• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3hot_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
pci_dev_d3_sleep(struct pci_dev * dev)64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3hot_delay;
67 
68 	if (delay < pci_pm_d3hot_delay)
69 		delay = pci_pm_d3hot_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93  * pci=hpmemsize=nnM overrides both
94  */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97 
98 #define DEFAULT_HOTPLUG_BUS_SIZE	1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100 
101 
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114 
115 /*
116  * The default CLS is used if arch didn't set CLS explicitly and not
117  * all pci devices agree on the same value.  Arch can override either
118  * the dfl or actual value as it sees fit.  Don't forget this is
119  * measured in 32-bit words, not bytes.
120  */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123 
124 /*
125  * If we set up a device for bus mastering, we need to check the latency
126  * timer as certain BIOSes forget to set it properly.
127  */
128 unsigned int pcibios_max_latency = 255;
129 
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132 
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135 
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138 
pci_ats_disabled(void)139 bool pci_ats_disabled(void)
140 {
141 	return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144 
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149 
pcie_port_pm_setup(char * str)150 static int __init pcie_port_pm_setup(char *str)
151 {
152 	if (!strcmp(str, "off"))
153 		pci_bridge_d3_disable = true;
154 	else if (!strcmp(str, "force"))
155 		pci_bridge_d3_force = true;
156 	return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159 
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162 
163 /**
164  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165  * @bus: pointer to PCI bus structure to search
166  *
167  * Given a PCI bus, returns the highest PCI bus number present in the set
168  * including the given PCI bus and its list of child PCI buses.
169  */
pci_bus_max_busnr(struct pci_bus * bus)170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 	struct pci_bus *tmp;
173 	unsigned char max, n;
174 
175 	max = bus->busn_res.end;
176 	list_for_each_entry(tmp, &bus->children, node) {
177 		n = pci_bus_max_busnr(tmp);
178 		if (n > max)
179 			max = n;
180 	}
181 	return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184 
185 /**
186  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187  * @pdev: the PCI device
188  *
189  * Returns error bits set in PCI_STATUS and clears them.
190  */
pci_status_get_and_clear_errors(struct pci_dev * pdev)191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 	u16 status;
194 	int ret;
195 
196 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 	if (ret != PCIBIOS_SUCCESSFUL)
198 		return -EIO;
199 
200 	status &= PCI_STATUS_ERROR_BITS;
201 	if (status)
202 		pci_write_config_word(pdev, PCI_STATUS, status);
203 
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207 
208 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 	struct resource *res = &pdev->resource[bar];
212 
213 	/*
214 	 * Make sure the BAR is actually a memory resource, not an IO resource
215 	 */
216 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 		return NULL;
219 	}
220 	return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 		WARN_ON(1);
231 		return NULL;
232 	}
233 	return ioremap_wc(pci_resource_start(pdev, bar),
234 			  pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238 
239 /**
240  * pci_dev_str_match_path - test if a path string matches a device
241  * @dev: the PCI device to test
242  * @path: string to match the device against
243  * @endptr: pointer to the string after the match
244  *
245  * Test if a string (typically from a kernel parameter) formatted as a
246  * path of device/function addresses matches a PCI device. The string must
247  * be of the form:
248  *
249  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250  *
251  * A path for a device can be obtained using 'lspci -t'.  Using a path
252  * is more robust against bus renumbering than using only a single bus,
253  * device and function address.
254  *
255  * Returns 1 if the string matches the device, 0 if it does not and
256  * a negative error code if it fails to parse the string.
257  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 				  const char **endptr)
260 {
261 	int ret;
262 	int seg, bus, slot, func;
263 	char *wpath, *p;
264 	char end;
265 
266 	*endptr = strchrnul(path, ';');
267 
268 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
269 	if (!wpath)
270 		return -ENOMEM;
271 
272 	while (1) {
273 		p = strrchr(wpath, '/');
274 		if (!p)
275 			break;
276 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 		if (ret != 2) {
278 			ret = -EINVAL;
279 			goto free_and_exit;
280 		}
281 
282 		if (dev->devfn != PCI_DEVFN(slot, func)) {
283 			ret = 0;
284 			goto free_and_exit;
285 		}
286 
287 		/*
288 		 * Note: we don't need to get a reference to the upstream
289 		 * bridge because we hold a reference to the top level
290 		 * device which should hold a reference to the bridge,
291 		 * and so on.
292 		 */
293 		dev = pci_upstream_bridge(dev);
294 		if (!dev) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		*p = 0;
300 	}
301 
302 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 		     &func, &end);
304 	if (ret != 4) {
305 		seg = 0;
306 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 		if (ret != 3) {
308 			ret = -EINVAL;
309 			goto free_and_exit;
310 		}
311 	}
312 
313 	ret = (seg == pci_domain_nr(dev->bus) &&
314 	       bus == dev->bus->number &&
315 	       dev->devfn == PCI_DEVFN(slot, func));
316 
317 free_and_exit:
318 	kfree(wpath);
319 	return ret;
320 }
321 
322 /**
323  * pci_dev_str_match - test if a string matches a device
324  * @dev: the PCI device to test
325  * @p: string to match the device against
326  * @endptr: pointer to the string after the match
327  *
328  * Test if a string (typically from a kernel parameter) matches a specified
329  * PCI device. The string may be of one of the following formats:
330  *
331  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333  *
334  * The first format specifies a PCI bus/device/function address which
335  * may change if new hardware is inserted, if motherboard firmware changes,
336  * or due to changes caused in kernel parameters. If the domain is
337  * left unspecified, it is taken to be 0.  In order to be robust against
338  * bus renumbering issues, a path of PCI device/function numbers may be used
339  * to address the specific device.  The path for a device can be determined
340  * through the use of 'lspci -t'.
341  *
342  * The second format matches devices using IDs in the configuration
343  * space which may match multiple devices in the system. A value of 0
344  * for any field will match all devices. (Note: this differs from
345  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346  * legacy reasons and convenience so users don't have to specify
347  * FFFFFFFFs on the command line.)
348  *
349  * Returns 1 if the string matches the device, 0 if it does not and
350  * a negative error code if the string cannot be parsed.
351  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 			     const char **endptr)
354 {
355 	int ret;
356 	int count;
357 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
358 
359 	if (strncmp(p, "pci:", 4) == 0) {
360 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 		p += 4;
362 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 			     &subsystem_vendor, &subsystem_device, &count);
364 		if (ret != 4) {
365 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 			if (ret != 2)
367 				return -EINVAL;
368 
369 			subsystem_vendor = 0;
370 			subsystem_device = 0;
371 		}
372 
373 		p += count;
374 
375 		if ((!vendor || vendor == dev->vendor) &&
376 		    (!device || device == dev->device) &&
377 		    (!subsystem_vendor ||
378 			    subsystem_vendor == dev->subsystem_vendor) &&
379 		    (!subsystem_device ||
380 			    subsystem_device == dev->subsystem_device))
381 			goto found;
382 	} else {
383 		/*
384 		 * PCI Bus, Device, Function IDs are specified
385 		 * (optionally, may include a path of devfns following it)
386 		 */
387 		ret = pci_dev_str_match_path(dev, p, &p);
388 		if (ret < 0)
389 			return ret;
390 		else if (ret)
391 			goto found;
392 	}
393 
394 	*endptr = p;
395 	return 0;
396 
397 found:
398 	*endptr = p;
399 	return 1;
400 }
401 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)402 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 				   u8 pos, int cap, int *ttl)
404 {
405 	u8 id;
406 	u16 ent;
407 
408 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
409 
410 	while ((*ttl)--) {
411 		if (pos < 0x40)
412 			break;
413 		pos &= ~3;
414 		pci_bus_read_config_word(bus, devfn, pos, &ent);
415 
416 		id = ent & 0xff;
417 		if (id == 0xff)
418 			break;
419 		if (id == cap)
420 			return pos;
421 		pos = (ent >> 8);
422 	}
423 	return 0;
424 }
425 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)426 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			       u8 pos, int cap)
428 {
429 	int ttl = PCI_FIND_CAP_TTL;
430 
431 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)434 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 	return __pci_find_next_cap(dev->bus, dev->devfn,
437 				   pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)441 static int __pci_bus_find_cap_start(struct pci_bus *bus,
442 				    unsigned int devfn, u8 hdr_type)
443 {
444 	u16 status;
445 
446 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 	if (!(status & PCI_STATUS_CAP_LIST))
448 		return 0;
449 
450 	switch (hdr_type) {
451 	case PCI_HEADER_TYPE_NORMAL:
452 	case PCI_HEADER_TYPE_BRIDGE:
453 		return PCI_CAPABILITY_LIST;
454 	case PCI_HEADER_TYPE_CARDBUS:
455 		return PCI_CB_CAPABILITY_LIST;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * pci_find_capability - query for devices' capabilities
463  * @dev: PCI device to query
464  * @cap: capability code
465  *
466  * Tell if a device supports a given PCI capability.
467  * Returns the address of the requested capability structure within the
468  * device's PCI configuration space or 0 in case the device does not
469  * support it.  Possible values for @cap include:
470  *
471  *  %PCI_CAP_ID_PM           Power Management
472  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
473  *  %PCI_CAP_ID_VPD          Vital Product Data
474  *  %PCI_CAP_ID_SLOTID       Slot Identification
475  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
476  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
477  *  %PCI_CAP_ID_PCIX         PCI-X
478  *  %PCI_CAP_ID_EXP          PCI Express
479  */
pci_find_capability(struct pci_dev * dev,int cap)480 int pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 	int pos;
483 
484 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 	if (pos)
486 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487 
488 	return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491 
492 /**
493  * pci_bus_find_capability - query for devices' capabilities
494  * @bus: the PCI bus to query
495  * @devfn: PCI device to query
496  * @cap: capability code
497  *
498  * Like pci_find_capability() but works for PCI devices that do not have a
499  * pci_dev structure set up yet.
500  *
501  * Returns the address of the requested capability structure within the
502  * device's PCI configuration space or 0 in case the device does not
503  * support it.
504  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)505 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 	int pos;
508 	u8 hdr_type;
509 
510 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
511 
512 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
513 	if (pos)
514 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
515 
516 	return pos;
517 }
518 EXPORT_SYMBOL(pci_bus_find_capability);
519 
520 /**
521  * pci_find_next_ext_capability - Find an extended capability
522  * @dev: PCI device to query
523  * @start: address at which to start looking (0 to start at beginning of list)
524  * @cap: capability code
525  *
526  * Returns the address of the next matching extended capability structure
527  * within the device's PCI configuration space or 0 if the device does
528  * not support it.  Some capabilities can occur several times, e.g., the
529  * vendor-specific capability, and this provides a way to find them all.
530  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)531 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
532 {
533 	u32 header;
534 	int ttl;
535 	int pos = PCI_CFG_SPACE_SIZE;
536 
537 	/* minimum 8 bytes per capability */
538 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
539 
540 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
541 		return 0;
542 
543 	if (start)
544 		pos = start;
545 
546 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
547 		return 0;
548 
549 	/*
550 	 * If we have no capabilities, this is indicated by cap ID,
551 	 * cap version and next pointer all being 0.
552 	 */
553 	if (header == 0)
554 		return 0;
555 
556 	while (ttl-- > 0) {
557 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
558 			return pos;
559 
560 		pos = PCI_EXT_CAP_NEXT(header);
561 		if (pos < PCI_CFG_SPACE_SIZE)
562 			break;
563 
564 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
565 			break;
566 	}
567 
568 	return 0;
569 }
570 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
571 
572 /**
573  * pci_find_ext_capability - Find an extended capability
574  * @dev: PCI device to query
575  * @cap: capability code
576  *
577  * Returns the address of the requested extended capability structure
578  * within the device's PCI configuration space or 0 if the device does
579  * not support it.  Possible values for @cap include:
580  *
581  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
582  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
583  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
584  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
585  */
pci_find_ext_capability(struct pci_dev * dev,int cap)586 int pci_find_ext_capability(struct pci_dev *dev, int cap)
587 {
588 	return pci_find_next_ext_capability(dev, 0, cap);
589 }
590 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
591 
592 /**
593  * pci_get_dsn - Read and return the 8-byte Device Serial Number
594  * @dev: PCI device to query
595  *
596  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
597  * Number.
