwlock_init(&entry->rw_lock);
970
971 for (i = 0; (entry = pdcspath_entries[i]); i++) {
972 write_lock(&entry->rw_lock);
973 err = pdcspath_fetch(entry);
974 write_unlock(&entry->rw_lock);
975
976 if (err < 0)
977 continue;
978
979 entry->kobj.kset = paths_kset;
980 err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
981 "%s", entry->name);
982 if (err) {
983 kobject_put(&entry->kobj);
984 return err;
985 }
986
987 /* kobject is now registered */
988 write_lock(&entry->rw_lock);
989 entry->ready = 2;
990 write_unlock(&entry->rw_lock);
991
992 /* Add a nice symlink to the real device */
993 if (entry->dev) {
994 err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
995 WARN_ON(err);
996 }
997
998 kobject_uevent(&entry->kobj, KOBJ_ADD);
999 }
1000
1001 return 0;
1002 }
1003
1004 /**
1005 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1006 */
1007 static inline void
pdcs_unregister_pathentries(void)1008 pdcs_unregister_pathentries(void)
1009 {
1010 unsigned short i;
1011 struct pdcspath_entry *entry;
1012
1013 for (i = 0; (entry = pdcspath_entries[i]); i++) {
1014 read_lock(&entry->rw_lock);
1015 if (entry->ready >= 2)
1016 kobject_put(&entry->kobj);
1017 read_unlock(&entry->rw_lock);
1018 }
1019 }
1020
1021 /*
1022 * For now we register the stable subsystem with the firmware subsystem
1023 * and the paths subsystem with the stable subsystem
1024 */
1025 static int __init
pdc_stable_init(void)1026 pdc_stable_init(void)
1027 {
1028 int rc = 0, error = 0;
1029 u32 result;
1030
1031 /* find the size of the stable storage */
1032 if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1033 return -ENODEV;
1034
1035 /* make sure we have enough data */
1036 if (pdcs_size < 96)
1037 return -ENODATA;
1038
1039 printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1040
1041 /* get OSID */
1042 if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1043 return -EIO;
1044
1045 /* the actual result is 16 bits away */
1046 pdcs_osid = (u16)(result >> 16);
1047
1048 /* For now we'll register the directory at /sys/firmware/stable */
1049 stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1050 if (!stable_kobj) {
1051 rc = -ENOMEM;
1052 goto fail_firmreg;
1053 }
1054
1055 /* Don't forget the root entries */
1056 error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1057
1058 /* register the paths kset as a child of the stable kset */
1059 paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1060 if (!paths_kset) {
1061 rc = -ENOMEM;
1062 goto fail_ksetreg;
1063 }
1064
1065 /* now we create all "files" for the paths kset */
1066 if ((rc = pdcs_register_pathentries()))
1067 goto fail_pdcsreg;
1068
1069 return rc;
1070
1071 fail_pdcsreg:
1072 pdcs_unregister_pathentries();
1073 kset_unregister(paths_kset);
1074
1075 fail_ksetreg:
1076 kobject_put(stable_kobj);
1077
1078 fail_firmreg:
1079 printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1080 return rc;
1081 }
1082
1083 static void __exit
pdc_stable_exit(void)1084 pdc_stable_exit(void)
1085 {
1086 pdcs_unregister_pathentries();
1087 kset_unregister(paths_kset);
1088 kobject_put(stable_kobj);
1089 }
1090
1091
1092 module_init(pdc_stable_init);
1093 module_exit(pdc_stable_exit);
1094