598  *
599  * Returns the DSN, or zero if the capability does not exist.
600  */
pci_get_dsn(struct pci_dev * dev)601 u64 pci_get_dsn(struct pci_dev *dev)
602 {
603 	u32 dword;
604 	u64 dsn;
605 	int pos;
606 
607 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
608 	if (!pos)
609 		return 0;
610 
611 	/*
612 	 * The Device Serial Number is two dwords offset 4 bytes from the
613 	 * capability position. The specification says that the first dword is
614 	 * the lower half, and the second dword is the upper half.
615 	 */
616 	pos += 4;
617 	pci_read_config_dword(dev, pos, &dword);
618 	dsn = (u64)dword;
619 	pci_read_config_dword(dev, pos + 4, &dword);
620 	dsn |= ((u64)dword) << 32;
621 
622 	return dsn;
623 }
624 EXPORT_SYMBOL_GPL(pci_get_dsn);
625 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)626 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
627 {
628 	int rc, ttl = PCI_FIND_CAP_TTL;
629 	u8 cap, mask;
630 
631 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
632 		mask = HT_3BIT_CAP_MASK;
633 	else
634 		mask = HT_5BIT_CAP_MASK;
635 
636 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
637 				      PCI_CAP_ID_HT, &ttl);
638 	while (pos) {
639 		rc = pci_read_config_byte(dev, pos + 3, &cap);
640 		if (rc != PCIBIOS_SUCCESSFUL)
641 			return 0;
642 
643 		if ((cap & mask) == ht_cap)
644 			return pos;
645 
646 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
647 					      pos + PCI_CAP_LIST_NEXT,
648 					      PCI_CAP_ID_HT, &ttl);
649 	}
650 
651 	return 0;
652 }
653 /**
654  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
655  * @dev: PCI device to query
656  * @pos: Position from which to continue searching
657  * @ht_cap: Hypertransport capability code
658  *
659  * To be used in conjunction with pci_find_ht_capability() to search for
660  * all capabilities matching @ht_cap. @pos should always be a value returned
661  * from pci_find_ht_capability().
662  *
663  * NB. To be 100% safe against broken PCI devices, the caller should take
664  * steps to avoid an infinite loop.
665  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)666 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
667 {
668 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671 
672 /**
673  * pci_find_ht_capability - query a device's Hypertransport capabilities
674  * @dev: PCI device to query
675  * @ht_cap: Hypertransport capability code
676  *
677  * Tell if a device supports a given Hypertransport capability.
678  * Returns an address within the device's PCI configuration space
679  * or 0 in case the device does not support the request capability.
680  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681  * which has a Hypertransport capability matching @ht_cap.
682  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)683 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 	int pos;
686 
687 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 	if (pos)
689 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690 
691 	return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694 
695 /**
696  * pci_find_parent_resource - return resource region of parent bus of given
697  *			      region
698  * @dev: PCI device structure contains resources to be searched
699  * @res: child resource record for which parent is sought
700  *
701  * For given resource region of given device, return the resource region of
702  * parent bus the given region is contained in.
703  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)704 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
705 					  struct resource *res)
706 {
707 	const struct pci_bus *bus = dev->bus;
708 	struct resource *r;
709 	int i;
710 
711 	pci_bus_for_each_resource(bus, r, i) {
712 		if (!r)
713 			continue;
714 		if (resource_contains(r, res)) {
715 
716 			/*
717 			 * If the window is prefetchable but the BAR is
718 			 * not, the allocator made a mistake.
719 			 */
720 			if (r->flags & IORESOURCE_PREFETCH &&
721 			    !(res->flags & IORESOURCE_PREFETCH))
722 				return NULL;
723 
724 			/*
725 			 * If we're below a transparent bridge, there may
726 			 * be both a positively-decoded aperture and a
727 			 * subtractively-decoded region that contain the BAR.
728 			 * We want the positively-decoded one, so this depends
729 			 * on pci_bus_for_each_resource() giving us those
730 			 * first.
731 			 */
732 			return r;
733 		}
734 	}
735 	return NULL;
736 }
737 EXPORT_SYMBOL(pci_find_parent_resource);
738 
739 /**
740  * pci_find_resource - Return matching PCI device resource
741  * @dev: PCI device to query
742  * @res: Resource to look for
743  *
744  * Goes over standard PCI resources (BARs) and checks if the given resource
745  * is partially or fully contained in any of them. In that case the
746  * matching resource is returned, %NULL otherwise.
747  */
pci_find_resource(struct pci_dev * dev,struct resource * res)748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
749 {
750 	int i;
751 
752 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
753 		struct resource *r = &dev->resource[i];
754 
755 		if (r->start && resource_contains(r, res))
756 			return r;
757 	}
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(pci_find_resource);
762 
763 /**
764  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765  * @dev: the PCI device to operate on
766  * @pos: config space offset of status word
767  * @mask: mask of bit(s) to care about in status word
768  *
769  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
770  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
772 {
773 	int i;
774 
775 	/* Wait for Transaction Pending bit clean */
776 	for (i = 0; i < 4; i++) {
777 		u16 status;
778 		if (i)
779 			msleep((1 << (i - 1)) * 100);
780 
781 		pci_read_config_word(dev, pos, &status);
782 		if (!(status & mask))
783 			return 1;
784 	}
785 
786 	return 0;
787 }
788 
789 static int pci_acs_enable;
790 
791 /**
792  * pci_request_acs - ask for ACS to be enabled if supported
793  */
pci_request_acs(void)794 void pci_request_acs(void)
795 {
796 	pci_acs_enable = 1;
797 }
798 
799 static const char *disable_acs_redir_param;
800 
801 /**
802  * pci_disable_acs_redir - disable ACS redirect capabilities
803  * @dev: the PCI device
804  *
805  * For only devices specified in the disable_acs_redir parameter.
806  */
pci_disable_acs_redir(struct pci_dev * dev)807 static void pci_disable_acs_redir(struct pci_dev *dev)
808 {
809 	int ret = 0;
810 	const char *p;
811 	int pos;
812 	u16 ctrl;
813 
814 	if (!disable_acs_redir_param)
815 		return;
816 
817 	p = disable_acs_redir_param;
818 	while (*p) {
819 		ret = pci_dev_str_match(dev, p, &p);
820 		if (ret < 0) {
821 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 				     disable_acs_redir_param);
823 
824 			break;
825 		} else if (ret == 1) {
826 			/* Found a match */
827 			break;
828 		}
829 
830 		if (*p != ';' && *p != ',') {
831 			/* End of param or invalid format */
832 			break;
833 		}
834 		p++;
835 	}
836 
837 	if (ret != 1)
838 		return;
839 
840 	if (!pci_dev_specific_disable_acs_redir(dev))
841 		return;
842 
843 	pos = dev->acs_cap;
844 	if (!pos) {
845 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
846 		return;
847 	}
848 
849 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
850 
851 	/* P2P Request & Completion Redirect */
852 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
853 
854 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
855 
856 	pci_info(dev, "disabled ACS redirect\n");
857 }
858 
859 /**
860  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861  * @dev: the PCI device
862  */
pci_std_enable_acs(struct pci_dev * dev)863 static void pci_std_enable_acs(struct pci_dev *dev)
864 {
865 	int pos;
866 	u16 cap;
867 	u16 ctrl;
868 
869 	pos = dev->acs_cap;
870 	if (!pos)
871 		return;
872 
873 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
874 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
875 
876 	/* Source Validation */
877 	ctrl |= (cap & PCI_ACS_SV);
878 
879 	/* P2P Request Redirect */
880 	ctrl |= (cap & PCI_ACS_RR);
881 
882 	/* P2P Completion Redirect */
883 	ctrl |= (cap & PCI_ACS_CR);
884 
885 	/* Upstream Forwarding */
886 	ctrl |= (cap & PCI_ACS_UF);
887 
888 	/* Enable Translation Blocking for external devices */
889 	if (dev->external_facing || dev->untrusted)
890 		ctrl |= (cap & PCI_ACS_TB);
891 
892 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
893 }
894 
895 /**
896  * pci_enable_acs - enable ACS if hardware support it
897  * @dev: the PCI device
898  */
pci_enable_acs(struct pci_dev * dev)899 static void pci_enable_acs(struct pci_dev *dev)
900 {
901 	if (!pci_acs_enable)
902 		goto disable_acs_redir;
903 
904 	if (!pci_dev_specific_enable_acs(dev))
905 		goto disable_acs_redir;
906 
907 	pci_std_enable_acs(dev);
908 
909 disable_acs_redir:
910 	/*
911 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 	 * enabled by the kernel because it may have been enabled by
913 	 * platform firmware.  So if we are told to disable it, we should
914 	 * always disable it after setting the kernel's default
915 	 * preferences.
916 	 */
917 	pci_disable_acs_redir(dev);
918 }
919 
920 /**
921  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922  * @dev: PCI device to have its BARs restored
923  *
924  * Restore the BAR values for a given device, so as to make it
925  * accessible by its driver.
926  */
pci_restore_bars(struct pci_dev * dev)927 static void pci_restore_bars(struct pci_dev *dev)
928 {
929 	int i;
930 
931 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
932 		pci_update_resource(dev, i);
933 }
934 
935 static const struct pci_platform_pm_ops *pci_platform_pm;
936 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
938 {
939 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
940 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
941 		return -EINVAL;
942 	pci_platform_pm = ops;
943 	return 0;
944 }
945 
platform_pci_power_manageable(struct pci_dev * dev)946 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
947 {
948 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
949 }
950 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)951 static inline int platform_pci_set_power_state(struct pci_dev *dev,
952 					       pci_power_t t)
953 {
954 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
955 }
956 
platform_pci_get_power_state(struct pci_dev * dev)957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
958 {
959 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
960 }
961 
platform_pci_refresh_power_state(struct pci_dev * dev)962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
963 {
964 	if (pci_platform_pm && pci_platform_pm->refresh_state)
965 		pci_platform_pm->refresh_state(dev);
966 }
967 
platform_pci_choose_state(struct pci_dev * dev)968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
969 {
970 	return pci_platform_pm ?
971 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
972 }
973 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
975 {
976 	return pci_platform_pm ?
977 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
978 }
979 
platform_pci_need_resume(struct pci_dev * dev)980 static inline bool platform_pci_need_resume(struct pci_dev *dev)
981 {
982 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
983 }
984 
platform_pci_bridge_d3(struct pci_dev * dev)985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
986 {
987 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
988 		return pci_platform_pm->bridge_d3(dev);
989 	return false;
990 }
991 
992 /**
993  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
994  *			     given PCI device
995  * @dev: PCI device to handle.
996  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
997  *
998  * RETURN VALUE:
999  * -EINVAL if the requested state is invalid.
1000  * -EIO if device does not support PCI PM or its PM capabilities register has a
1001  * wrong version, or device doesn't support the requested state.
1002  * 0 if device already is in the requested state.
1003  * 0 if device's power state has been successfully changed.
1004  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1006 {
1007 	u16 pmcsr;
1008 	bool need_restore = false;
1009 
1010 	/* Check if we're already there */
1011 	if (dev->current_state == state)
1012 		return 0;
1013 
1014 	if (!dev->pm_cap)
1015 		return -EIO;
1016 
1017 	if (state < PCI_D0 || state > PCI_D3hot)
1018 		return -EINVAL;
1019 
1020 	/*
1021 	 * Validate transition: We can enter D0 from any state, but if
1022 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1023 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 	 * we'd have to go from D3 to D0, then to D1.
1025 	 */
1026 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027 	    && dev->current_state > state) {
1028 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1029 			pci_power_name(dev->current_state),
1030 			pci_power_name(state));
1031 		return -EINVAL;
1032 	}
1033 
1034 	/* Check if this device supports the desired state */
1035 	if ((state == PCI_D1 && !dev->d1_support)
1036 	   || (state == PCI_D2 && !dev->d2_support))
1037 		return -EIO;
1038 
1039 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040 	if (pmcsr == (u16) ~0) {
1041 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042 			pci_power_name(dev->current_state),
1043 			pci_power_name(state));
1044 		return -EIO;
1045 	}
1046 
1047 	/*
1048 	 * If we're (effectively) in D3, force entire word to 0.
1049 	 * This doesn't affect PME_Status, disables PME_En, and
1050 	 * sets PowerState to 0.
1051 	 */
1052 	switch (dev->current_state) {
1053 	case PCI_D0:
1054 	case PCI_D1:
1055 	case PCI_D2:
1056 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057 		pmcsr |= state;
1058 		break;
1059 	case PCI_D3hot:
1060 	case PCI_D3cold:
1061 	case PCI_UNKNOWN: /* Boot-up */
1062 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064 			need_restore = true;
1065 		fallthrough;	/* force to D0 */
1066 	default:
1067 		pmcsr = 0;
1068 		break;
1069 	}
1070 
1071 	/* Enter specified state */
1072 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1073 
1074 	/*
1075 	 * Mandatory power management transition delays; see PCI PM 1.1
1076 	 * 5.6.1 table 18
1077 	 */
1078 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079 		pci_dev_d3_sleep(dev);
1080 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081 		udelay(PCI_PM_D2_DELAY);
1082 
1083 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085 	if (dev->current_state != state)
1086 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087 			 pci_power_name(dev->current_state),
1088 			 pci_power_name(state));
1089 
1090 	/*
1091 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 	 * For example, at least some versions of the 3c905B and the
1096 	 * 3c556B exhibit this behaviour.
1097 	 *
1098 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 	 * devices in a D3hot state at boot.  Consequently, we need to
1100 	 * restore at least the BARs so that the device will be
1101 	 * accessible to its driver.
1102 	 */
1103 	if (need_restore)
1104 		pci_restore_bars(dev);
1105 
1106 	if (dev->bus->self)
1107 		pcie_aspm_pm_state_change(dev->bus->self);
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * pci_update_current_state - Read power state of given device and cache it
1114  * @dev: PCI device to handle.
1115  * @state: State to cache in case the device doesn't have the PM capability
1116  *
1117  * The power state is read from the PMCSR register, which however is
1118  * inaccessible in D3cold.  The platform firmware is therefore queried first
1119  * to detect accessibility of the register.  In case the platform firmware
1120  * reports an incorrect state or the device isn't power manageable by the
1121  * platform at all, we try to detect D3cold by testing accessibility of the
1122  * vendor ID in config space.
1123  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1125 {
1126 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127 	    !pci_device_is_present(dev)) {
1128 		dev->current_state = PCI_D3cold;
1129 	} else if (dev->pm_cap) {
1130 		u16 pmcsr;
1131 
1132 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 	} else {
1135 		dev->current_state = state;
1136 	}
1137 }
1138 
1139 /**
1140  * pci_refresh_power_state - Refresh the given device's power state data
1141  * @dev: Target PCI device.
1142  *
1143  * Ask the platform to refresh the devices power state information and invoke
1144  * pci_update_current_state() to update its current PCI power state.
1145  */
pci_refresh_power_state(struct pci_dev * dev)1146 void pci_refresh_power_state(struct pci_dev *dev)
1147 {
1148 	if (platform_pci_power_manageable(dev))
1149 		platform_pci_refresh_power_state(dev);
1150 
1151 	pci_update_current_state(dev, dev->current_state);
1152 }
1153 
1154 /**
1155  * pci_platform_power_transition - Use platform to change device power state
1156  * @dev: PCI device to handle.
1157  * @state: State to put the device into.
1158  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1160 {
1161 	int error;
1162 
1163 	if (platform_pci_power_manageable(dev)) {
1164 		error = platform_pci_set_power_state(dev, state);
1165 		if (!error)
1166 			pci_update_current_state(dev, state);
1167 	} else
1168 		error = -ENODEV;
1169 
1170 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171 		dev->current_state = PCI_D0;
1172 
1173 	return error;
1174 }
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1176 
1177 /**
1178  * pci_wakeup - Wake up a PCI device
1179  * @pci_dev: Device to handle.
1180  * @ign: ignored parameter
1181  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)1182 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1183 {
1184 	pci_wakeup_event(pci_dev);
1185 	pm_request_resume(&pci_dev->dev);
1186 	return 0;
1187 }
1188 
1189 /**
1190  * pci_wakeup_bus - Walk given bus and wake up devices on it
1191  * @bus: Top bus of the subtree to walk.
1192  */
pci_wakeup_bus(struct pci_bus * bus)1193 void pci_wakeup_bus(struct pci_bus *bus)
1194 {
1195 	if (bus)
1196 		pci_walk_bus(bus, pci_wakeup, NULL);
1197 }
1198 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1199 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1200 {
1201 	int delay = 1;
1202 	u32 id;
1203 
1204 	/*
1205 	 * After reset, the device should not silently discard config
1206 	 * requests, but it may still indicate that it needs more time by
1207 	 * responding to them with CRS completions.  The Root Port will
1208 	 * generally synthesize ~0 data to complete the read (except when
1209 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1210 	 * case it synthesizes 0x0001 data).
1211 	 *
1212 	 * Wait for the device to return a non-CRS completion.  Read the
1213 	 * Command register instead of Vendor ID so we don't have to
1214 	 * contend with the CRS SV value.
1215 	 */
1216 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1217 	while (id == ~0) {
1218 		if (delay > timeout) {
1219 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1220 				 delay - 1, reset_type);
1221 			return -ENOTTY;
1222 		}
1223 
1224 		if (delay > 1000)
1225 			pci_info(dev, "not ready %dms after %s; waiting\n",
1226 				 delay - 1, reset_type);
1227 
1228 		msleep(delay);
1229 		delay *= 2;
1230 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1231 	}
1232 
1233 	if (delay > 1000)
1234 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1235 			 reset_type);
1236 
1237 	return 0;
1238 }
1239 
1240 /**
1241  * pci_power_up - Put the given device into D0
1242  * @dev: PCI device to power up
1243  */
pci_power_up(struct pci_dev * dev)1244 int pci_power_up(struct pci_dev *dev)
1245 {
1246 	pci_platform_power_transition(dev, PCI_D0);
1247 
1248 	/*
1249 	 * Mandatory power management transition delays are handled in
1250 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1251 	 * corresponding bridge.
1252 	 */
1253 	if (dev->runtime_d3cold) {
1254 		/*
1255 		 * When powering on a bridge from D3cold, the whole hierarchy
1256 		 * may be powered on into D0uninitialized state, resume them to
1257 		 * give them a chance to suspend again
1258 		 */
1259 		pci_wakeup_bus(dev->subordinate);
1260 	}
1261 
1262 	return pci_raw_set_power_state(dev, PCI_D0);
1263 }
1264 
1265 /**
1266  * __pci_dev_set_current_state - Set current state of a PCI device
1267  * @dev: Device to handle
1268  * @data: pointer to state to be set
1269  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1270 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1271 {
1272 	pci_power_t state = *(pci_power_t *)data;
1273 
1274 	dev->current_state = state;
1275 	return 0;
1276 }
1277 
1278 /**
1279  * pci_bus_set_current_state - Walk given bus and set current state of devices
1280  * @bus: Top bus of the subtree to walk.
1281  * @state: state to be set
1282  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1283 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1284 {
1285 	if (bus)
1286 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1287 }
1288 
1289 /**
1290  * pci_set_power_state - Set the power state of a PCI device
1291  * @dev: PCI device to handle.
1292  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1293  *
1294  * Transition a device to a new power state, using the platform firmware and/or
1295  * the device's PCI PM registers.
1296  *
1297  * RETURN VALUE:
1298  * -EINVAL if the requested state is invalid.
1299  * -EIO if device does not support PCI PM or its PM capabilities register has a
1300  * wrong version, or device doesn't support the requested state.
1301  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1302  * 0 if device already is in the requested state.
1303  * 0 if the transition is to D3 but D3 is not supported.
1304  * 0 if device's power state has been successfully changed.
1305  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1306 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1307 {
1308 	int error;
1309 
1310 	/* Bound the state we're entering */
1311 	if (state > PCI_D3cold)
1312 		state = PCI_D3cold;
1313 	else if (state < PCI_D0)
1314 		state = PCI_D0;
1315 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1316 
1317 		/*
1318 		 * If the device or the parent bridge do not support PCI
1319 		 * PM, ignore the request if we're doing anything other
1320 		 * than putting it into D0 (which would only happen on
1321 		 * boot).
1322 		 */
1323 		return 0;
1324 
1325 	/* Check if we're already there */
1326 	if (dev->current_state == state)
1327 		return 0;
1328 
1329 	if (state == PCI_D0)
1330 		return pci_power_up(dev);
1331 
1332 	/*
1333 	 * This device is quirked not to be put into D3, so don't put it in
1334 	 * D3
1335 	 */
1336 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1337 		return 0;
1338 
1339 	/*
1340 	 * To put device in D3cold, we put device into D3hot in native
1341 	 * way, then put device into D3cold with platform ops
1342 	 */
1343 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1344 					PCI_D3hot : state);
1345 
1346 	if (pci_platform_power_transition(dev, state))
1347 		return error;
1348 
1349 	/* Powering off a bridge may power off the whole hierarchy */
1350 	if (state == PCI_D3cold)
1351 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1352 
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(pci_set_power_state);
1356 
1357 /**
1358  * pci_choose_state - Choose the power state of a PCI device
1359  * @dev: PCI device to be suspended
1360  * @state: target sleep state for the whole system. This is the value
1361  *	   that is passed to suspend() function.
1362  *
1363  * Returns PCI power state suitable for given device and given system
1364  * message.
1365  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1366 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1367 {
1368 	pci_power_t ret;
1369 
1370 	if (!dev->pm_cap)
1371 		return PCI_D0;
1372 
1373 	ret = platform_pci_choose_state(dev);
1374 	if (ret != PCI_POWER_ERROR)
1375 		return ret;
1376 
1377 	switch (state.event) {
1378 	case PM_EVENT_ON:
1379 		return PCI_D0;
1380 	case PM_EVENT_FREEZE:
1381 	case PM_EVENT_PRETHAW:
1382 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1383 	case PM_EVENT_SUSPEND:
1384 	case PM_EVENT_HIBERNATE:
1385 		return PCI_D3hot;
1386 	default:
1387 		pci_info(dev, "unrecognized suspend event %d\n",
1388 			 state.event);
1389 		BUG();
1390 	}
1391 	return PCI_D0;
1392 }
1393 EXPORT_SYMBOL(pci_choose_state);
1394 
1395 #define PCI_EXP_SAVE_REGS	7
1396 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1397 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1398 						       u16 cap, bool extended)
1399 {
1400 	struct pci_cap_saved_state *tmp;
1401 
1402 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1403 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1404 			return tmp;
1405 	}
1406 	return NULL;
1407 }
1408 
pci_find_saved_cap(struct pci_dev * dev,char cap)1409 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1410 {
1411 	return _pci_find_saved_cap(dev, cap, false);
1412 }
1413 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1414 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1415 {
1416 	return _pci_find_saved_cap(dev, cap, true);
1417 }
1418 
pci_save_pcie_state(struct pci_dev * dev)1419 static int pci_save_pcie_state(struct pci_dev *dev)
1420 {
1421 	int i = 0;
1422 	struct pci_cap_saved_state *save_state;
1423 	u16 *cap;
1424 
1425 	if (!pci_is_pcie(dev))
1426 		return 0;
1427 
1428 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1429 	if (!save_state) {
1430 		pci_err(dev, "buffer not found in %s\n", __func__);
1431 		return -ENOMEM;
1432 	}
1433 
1434 	cap = (u16 *)&save_state->cap.data[0];
1435 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1436 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1437 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1438 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1439 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1440 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1441 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1442 
1443 	return 0;
1444 }
1445 
pci_restore_pcie_state(struct pci_dev * dev)1446 static void pci_restore_pcie_state(struct pci_dev *dev)
1447 {
1448 	int i = 0;
1449 	struct pci_cap_saved_state *save_state;
1450 	u16 *cap;
1451 
1452 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 	if (!save_state)
1454 		return;
1455 
1456 	cap = (u16 *)&save_state->cap.data[0];
1457 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1458 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1459 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1460 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1461 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1462 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1463 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1464 }
1465 
pci_save_pcix_state(struct pci_dev * dev)1466 static int pci_save_pcix_state(struct pci_dev *dev)
1467 {
1468 	int pos;
1469 	struct pci_cap_saved_state *save_state;
1470 
1471 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1472 	if (!pos)
1473 		return 0;
1474 
1475 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1476 	if (!save_state) {
1477 		pci_err(dev, "buffer not found in %s\n", __func__);
1478 		return -ENOMEM;
1479 	}
1480 
1481 	pci_read_config_word(dev, pos + PCI_X_CMD,
1482 			     (u16 *)save_state->cap.data);
1483 
1484 	return 0;
1485 }
1486 
pci_restore_pcix_state(struct pci_dev * dev)1487 static void pci_restore_pcix_state(struct pci_dev *dev)
1488 {
1489 	int i = 0, pos;
1490 	struct pci_cap_saved_state *save_state;
1491 	u16 *cap;
1492 
1493 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1494 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1495 	if (!save_state || !pos)
1496 		return;
1497 	cap = (u16 *)&save_state->cap.data[0];
1498 
1499 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1500 }
1501 
pci_save_ltr_state(struct pci_dev * dev)1502 static void pci_save_ltr_state(struct pci_dev *dev)
1503 {
1504 	int ltr;
1505 	struct pci_cap_saved_state *save_state;
1506 	u16 *cap;
1507 
1508 	if (!pci_is_pcie(dev))
1509 		return;
1510 
1511 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1512 	if (!ltr)
1513 		return;
1514 
1515 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1516 	if (!save_state) {
1517 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1518 		return;
1519 	}
1520 
1521 	cap = (u16 *)&save_state->cap.data[0];
1522 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1523 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1524 }
1525 
pci_restore_ltr_state(struct pci_dev * dev)1526 static void pci_restore_ltr_state(struct pci_dev *dev)
1527 {
1528 	struct pci_cap_saved_state *save_state;
1529 	int ltr;
1530 	u16 *cap;
1531 
1532 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1533 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1534 	if (!save_state || !ltr)
1535 		return;
1536 
1537 	cap = (u16 *)&save_state->cap.data[0];
1538 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1539 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1540 }
1541 
1542 /**
1543  * pci_save_state - save the PCI configuration space of a device before
1544  *		    suspending
1545  * @dev: PCI device that we're dealing with
1546  */
pci_save_state(struct pci_dev * dev)1547 int pci_save_state(struct pci_dev *dev)
1548 {
1549 	int i;
1550 	/* XXX: 100% dword access ok here? */
1551 	for (i = 0; i < 16; i++) {
1552 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1553 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1554 			i * 4, dev->saved_config_space[i]);
1555 	}
1556 	dev->state_saved = true;
1557 
1558 	i = pci_save_pcie_state(dev);
1559 	if (i != 0)
1560 		return i;
1561 
1562 	i = pci_save_pcix_state(dev);
1563 	if (i != 0)
1564 		return i;
1565 
1566 	pci_save_ltr_state(dev);
1567 	pci_save_dpc_state(dev);
1568 	pci_save_aer_state(dev);
1569 	return pci_save_vc_state(dev);
1570 }
1571 EXPORT_SYMBOL(pci_save_state);
1572 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1573 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1574 				     u32 saved_val, int retry, bool force)
1575 {
1576 	u32 val;
1577 
1578 	pci_read_config_dword(pdev, offset, &val);
1579 	if (!force && val == saved_val)
1580 		return;
1581 
1582 	for (;;) {
1583 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1584 			offset, val, saved_val);
1585 		pci_write_config_dword(pdev, offset, saved_val);
1586 		if (retry-- <= 0)
1587 			return;
1588 
1589 		pci_read_config_dword(pdev, offset, &val);
1590 		if (val == saved_val)
1591 			return;
1592 
1593 		mdelay(1);
1594 	}
1595 }
1596 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1597 static void pci_restore_config_space_range(struct pci_dev *pdev,
1598 					   int start, int end, int retry,
1599 					   bool force)
1600 {
1601 	int index;
1602 
1603 	for (index = end; index >= start; index--)
1604 		pci_restore_config_dword(pdev, 4 * index,
1605 					 pdev->saved_config_space[index],
1606 					 retry, force);
1607 }
1608 
pci_restore_config_space(struct pci_dev * pdev)1609 static void pci_restore_config_space(struct pci_dev *pdev)
1610 {
1611 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1612 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1613 		/* Restore BARs before the command register. */
1614 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1615 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1616 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1617 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1618 
1619 		/*
1620 		 * Force rewriting of prefetch registers to avoid S3 resume
1621 		 * issues on Intel PCI bridges that occur when these
1622 		 * registers are not explicitly written.
1623 		 */
1624 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1625 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1626 	} else {
1627 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1628 	}
1629 }
1630 
pci_restore_rebar_state(struct pci_dev * pdev)1631 static void pci_restore_rebar_state(struct pci_dev *pdev)
1632 {
1633 	unsigned int pos, nbars, i;
1634 	u32 ctrl;
1635 
1636 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1637 	if (!pos)
1638 		return;
1639 
1640 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1641 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1642 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1643 
1644 	for (i = 0; i < nbars; i++, pos += 8) {
1645 		struct resource *res;
1646 		int bar_idx, size;
1647 
1648 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1649 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1650 		res = pdev->resource + bar_idx;
1651 		size = ilog2(resource_size(res)) - 20;
1652 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1653 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1654 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1655 	}
1656 }
1657 
1658 /**
1659  * pci_restore_state - Restore the saved state of a PCI device
1660  * @dev: PCI device that we're dealing with
1661  */
pci_restore_state(struct pci_dev * dev)1662 void pci_restore_state(struct pci_dev *dev)
1663 {
1664 	if (!dev->state_saved)
1665 		return;
1666 
1667 	/*
1668 	 * Restore max latencies (in the LTR capability) before enabling
1669 	 * LTR itself (in the PCIe capability).
1670 	 */
1671 	pci_restore_ltr_state(dev);
1672 
1673 	pci_restore_pcie_state(dev);
1674 	pci_restore_pasid_state(dev);
1675 	pci_restore_pri_state(dev);
1676 	pci_restore_ats_state(dev);
1677 	pci_restore_vc_state(dev);
1678 	pci_restore_rebar_state(dev);
1679 	pci_restore_dpc_state(dev);
1680 
1681 	pci_aer_clear_status(dev);
1682 	pci_restore_aer_state(dev);
1683 
1684 	pci_restore_config_space(dev);
1685 
1686 	pci_restore_pcix_state(dev);
1687 	pci_restore_msi_state(dev);
1688 
1689 	/* Restore ACS and IOV configuration state */
1690 	pci_enable_acs(dev);
1691 	pci_restore_iov_state(dev);
1692 
1693 	dev->state_saved = false;
1694 }
1695 EXPORT_SYMBOL(pci_restore_state);
1696 
1697 struct pci_saved_state {
1698 	u32 config_space[16];
1699 	struct pci_cap_saved_data cap[];
1700 };
1701 
1702 /**
1703  * pci_store_saved_state - Allocate and return an opaque struct containing
1704  *			   the device saved state.
1705  * @dev: PCI device that we're dealing with
1706  *
1707  * Return NULL if no state or error.
1708  */
pci_store_saved_state(struct pci_dev * dev)1709 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1710 {
1711 	struct pci_saved_state *state;
1712 	struct pci_cap_saved_state *tmp;
1713 	struct pci_cap_saved_data *cap;
1714 	size_t size;
1715 
1716 	if (!dev->state_saved)
1717 		return NULL;
1718 
1719 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1720 
1721 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1722 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1723 
1724 	state = kzalloc(size, GFP_KERNEL);
1725 	if (!state)
1726 		return NULL;
1727 
1728 	memcpy(state->config_space, dev->saved_config_space,
1729 	       sizeof(state->config_space));
1730 
1731 	cap = state->cap;
1732 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1733 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1734 		memcpy(cap, &tmp->cap, len);
1735 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1736 	}
1737 	/* Empty cap_save terminates list */
1738 
1739 	return state;
1740 }
1741 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1742 
1743 /**
1744  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1745  * @dev: PCI device that we're dealing with
1746  * @state: Saved state returned from pci_store_saved_state()
1747  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1748 int pci_load_saved_state(struct pci_dev *dev,
1749 			 struct pci_saved_state *state)
1750 {
1751 	struct pci_cap_saved_data *cap;
1752 
1753 	dev->state_saved = false;
1754 
1755 	if (!state)
1756 		return 0;
1757 
1758 	memcpy(dev->saved_config_space, state->config_space,
1759 	       sizeof(state->config_space));
1760 
1761 	cap = state->cap;
1762 	while (cap->size) {
1763 		struct pci_cap_saved_state *tmp;
1764 
1765 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1766 		if (!tmp || tmp->cap.size != cap->size)
1767 			return -EINVAL;
1768 
1769 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1770 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1771 		       sizeof(struct pci_cap_saved_data) + cap->size);
1772 	}
1773 
1774 	dev->state_saved = true;
1775 	return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1778 
1779 /**
1780  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1781  *				   and free the memory allocated for it.
1782  * @dev: PCI device that we're dealing with
1783  * @state: Pointer to saved state returned from pci_store_saved_state()
1784  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1785 int pci_load_and_free_saved_state(struct pci_dev *dev,
1786 				  struct pci_saved_state **state)
1787 {
1788 	int ret = pci_load_saved_state(dev, *state);
1789 	kfree(*state);
1790 	*state = NULL;
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1794 
pcibios_enable_device(struct pci_dev * dev,int bars)1795 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1796 {
1797 	return pci_enable_resources(dev, bars);
1798 }
1799 
do_pci_enable_device(struct pci_dev * dev,int bars)1800 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1801 {
1802 	int err;
1803 	struct pci_dev *bridge;
1804 	u16 cmd;
1805 	u8 pin;
1806 
1807 	err = pci_set_power_state(dev, PCI_D0);
1808 	if (err < 0 && err != -EIO)
1809 		return err;
1810 
1811 	bridge = pci_upstream_bridge(dev);
1812 	if (bridge)
1813 		pcie_aspm_powersave_config_link(bridge);
1814 
1815 	err = pcibios_enable_device(dev, bars);
1816 	if (err < 0)
1817 		return err;
1818 	pci_fixup_device(pci_fixup_enable, dev);
1819 
1820 	if (dev->msi_enabled || dev->msix_enabled)
1821 		return 0;
1822 
1823 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1824 	if (pin) {
1825 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1826 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1827 			pci_write_config_word(dev, PCI_COMMAND,
1828 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * pci_reenable_device - Resume abandoned device
1836  * @dev: PCI device to be resumed
1837  *
1838  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1839  * to be called by normal code, write proper resume handler and use it instead.
1840  */
pci_reenable_device(struct pci_dev * dev)1841 int pci_reenable_device(struct pci_dev *dev)
1842 {
1843 	if (pci_is_enabled(dev))
1844 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(pci_reenable_device);
1848 
pci_enable_bridge(struct pci_dev * dev)1849 static void pci_enable_bridge(struct pci_dev *dev)
1850 {
1851 	struct pci_dev *bridge;
1852 	int retval;
1853 
1854 	bridge = pci_upstream_bridge(dev);
1855 	if (bridge)
1856 		pci_enable_bridge(bridge);
1857 
1858 	if (pci_is_enabled(dev)) {
1859 		if (!dev->is_busmaster)
1860 			pci_set_master(dev);
1861 		return;
1862 	}
1863 
1864 	retval = pci_enable_device(dev);
1865 	if (retval)
1866 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1867 			retval);
1868 	pci_set_master(dev);
1869 }
1870 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1871 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1872 {
1873 	struct pci_dev *bridge;
1874 	int err;
1875 	int i, bars = 0;
1876 
1877 	/*
1878 	 * Power state could be unknown at this point, either due to a fresh
1879 	 * boot or a device removal call.  So get the current power state
1880 	 * so that things like MSI message writing will behave as expected
1881 	 * (e.g. if the device really is in D0 at enable time).
1882 	 */
1883 	pci_update_current_state(dev, dev->current_state);
1884 
1885 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1886 		return 0;		/* already enabled */
1887 
1888 	bridge = pci_upstream_bridge(dev);
1889 	if (bridge)
1890 		pci_enable_bridge(bridge);
1891 
1892 	/* only skip sriov related */
1893 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1894 		if (dev->resource[i].flags & flags)
1895 			bars |= (1 << i);
1896 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1897 		if (dev->resource[i].flags & flags)
1898 			bars |= (1 << i);
1899 
1900 	err = do_pci_enable_device(dev, bars);
1901 	if (err < 0)
1902 		atomic_dec(&dev->enable_cnt);
1903 	return err;
1904 }
1905 
1906 /**
1907  * pci_enable_device_io - Initialize a device for use with IO space
1908  * @dev: PCI device to be initialized
1909  *
1910  * Initialize device before it's used by a driver. Ask low-level code
1911  * to enable I/O resources. Wake up the device if it was suspended.
1912  * Beware, this function can fail.
1913  */
pci_enable_device_io(struct pci_dev * dev)1914 int pci_enable_device_io(struct pci_dev *dev)
1915 {
1916 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1917 }
1918 EXPORT_SYMBOL(pci_enable_device_io);
1919 
1920 /**
1921  * pci_enable_device_mem - Initialize a device for use with Memory space
1922  * @dev: PCI device to be initialized
1923  *
1924  * Initialize device before it's used by a driver. Ask low-level code
1925  * to enable Memory resources. Wake up the device if it was suspended.
1926  * Beware, this function can fail.
1927  */
pci_enable_device_mem(struct pci_dev * dev)1928 int pci_enable_device_mem(struct pci_dev *dev)
1929 {
1930 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1931 }
1932 EXPORT_SYMBOL(pci_enable_device_mem);
1933 
1934 /**
1935  * pci_enable_device - Initialize device before it's used by a driver.
1936  * @dev: PCI device to be initialized
1937  *
1938  * Initialize device before it's used by a driver. Ask low-level code
1939  * to enable I/O and memory. Wake up the device if it was suspended.
1940  * Beware, this function can fail.
1941  *
1942  * Note we don't actually enable the device many times if we call
1943  * this function repeatedly (we just increment the count).
1944  */
pci_enable_device(struct pci_dev * dev)1945 int pci_enable_device(struct pci_dev *dev)
1946 {
1947 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1948 }
1949 EXPORT_SYMBOL(pci_enable_device);
1950 
1951 /*
1952  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1953  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1954  * there's no need to track it separately.  pci_devres is initialized
1955  * when a device is enabled using managed PCI device enable interface.
1956  */
1957 struct pci_devres {
1958 	unsigned int enabled:1;
1959 	unsigned int pinned:1;
1960 	unsigned int orig_intx:1;
1961 	unsigned int restore_intx:1;
1962 	unsigned int mwi:1;
1963 	u32 region_mask;
1964 };
1965 
pcim_release(struct device * gendev,void * res)1966 static void pcim_release(struct device *gendev, void *res)
1967 {
1968 	struct pci_dev *dev = to_pci_dev(gendev);
1969 	struct pci_devres *this = res;
1970 	int i;
1971 
1972 	if (dev->msi_enabled)
1973 		pci_disable_msi(dev);
1974 	if (dev->msix_enabled)
1975 		pci_disable_msix(dev);
1976 
1977 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1978 		if (this->region_mask & (1 << i))
1979 			pci_release_region(dev, i);
1980 
1981 	if (this->mwi)
1982 		pci_clear_mwi(dev);
1983 
1984 	if (this->restore_intx)
1985 		pci_intx(dev, this->orig_intx);
1986 
1987 	if (this->enabled && !this->pinned)
1988 		pci_disable_device(dev);
1989 }
1990 
get_pci_dr(struct pci_dev * pdev)1991 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1992 {
1993 	struct pci_devres *dr, *new_dr;
1994 
1995 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1996 	if (dr)
1997 		return dr;
1998 
1999 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2000 	if (!new_dr)
2001 		return NULL;
2002 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2003 }
2004 
find_pci_dr(struct pci_dev * pdev)2005 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2006 {
2007 	if (pci_is_managed(pdev))
2008 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2009 	return NULL;
2010 }
2011 
2012 /**
2013  * pcim_enable_device - Managed pci_enable_device()
2014  * @pdev: PCI device to be initialized
2015  *
2016  * Managed pci_enable_device().
2017  */
pcim_enable_device(struct pci_dev * pdev)2018 int pcim_enable_device(struct pci_dev *pdev)
2019 {
2020 	struct pci_devres *dr;
2021 	int rc;
2022 
2023 	dr = get_pci_dr(pdev);
2024 	if (unlikely(!dr))
2025 		return -ENOMEM;
2026 	if (dr->enabled)
2027 		return 0;
2028 
2029 	rc = pci_enable_device(pdev);
2030 	if (!rc) {
2031 		pdev->is_managed = 1;
2032 		dr->enabled = 1;
2033 	}
2034 	return rc;
2035 }
2036 EXPORT_SYMBOL(pcim_enable_device);
2037 
2038 /**
2039  * pcim_pin_device - Pin managed PCI device
2040  * @pdev: PCI device to pin
2041  *
2042  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2043  * driver detach.  @pdev must have been enabled with
2044  * pcim_enable_device().
2045  */
pcim_pin_device(struct pci_dev * pdev)2046 void pcim_pin_device(struct pci_dev *pdev)
2047 {
2048 	struct pci_devres *dr;
2049 
2050 	dr = find_pci_dr(pdev);
2051 	WARN_ON(!dr || !dr->enabled);
2052 	if (dr)
2053 		dr->pinned = 1;
2054 }
2055 EXPORT_SYMBOL(pcim_pin_device);
2056 
2057 /*
2058  * pcibios_add_device - provide arch specific hooks when adding device dev
2059  * @dev: the PCI device being added
2060  *
2061  * Permits the platform to provide architecture specific functionality when
2062  * devices are added. This is the default implementation. Architecture
2063  * implementations can override this.
2064  */
pcibios_add_device(struct pci_dev * dev)2065 int __weak pcibios_add_device(struct pci_dev *dev)
2066 {
2067 	return 0;
2068 }
2069 
2070 /**
2071  * pcibios_release_device - provide arch specific hooks when releasing
2072  *			    device dev
2073  * @dev: the PCI device being released
2074  *
2075  * Permits the platform to provide architecture specific functionality when
2076  * devices are released. This is the default implementation. Architecture
2077  * implementations can override this.
2078  */
pcibios_release_device(struct pci_dev * dev)2079 void __weak pcibios_release_device(struct pci_dev *dev) {}
2080 
2081 /**
2082  * pcibios_disable_device - disable arch specific PCI resources for device dev
2083  * @dev: the PCI device to disable
2084  *
2085  * Disables architecture specific PCI resources for the device. This
2086  * is the default implementation. Architecture implementations can
2087  * override this.
2088  */
pcibios_disable_device(struct pci_dev * dev)2089 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2090 
2091 /**
2092  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2093  * @irq: ISA IRQ to penalize
2094  * @active: IRQ active or not
2095  *
2096  * Permits the platform to provide architecture-specific functionality when
2097  * penalizing ISA IRQs. This is the default implementation. Architecture
2098  * implementations can override this.
2099  */
pcibios_penalize_isa_irq(int irq,int active)2100 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2101 
do_pci_disable_device(struct pci_dev * dev)2102 static void do_pci_disable_device(struct pci_dev *dev)
2103 {
2104 	u16 pci_command;
2105 
2106 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2107 	if (pci_command & PCI_COMMAND_MASTER) {
2108 		pci_command &= ~PCI_COMMAND_MASTER;
2109 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2110 	}
2111 
2112 	pcibios_disable_device(dev);
2113 }
2114 
2115 /**
2116  * pci_disable_enabled_device - Disable device without updating enable_cnt
2117  * @dev: PCI device to disable
2118  *
2119  * NOTE: This function is a backend of PCI power management routines and is
2120  * not supposed to be called drivers.
2121  */
pci_disable_enabled_device(struct pci_dev * dev)2122 void pci_disable_enabled_device(struct pci_dev *dev)
2123 {
2124 	if (pci_is_enabled(dev))
2125 		do_pci_disable_device(dev);
2126 }
2127 
2128 /**
2129  * pci_disable_device - Disable PCI device after use
2130  * @dev: PCI device to be disabled
2131  *
2132  * Signal to the system that the PCI device is not in use by the system
2133  * anymore.  This only involves disabling PCI bus-mastering, if active.
2134  *
2135  * Note we don't actually disable the device until all callers of
2136  * pci_enable_device() have called pci_disable_device().
2137  */
pci_disable_device(struct pci_dev * dev)2138 void pci_disable_device(struct pci_dev *dev)
2139 {
2140 	struct pci_devres *dr;
2141 
2142 	dr = find_pci_dr(dev);
2143 	if (dr)
2144 		dr->enabled = 0;
2145 
2146 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2147 		      "disabling already-disabled device");
2148 
2149 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2150 		return;
2151 
2152 	do_pci_disable_device(dev);
2153 
2154 	dev->is_busmaster = 0;
2155 }
2156 EXPORT_SYMBOL(pci_disable_device);
2157 
2158 /**
2159  * pcibios_set_pcie_reset_state - set reset state for device dev
2160  * @dev: the PCIe device reset
2161  * @state: Reset state to enter into
2162  *
2163  * Set the PCIe reset state for the device. This is the default
2164  * implementation. Architecture implementations can override this.
2165  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2166 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2167 					enum pcie_reset_state state)
2168 {
2169 	return -EINVAL;
2170 }
2171 
2172 /**
2173  * pci_set_pcie_reset_state - set reset state for device dev
2174  * @dev: the PCIe device reset
2175  * @state: Reset state to enter into
2176  *
2177  * Sets the PCI reset state for the device.
2178  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2179 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2180 {
2181 	return pcibios_set_pcie_reset_state(dev, state);
2182 }
2183 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2184 
pcie_clear_device_status(struct pci_dev * dev)2185 void pcie_clear_device_status(struct pci_dev *dev)
2186 {
2187 	u16 sta;
2188 
2189 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2190 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2191 }
2192 
2193 /**
2194  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2195  * @dev: PCIe root port or event collector.
2196  */
pcie_clear_root_pme_status(struct pci_dev * dev)2197 void pcie_clear_root_pme_status(struct pci_dev *dev)
2198 {
2199 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2200 }
2201 
2202 /**
2203  * pci_check_pme_status - Check if given device has generated PME.
2204  * @dev: Device to check.
2205  *
2206  * Check the PME status of the device and if set, clear it and clear PME enable
2207  * (if set).  Return 'true' if PME status and PME enable were both set or
2208  * 'false' otherwise.
2209  */
pci_check_pme_status(struct pci_dev * dev)2210 bool pci_check_pme_status(struct pci_dev *dev)
2211 {
2212 	int pmcsr_pos;
2213 	u16 pmcsr;
2214 	bool ret = false;
2215 
2216 	if (!dev->pm_cap)
2217 		return false;
2218 
2219 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2220 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2221 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2222 		return false;
2223 
2224 	/* Clear PME status. */
2225 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2226 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2227 		/* Disable PME to avoid interrupt flood. */
2228 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2229 		ret = true;
2230 	}
2231 
2232 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2233 
2234 	return ret;
2235 }
2236 
2237 /**
2238  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2239  * @dev: Device to handle.
2240  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2241  *
2242  * Check if @dev has generated PME and queue a resume request for it in that
2243  * case.
2244  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2245 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2246 {
2247 	if (pme_poll_reset && dev->pme_poll)
2248 		dev->pme_poll = false;
2249 
2250 	if (pci_check_pme_status(dev)) {
2251 		pci_wakeup_event(dev);
2252 		pm_request_resume(&dev->dev);
2253 	}
2254 	return 0;
2255 }
2256 
2257 /**
2258  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2259  * @bus: Top bus of the subtree to walk.
2260  */
pci_pme_wakeup_bus(struct pci_bus * bus)2261 void pci_pme_wakeup_bus(struct pci_bus *bus)
2262 {
2263 	if (bus)
2264 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2265 }
2266 
2267 
2268 /**
2269  * pci_pme_capable - check the capability of PCI device to generate PME#
2270  * @dev: PCI device to handle.
2271  * @state: PCI state from which device will issue PME#.
2272  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2273 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2274 {
2275 	if (!dev->pm_cap)
2276 		return false;
2277 
2278 	return !!(dev->pme_support & (1 << state));
2279 }
2280 EXPORT_SYMBOL(pci_pme_capable);
2281 
pci_pme_list_scan(struct work_struct * work)2282 static void pci_pme_list_scan(struct work_struct *work)
2283 {
2284 	struct pci_pme_device *pme_dev, *n;
2285 
2286 	mutex_lock(&pci_pme_list_mutex);
2287 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2288 		if (pme_dev->dev->pme_poll) {
2289 			struct pci_dev *bridge;
2290 
2291 			bridge = pme_dev->dev->bus->self;
2292 			/*
2293 			 * If bridge is in low power state, the
2294 			 * configuration space of subordinate devices
2295 			 * may be not accessible
2296 			 */
2297 			if (bridge && bridge->current_state != PCI_D0)
2298 				continue;
2299 			/*
2300 			 * If the device is in D3cold it should not be
2301 			 * polled either.
2302 			 */
2303 			if (pme_dev->dev->current_state == PCI_D3cold)
2304 				continue;
2305 
2306 			pci_pme_wakeup(pme_dev->dev, NULL);
2307 		} else {
2308 			list_del(&pme_dev->list);
2309 			kfree(pme_dev);
2310 		}
2311 	}
2312 	if (!list_empty(&pci_pme_list))
2313 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2314 				   msecs_to_jiffies(PME_TIMEOUT));
2315 	mutex_unlock(&pci_pme_list_mutex);
2316 }
2317 
__pci_pme_active(struct pci_dev * dev,bool enable)2318 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2319 {
2320 	u16 pmcsr;
2321 
2322 	if (!dev->pme_support)
2323 		return;
2324 
2325 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2326 	/* Clear PME_Status by writing 1 to it and enable PME# */
2327 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2328 	if (!enable)
2329 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2330 
2331 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2332 }
2333 
2334 /**
2335  * pci_pme_restore - Restore PME configuration after config space restore.
2336  * @dev: PCI device to update.
2337  */
pci_pme_restore(struct pci_dev * dev)2338 void pci_pme_restore(struct pci_dev *dev)
2339 {
2340 	u16 pmcsr;
2341 
2342 	if (!dev->pme_support)
2343 		return;
2344 
2345 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2346 	if (dev->wakeup_prepared) {
2347 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2348 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2349 	} else {
2350 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2351 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2352 	}
2353 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2354 }
2355 
2356 /**
2357  * pci_pme_active - enable or disable PCI device's PME# function
2358  * @dev: PCI device to handle.
2359  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2360  *
2361  * The caller must verify that the device is capable of generating PME# before
2362  * calling this function with @enable equal to 'true'.
2363  */
pci_pme_active(struct pci_dev * dev,bool enable)2364 void pci_pme_active(struct pci_dev *dev, bool enable)
2365 {
2366 	__pci_pme_active(dev, enable);
2367 
2368 	/*
2369 	 * PCI (as opposed to PCIe) PME requires that the device have
2370 	 * its PME# line hooked up correctly. Not all hardware vendors
2371 	 * do this, so the PME never gets delivered and the device
2372 	 * remains asleep. The easiest way around this is to
2373 	 * periodically walk the list of suspended devices and check
2374 	 * whether any have their PME flag set. The assumption is that
2375 	 * we'll wake up often enough anyway that this won't be a huge
2376 	 * hit, and the power savings from the devices will still be a
2377 	 * win.
2378 	 *
2379 	 * Although PCIe uses in-band PME message instead of PME# line
2380 	 * to report PME, PME does not work for some PCIe devices in
2381 	 * reality.  For example, there are devices that set their PME
2382 	 * status bits, but don't really bother to send a PME message;
2383 	 * there are PCI Express Root Ports that don't bother to
2384 	 * trigger interrupts when they receive PME messages from the
2385 	 * devices below.  So PME poll is used for PCIe devices too.
2386 	 */
2387 
2388 	if (dev->pme_poll) {
2389 		struct pci_pme_device *pme_dev;
2390 		if (enable) {
2391 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2392 					  GFP_KERNEL);
2393 			if (!pme_dev) {
2394 				pci_warn(dev, "can't enable PME#\n");
2395 				return;
2396 			}
2397 			pme_dev->dev = dev;
2398 			mutex_lock(&pci_pme_list_mutex);
2399 			list_add(&pme_dev->list, &pci_pme_list);
2400 			if (list_is_singular(&pci_pme_list))
2401 				queue_delayed_work(system_freezable_wq,
2402 						   &pci_pme_work,
2403 						   msecs_to_jiffies(PME_TIMEOUT));
2404 			mutex_unlock(&pci_pme_list_mutex);
2405 		} else {
2406 			mutex_lock(&pci_pme_list_mutex);
2407 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2408 				if (pme_dev->dev == dev) {
2409 					list_del(&pme_dev->list);
2410 					kfree(pme_dev);
2411 					break;
2412 				}
2413 			}
2414 			mutex_unlock(&pci_pme_list_mutex);
2415 		}
2416 	}
2417 
2418 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2419 }
2420 EXPORT_SYMBOL(pci_pme_active);
2421 
2422 /**
2423  * __pci_enable_wake - enable PCI device as wakeup event source
2424  * @dev: PCI device affected
2425  * @state: PCI state from which device will issue wakeup events
2426  * @enable: True to enable event generation; false to disable
2427  *
2428  * This enables the device as a wakeup event source, or disables it.
2429  * When such events involves platform-specific hooks, those hooks are
2430  * called automatically by this routine.
2431  *
2432  * Devices with legacy power management (no standard PCI PM capabilities)
2433  * always require such platform hooks.
2434  *
2435  * RETURN VALUE:
2436  * 0 is returned on success
2437  * -EINVAL is returned if device is not supposed to wake up the system
2438  * Error code depending on the platform is returned if both the platform and
2439  * the native mechanism fail to enable the generation of wake-up events
2440  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2441 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2442 {
2443 	int ret = 0;
2444 
2445 	/*
2446 	 * Bridges that are not power-manageable directly only signal
2447 	 * wakeup on behalf of subordinate devices which is set up
2448 	 * elsewhere, so skip them. However, bridges that are
2449 	 * power-manageable may signal wakeup for themselves (for example,
2450 	 * on a hotplug event) and they need to be covered here.
2451 	 */
2452 	if (!pci_power_manageable(dev))
2453 		return 0;
2454 
2455 	/* Don't do the same thing twice in a row for one device. */
2456 	if (!!enable == !!dev->wakeup_prepared)
2457 		return 0;
2458 
2459 	/*
2460 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2461 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2462 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2463 	 */
2464 
2465 	if (enable) {
2466 		int error;
2467 
2468 		/*
2469 		 * Enable PME signaling if the device can signal PME from
2470 		 * D3cold regardless of whether or not it can signal PME from
2471 		 * the current target state, because that will allow it to
2472 		 * signal PME when the hierarchy above it goes into D3cold and
2473 		 * the device itself ends up in D3cold as a result of that.
2474 		 */
2475 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2476 			pci_pme_active(dev, true);
2477 		else
2478 			ret = 1;
2479 		error = platform_pci_set_wakeup(dev, true);
2480 		if (ret)
2481 			ret = error;
2482 		if (!ret)
2483 			dev->wakeup_prepared = true;
2484 	} else {
2485 		platform_pci_set_wakeup(dev, false);
2486 		pci_pme_active(dev, false);
2487 		dev->wakeup_prepared = false;
2488 	}
2489 
2490 	return ret;
2491 }
2492 
2493 /**
2494  * pci_enable_wake - change wakeup settings for a PCI device
2495  * @pci_dev: Target device
2496  * @state: PCI state from which device will issue wakeup events
2497  * @enable: Whether or not to enable event generation
2498  *
2499  * If @enable is set, check device_may_wakeup() for the device before calling
2500  * __pci_enable_wake() for it.
2501  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2502 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2503 {
2504 	if (enable && !device_may_wakeup(&pci_dev->dev))
2505 		return -EINVAL;
2506 
2507 	return __pci_enable_wake(pci_dev, state, enable);
2508 }
2509 EXPORT_SYMBOL(pci_enable_wake);
2510 
2511 /**
2512  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2513  * @dev: PCI device to prepare
2514  * @enable: True to enable wake-up event generation; false to disable
2515  *
2516  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2517  * and this function allows them to set that up cleanly - pci_enable_wake()
2518  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2519  * ordering constraints.
2520  *
2521  * This function only returns error code if the device is not allowed to wake
2522  * up the system from sleep or it is not capable of generating PME# from both
2523  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2524  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2525 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2526 {
2527 	return pci_pme_capable(dev, PCI_D3cold) ?
2528 			pci_enable_wake(dev, PCI_D3cold, enable) :
2529 			pci_enable_wake(dev, PCI_D3hot, enable);
2530 }
2531 EXPORT_SYMBOL(pci_wake_from_d3);
2532 
2533 /**
2534  * pci_target_state - find an appropriate low power state for a given PCI dev
2535  * @dev: PCI device
2536  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2537  *
2538  * Use underlying platform code to find a supported low power state for @dev.
2539  * If the platform can't manage @dev, return the deepest state from which it
2540  * can generate wake events, based on any available PME info.
2541  */
pci_target_state(struct pci_dev * dev,bool wakeup)2542 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2543 {
2544 	pci_power_t target_state = PCI_D3hot;
2545 
2546 	if (platform_pci_power_manageable(dev)) {
2547 		/*
2548 		 * Call the platform to find the target state for the device.
2549 		 */
2550 		pci_power_t state = platform_pci_choose_state(dev);
2551 
2552 		switch (state) {
2553 		case PCI_POWER_ERROR:
2554 		case PCI_UNKNOWN:
2555 			break;
2556 		case PCI_D1:
2557 		case PCI_D2:
2558 			if (pci_no_d1d2(dev))
2559 				break;
2560 			fallthrough;
2561 		default:
2562 			target_state = state;
2563 		}
2564 
2565 		return target_state;
2566 	}
2567 
2568 	if (!dev->pm_cap)
2569 		target_state = PCI_D0;
2570 
2571 	/*
2572 	 * If the device is in D3cold even though it's not power-manageable by
2573 	 * the platform, it may have been powered down by non-standard means.
2574 	 * Best to let it slumber.
2575 	 */
2576 	if (dev->current_state == PCI_D3cold)
2577 		target_state = PCI_D3cold;
2578 
2579 	if (wakeup && dev->pme_support) {
2580 		pci_power_t state = target_state;
2581 
2582 		/*
2583 		 * Find the deepest state from which the device can generate
2584 		 * PME#.
2585 		 */
2586 		while (state && !(dev->pme_support & (1 << state)))
2587 			state--;
2588 
2589 		if (state)
2590 			return state;
2591 		else if (dev->pme_support & 1)
2592 			return PCI_D0;
2593 	}
2594 
2595 	return target_state;
2596 }
2597 
2598 /**
2599  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2600  *			  into a sleep state
2601  * @dev: Device to handle.
2602  *
2603  * Choose the power state appropriate for the device depending on whether
2604  * it can wake up the system and/or is power manageable by the platform
2605  * (PCI_D3hot is the default) and put the device into that state.
2606  */
pci_prepare_to_sleep(struct pci_dev * dev)2607 int pci_prepare_to_sleep(struct pci_dev *dev)
2608 {
2609 	bool wakeup = device_may_wakeup(&dev->dev);
2610 	pci_power_t target_state = pci_target_state(dev, wakeup);
2611 	int error;
2612 
2613 	if (target_state == PCI_POWER_ERROR)
2614 		return -EIO;
2615 
2616 	pci_enable_wake(dev, target_state, wakeup);
2617 
2618 	error = pci_set_power_state(dev, target_state);
2619 
2620 	if (error)
2621 		pci_enable_wake(dev, target_state, false);
2622 
2623 	return error;
2624 }
2625 EXPORT_SYMBOL(pci_prepare_to_sleep);
2626 
2627 /**
2628  * pci_back_from_sleep - turn PCI device on during system-wide transition
2629  *			 into working state
2630  * @dev: Device to handle.
2631  *
2632  * Disable device's system wake-up capability and put it into D0.
2633  */
pci_back_from_sleep(struct pci_dev * dev)2634 int pci_back_from_sleep(struct pci_dev *dev)
2635 {
2636 	pci_enable_wake(dev, PCI_D0, false);
2637 	return pci_set_power_state(dev, PCI_D0);
2638 }
2639 EXPORT_SYMBOL(pci_back_from_sleep);
2640 
2641 /**
2642  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2643  * @dev: PCI device being suspended.
2644  *
2645  * Prepare @dev to generate wake-up events at run time and put it into a low
2646  * power state.
2647  */
pci_finish_runtime_suspend(struct pci_dev * dev)2648 int pci_finish_runtime_suspend(struct pci_dev *dev)
2649 {
2650 	pci_power_t target_state;
2651 	int error;
2652 
2653 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2654 	if (target_state == PCI_POWER_ERROR)
2655 		return -EIO;
2656 
2657 	dev->runtime_d3cold = target_state == PCI_D3cold;
2658 
2659 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2660 
2661 	error = pci_set_power_state(dev, target_state);
2662 
2663 	if (error) {
2664 		pci_enable_wake(dev, target_state, false);
2665 		dev->runtime_d3cold = false;
2666 	}
2667 
2668 	return error;
2669 }
2670 
2671 /**
2672  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2673  * @dev: Device to check.
2674  *
2675  * Return true if the device itself is capable of generating wake-up events
2676  * (through the platform or using the native PCIe PME) or if the device supports
2677  * PME and one of its upstream bridges can generate wake-up events.
2678  */
pci_dev_run_wake(struct pci_dev * dev)2679 bool pci_dev_run_wake(struct pci_dev *dev)
2680 {
2681 	struct pci_bus *bus = dev->bus;
2682 
2683 	if (!dev->pme_support)
2684 		return false;
2685 
2686 	/* PME-capable in principle, but not from the target power state */
2687 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2688 		return false;
2689 
2690 	if (device_can_wakeup(&dev->dev))
2691 		return true;
2692 
2693 	while (bus->parent) {
2694 		struct pci_dev *bridge = bus->self;
2695 
2696 		if (device_can_wakeup(&bridge->dev))
2697 			return true;
2698 
2699 		bus = bus->parent;
2700 	}
2701 
2702 	/* We have reached the root bus. */
2703 	if (bus->bridge)
2704 		return device_can_wakeup(bus->bridge);
2705 
2706 	return false;
2707 }
2708 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2709 
2710 /**
2711  * pci_dev_need_resume - Check if it is necessary to resume the device.
2712  * @pci_dev: Device to check.
2713  *
2714  * Return 'true' if the device is not runtime-suspended or it has to be
2715  * reconfigured due to wakeup settings difference between system and runtime
2716  * suspend, or the current power state of it is not suitable for the upcoming
2717  * (system-wide) transition.
2718  */
pci_dev_need_resume(struct pci_dev * pci_dev)2719 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2720 {
2721 	struct device *dev = &pci_dev->dev;
2722 	pci_power_t target_state;
2723 
2724 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2725 		return true;
2726 
2727 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2728 
2729 	/*
2730 	 * If the earlier platform check has not triggered, D3cold is just power
2731 	 * removal on top of D3hot, so no need to resume the device in that
2732 	 * case.
2733 	 */
2734 	return target_state != pci_dev->current_state &&
2735 		target_state != PCI_D3cold &&
2736 		pci_dev->current_state != PCI_D3hot;
2737 }
2738 
2739 /**
2740  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2741  * @pci_dev: Device to check.
2742  *
2743  * If the device is suspended and it is not configured for system wakeup,
2744  * disable PME for it to prevent it from waking up the system unnecessarily.
2745  *
2746  * Note that if the device's power state is D3cold and the platform check in
2747  * pci_dev_need_resume() has not triggered, the device's configuration need not
2748  * be changed.
2749  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2750 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2751 {
2752 	struct device *dev = &pci_dev->dev;
2753 
2754 	spin_lock_irq(&dev->power.lock);
2755 
2756 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2757 	    pci_dev->current_state < PCI_D3cold)
2758 		__pci_pme_active(pci_dev, false);
2759 
2760 	spin_unlock_irq(&dev->power.lock);
2761 }
2762 
2763 /**
2764  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2765  * @pci_dev: Device to handle.
2766  *
2767  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2768  * it might have been disabled during the prepare phase of system suspend if
2769  * the device was not configured for system wakeup.
2770  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2771 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2772 {
2773 	struct device *dev = &pci_dev->dev;
2774 
2775 	if (!pci_dev_run_wake(pci_dev))
2776 		return;
2777 
2778 	spin_lock_irq(&dev->power.lock);
2779 
2780 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2781 		__pci_pme_active(pci_dev, true);
2782 
2783 	spin_unlock_irq(&dev->power.lock);
2784 }
2785 
pci_config_pm_runtime_get(struct pci_dev * pdev)2786 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2787 {
2788 	struct device *dev = &pdev->dev;
2789 	struct device *parent = dev->parent;
2790 
2791 	if (parent)
2792 		pm_runtime_get_sync(parent);
2793 	pm_runtime_get_noresume(dev);
2794 	/*
2795 	 * pdev->current_state is set to PCI_D3cold during suspending,
2796 	 * so wait until suspending completes
2797 	 */
2798 	pm_runtime_barrier(dev);
2799 	/*
2800 	 * Only need to resume devices in D3cold, because config
2801 	 * registers are still accessible for devices suspended but
2802 	 * not in D3cold.
2803 	 */
2804 	if (pdev->current_state == PCI_D3cold)
2805 		pm_runtime_resume(dev);
2806 }
2807 
pci_config_pm_runtime_put(struct pci_dev * pdev)2808 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2809 {
2810 	struct device *dev = &pdev->dev;
2811 	struct device *parent = dev->parent;
2812 
2813 	pm_runtime_put(dev);
2814 	if (parent)
2815 		pm_runtime_put_sync(parent);
2816 }
2817 
2818 static const struct dmi_system_id bridge_d3_blacklist[] = {
2819 #ifdef CONFIG_X86
2820 	{
2821 		/*
2822 		 * Gigabyte X299 root port is not marked as hotplug capable
2823 		 * which allows Linux to power manage it.  However, this
2824 		 * confuses the BIOS SMI handler so don't power manage root
2825 		 * ports on that system.
2826 		 */
2827 		.ident = "X299 DESIGNARE EX-CF",
2828 		.matches = {
2829 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2830 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2831 		},
2832 	},
2833 #endif
2834 	{ }
2835 };
2836 
2837 /**
2838  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2839  * @bridge: Bridge to check
2840  *
2841  * This function checks if it is possible to move the bridge to D3.
2842  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2843  */
pci_bridge_d3_possible(struct pci_dev * bridge)2844 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2845 {
2846 	if (!pci_is_pcie(bridge))
2847 		return false;
2848 
2849 	switch (pci_pcie_type(bridge)) {
2850 	case PCI_EXP_TYPE_ROOT_PORT:
2851 	case PCI_EXP_TYPE_UPSTREAM:
2852 	case PCI_EXP_TYPE_DOWNSTREAM:
2853 		if (pci_bridge_d3_disable)
2854 			return false;
2855 
2856 		/*
2857 		 * Hotplug ports handled by firmware in System Management Mode
2858 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2859 		 */
2860 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2861 			return false;
2862 
2863 		if (pci_bridge_d3_force)
2864 			return true;
2865 
2866 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2867 		if (bridge->is_thunderbolt)
2868 			return true;
2869 
2870 		/* Platform might know better if the bridge supports D3 */
2871 		if (platform_pci_bridge_d3(bridge))
2872 			return true;
2873 
2874 		/*
2875 		 * Hotplug ports handled natively by the OS were not validated
2876 		 * by vendors for runtime D3 at least until 2018 because there
2877 		 * was no OS support.
2878 		 */
2879 		if (bridge->is_hotplug_bridge)
2880 			return false;
2881 
2882 		if (dmi_check_system(bridge_d3_blacklist))
2883 			return false;
2884 
2885 		/*
2886 		 * It should be safe to put PCIe ports from 2015 or newer
2887 		 * to D3.
2888 		 */
2889 		if (dmi_get_bios_year() >= 2015)
2890 			return true;
2891 		break;
2892 	}
2893 
2894 	return false;
2895 }
2896 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2897 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2898 {
2899 	bool *d3cold_ok = data;
2900 
2901 	if (/* The device needs to be allowed to go D3cold ... */
2902 	    dev->no_d3cold || !dev->d3cold_allowed ||
2903 
2904 	    /* ... and if it is wakeup capable to do so from D3cold. */
2905 	    (device_may_wakeup(&dev->dev) &&
2906 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2907 
2908 	    /* If it is a bridge it must be allowed to go to D3. */
2909 	    !pci_power_manageable(dev))
2910 
2911 		*d3cold_ok = false;
2912 
2913 	return !*d3cold_ok;
2914 }
2915 
2916 /*
2917  * pci_bridge_d3_update - Update bridge D3 capabilities
2918  * @dev: PCI device which is changed
2919  *
2920  * Update upstream bridge PM capabilities accordingly depending on if the
2921  * device PM configuration was changed or the device is being removed.  The
2922  * change is also propagated upstream.
2923  */
pci_bridge_d3_update(struct pci_dev * dev)2924 void pci_bridge_d3_update(struct pci_dev *dev)
2925 {
2926 	bool remove = !device_is_registered(&dev->dev);
2927 	struct pci_dev *bridge;
2928 	bool d3cold_ok = true;
2929 
2930 	bridge = pci_upstream_bridge(dev);
2931 	if (!bridge || !pci_bridge_d3_possible(bridge))
2932 		return;
2933 
2934 	/*
2935 	 * If D3 is currently allowed for the bridge, removing one of its
2936 	 * children won't change that.
2937 	 */
2938 	if (remove && bridge->bridge_d3)
2939 		return;
2940 
2941 	/*
2942 	 * If D3 is currently allowed for the bridge and a child is added or
2943 	 * changed, disallowance of D3 can only be caused by that child, so
2944 	 * we only need to check that single device, not any of its siblings.
2945 	 *
2946 	 * If D3 is currently not allowed for the bridge, checking the device
2947 	 * first may allow us to skip checking its siblings.
2948 	 */
2949 	if (!remove)
2950 		pci_dev_check_d3cold(dev, &d3cold_ok);
2951 
2952 	/*
2953 	 * If D3 is currently not allowed for the bridge, this may be caused
2954 	 * either by the device being changed/removed or any of its siblings,
2955 	 * so we need to go through all children to find out if one of them
2956 	 * continues to block D3.
2957 	 */
2958 	if (d3cold_ok && !bridge->bridge_d3)
2959 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2960 			     &d3cold_ok);
2961 
2962 	if (bridge->bridge_d3 != d3cold_ok) {
2963 		bridge->bridge_d3 = d3cold_ok;
2964 		/* Propagate change to upstream bridges */
2965 		pci_bridge_d3_update(bridge);
2966 	}
2967 }
2968 
2969 /**
2970  * pci_d3cold_enable - Enable D3cold for device
2971  * @dev: PCI device to handle
2972  *
2973  * This function can be used in drivers to enable D3cold from the device
2974  * they handle.  It also updates upstream PCI bridge PM capabilities
2975  * accordingly.
2976  */
pci_d3cold_enable(struct pci_dev * dev)2977 void pci_d3cold_enable(struct pci_dev *dev)
2978 {
2979 	if (dev->no_d3cold) {
2980 		dev->no_d3cold = false;
2981 		pci_bridge_d3_update(dev);
2982 	}
2983 }
2984 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2985 
2986 /**
2987  * pci_d3cold_disable - Disable D3cold for device
2988  * @dev: PCI device to handle
2989  *
2990  * This function can be used in drivers to disable D3cold from the device
2991  * they handle.  It also updates upstream PCI bridge PM capabilities
2992  * accordingly.
2993  */
pci_d3cold_disable(struct pci_dev * dev)2994 void pci_d3cold_disable(struct pci_dev *dev)
2995 {
2996 	if (!dev->no_d3cold) {
2997 		dev->no_d3cold = true;
2998 		pci_bridge_d3_update(dev);
2999 	}
3000 }
3001 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3002 
3003 /**
3004  * pci_pm_init - Initialize PM functions of given PCI device
3005  * @dev: PCI device to handle.
3006  */
pci_pm_init(struct pci_dev * dev)3007 void pci_pm_init(struct pci_dev *dev)
3008 {
3009 	int pm;
3010 	u16 status;
3011 	u16 pmc;
3012 
3013 	pm_runtime_forbid(&dev->dev);
3014 	pm_runtime_set_active(&dev->dev);
3015 	pm_runtime_enable(&dev->dev);
3016 	device_enable_async_suspend(&dev->dev);
3017 	dev->wakeup_prepared = false;
3018 
3019 	dev->pm_cap = 0;
3020 	dev->pme_support = 0;
3021 
3022 	/* find PCI PM capability in list */
3023 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3024 	if (!pm)
3025 		return;
3026 	/* Check device's ability to generate PME# */
3027 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3028 
3029 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3030 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3031 			pmc & PCI_PM_CAP_VER_MASK);
3032 		return;
3033 	}
3034 
3035 	dev->pm_cap = pm;
3036 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3037 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3038 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3039 	dev->d3cold_allowed = true;
3040 
3041 	dev->d1_support = false;
3042 	dev->d2_support = false;
3043 	if (!pci_no_d1d2(dev)) {
3044 		if (pmc & PCI_PM_CAP_D1)
3045 			dev->d1_support = true;
3046 		if (pmc & PCI_PM_CAP_D2)
3047 			dev->d2_support = true;
3048 
3049 		if (dev->d1_support || dev->d2_support)
3050 			pci_info(dev, "supports%s%s\n",
3051 				   dev->d1_support ? " D1" : "",
3052 				   dev->d2_support ? " D2" : "");
3053 	}
3054 
3055 	pmc &= PCI_PM_CAP_PME_MASK;
3056 	if (pmc) {
3057 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3058 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3059 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3060 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3061 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3062 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3063 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3064 		dev->pme_poll = true;
3065 		/*
3066 		 * Make device's PM flags reflect the wake-up capability, but
3067 		 * let the user space enable it to wake up the system as needed.
3068 		 */
3069 		device_set_wakeup_capable(&dev->dev, true);
3070 		/* Disable the PME# generation functionality */
3071 		pci_pme_active(dev, false);
3072 	}
3073 
3074 	pci_read_config_word(dev, PCI_STATUS, &status);
3075 	if (status & PCI_STATUS_IMM_READY)
3076 		dev->imm_ready = 1;
3077 }
3078 
pci_ea_flags(struct pci_dev * dev,u8 prop)3079 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3080 {
3081 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3082 
3083 	switch (prop) {
3084 	case PCI_EA_P_MEM:
3085 	case PCI_EA_P_VF_MEM:
3086 		flags |= IORESOURCE_MEM;
3087 		break;
3088 	case PCI_EA_P_MEM_PREFETCH:
3089 	case PCI_EA_P_VF_MEM_PREFETCH:
3090 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3091 		break;
3092 	case PCI_EA_P_IO:
3093 		flags |= IORESOURCE_IO;
3094 		break;
3095 	default:
3096 		return 0;
3097 	}
3098 
3099 	return flags;
3100 }
3101 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3102 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3103 					    u8 prop)
3104 {
3105 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3106 		return &dev->resource[bei];
3107 #ifdef CONFIG_PCI_IOV
3108 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3109 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3110 		return &dev->resource[PCI_IOV_RESOURCES +
3111 				      bei - PCI_EA_BEI_VF_BAR0];
3112 #endif
3113 	else if (bei == PCI_EA_BEI_ROM)
3114 		return &dev->resource[PCI_ROM_RESOURCE];
3115 	else
3116 		return NULL;
3117 }
3118 
3119 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3120 static int pci_ea_read(struct pci_dev *dev, int offset)
3121 {
3122 	struct resource *res;
3123 	int ent_size, ent_offset = offset;
3124 	resource_size_t start, end;
3125 	unsigned long flags;
3126 	u32 dw0, bei, base, max_offset;
3127 	u8 prop;
3128 	bool support_64 = (sizeof(resource_size_t) >= 8);
3129 
3130 	pci_read_config_dword(dev, ent_offset, &dw0);
3131 	ent_offset += 4;
3132 
3133 	/* Entry size field indicates DWORDs after 1st */
3134 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3135 
3136 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3137 		goto out;
3138 
3139 	bei = (dw0 & PCI_EA_BEI) >> 4;
3140 	prop = (dw0 & PCI_EA_PP) >> 8;
3141 
3142 	/*
3143 	 * If the Property is in the reserved range, try the Secondary
3144 	 * Property instead.
3145 	 */
3146 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3147 		prop = (dw0 & PCI_EA_SP) >> 16;
3148 	if (prop > PCI_EA_P_BRIDGE_IO)
3149 		goto out;
3150 
3151 	res = pci_ea_get_resource(dev, bei, prop);
3152 	if (!res) {
3153 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3154 		goto out;
3155 	}
3156 
3157 	flags = pci_ea_flags(dev, prop);
3158 	if (!flags) {
3159 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3160 		goto out;
3161 	}
3162 
3163 	/* Read Base */
3164 	pci_read_config_dword(dev, ent_offset, &base);
3165 	start = (base & PCI_EA_FIELD_MASK);
3166 	ent_offset += 4;
3167 
3168 	/* Read MaxOffset */
3169 	pci_read_config_dword(dev, ent_offset, &max_offset);
3170 	ent_offset += 4;
3171 
3172 	/* Read Base MSBs (if 64-bit entry) */
3173 	if (base & PCI_EA_IS_64) {
3174 		u32 base_upper;
3175 
3176 		pci_read_config_dword(dev, ent_offset, &base_upper);
3177 		ent_offset += 4;
3178 
3179 		flags |= IORESOURCE_MEM_64;
3180 
3181 		/* entry starts above 32-bit boundary, can't use */
3182 		if (!support_64 && base_upper)
3183 			goto out;
3184 
3185 		if (support_64)
3186 			start |= ((u64)base_upper << 32);
3187 	}
3188 
3189 	end = start + (max_offset | 0x03);
3190 
3191 	/* Read MaxOffset MSBs (if 64-bit entry) */
3192 	if (max_offset & PCI_EA_IS_64) {
3193 		u32 max_offset_upper;
3194 
3195 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3196 		ent_offset += 4;
3197 
3198 		flags |= IORESOURCE_MEM_64;
3199 
3200 		/* entry too big, can't use */
3201 		if (!support_64 && max_offset_upper)
3202 			goto out;
3203 
3204 		if (support_64)
3205 			end += ((u64)max_offset_upper << 32);
3206 	}
3207 
3208 	if (end < start) {
3209 		pci_err(dev, "EA Entry crosses address boundary\n");
3210 		goto out;
3211 	}
3212 
3213 	if (ent_size != ent_offset - offset) {
3214 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3215 			ent_size, ent_offset - offset);
3216 		goto out;
3217 	}
3218 
3219 	res->name = pci_name(dev);
3220 	res->start = start;
3221 	res->end = end;
3222 	res->flags = flags;
3223 
3224 	if (bei <= PCI_EA_BEI_BAR5)
3225 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3226 			   bei, res, prop);
3227 	else if (bei == PCI_EA_BEI_ROM)
3228 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3229 			   res, prop);
3230 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3231 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3232 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3233 	else
3234 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3235 			   bei, res, prop);
3236 
3237 out:
3238 	return offset + ent_size;
3239 }
3240 
3241 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3242 void pci_ea_init(struct pci_dev *dev)
3243 {
3244 	int ea;
3245 	u8 num_ent;
3246 	int offset;
3247 	int i;
3248 
3249 	/* find PCI EA capability in list */
3250 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3251 	if (!ea)
3252 		return;
3253 
3254 	/* determine the number of entries */
3255 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3256 					&num_ent);
3257 	num_ent &= PCI_EA_NUM_ENT_MASK;
3258 
3259 	offset = ea + PCI_EA_FIRST_ENT;
3260 
3261 	/* Skip DWORD 2 for type 1 functions */
3262 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3263 		offset += 4;
3264 
3265 	/* parse each EA entry */
3266 	for (i = 0; i < num_ent; ++i)
3267 		offset = pci_ea_read(dev, offset);
3268 }
3269 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3270 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3271 	struct pci_cap_saved_state *new_cap)
3272 {
3273 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3274 }
3275 
3276 /**
3277  * _pci_add_cap_save_buffer - allocate buffer for saving given
3278  *			      capability registers
3279  * @dev: the PCI device
3280  * @cap: the capability to allocate the buffer for
3281  * @extended: Standard or Extended capability ID
3282  * @size: requested size of the buffer
3283  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3284 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3285 				    bool extended, unsigned int size)
3286 {
3287 	int pos;
3288 	struct pci_cap_saved_state *save_state;
3289 
3290 	if (extended)
3291 		pos = pci_find_ext_capability(dev, cap);
3292 	else
3293 		pos = pci_find_capability(dev, cap);
3294 
3295 	if (!pos)
3296 		return 0;
3297 
3298 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3299 	if (!save_state)
3300 		return -ENOMEM;
3301 
3302 	save_state->cap.cap_nr = cap;
3303 	save_state->cap.cap_extended = extended;
3304 	save_state->cap.size = size;
3305 	pci_add_saved_cap(dev, save_state);
3306 
3307 	return 0;
3308 }
3309 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3310 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3311 {
3312 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3313 }
3314 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3315 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3316 {
3317 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3318 }
3319 
3320 /**
3321  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3322  * @dev: the PCI device
3323  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3324 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3325 {
3326 	int error;
3327 
3328 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3329 					PCI_EXP_SAVE_REGS * sizeof(u16));
3330 	if (error)
3331 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3332 
3333 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3334 	if (error)
3335 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3336 
3337 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3338 					    2 * sizeof(u16));
3339 	if (error)
3340 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3341 
3342 	pci_allocate_vc_save_buffers(dev);
3343 }
3344 
pci_free_cap_save_buffers(struct pci_dev * dev)3345 void pci_free_cap_save_buffers(struct pci_dev *dev)
3346 {
3347 	struct pci_cap_saved_state *tmp;
3348 	struct hlist_node *n;
3349 
3350 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3351 		kfree(tmp);
3352 }
3353 
3354 /**
3355  * pci_configure_ari - enable or disable ARI forwarding
3356  * @dev: the PCI device
3357  *
3358  * If @dev and its upstream bridge both support ARI, enable ARI in the
3359  * bridge.  Otherwise, disable ARI in the bridge.
3360  */
pci_configure_ari(struct pci_dev * dev)3361 void pci_configure_ari(struct pci_dev *dev)
3362 {
3363 	u32 cap;
3364 	struct pci_dev *bridge;
3365 
3366 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3367 		return;
3368 
3369 	bridge = dev->bus->self;
3370 	if (!bridge)
3371 		return;
3372 
3373 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3374 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3375 		return;
3376 
3377 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3378 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3379 					 PCI_EXP_DEVCTL2_ARI);
3380 		bridge->ari_enabled = 1;
3381 	} else {
3382 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3383 					   PCI_EXP_DEVCTL2_ARI);
3384 		bridge->ari_enabled = 0;
3385 	}
3386 }
3387 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3388 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3389 {
3390 	int pos;
3391 	u16 cap, ctrl;
3392 
3393 	pos = pdev->acs_cap;
3394 	if (!pos)
3395 		return false;
3396 
3397 	/*
3398 	 * Except for egress control, capabilities are either required
3399 	 * or only required if controllable.  Features missing from the
3400 	 * capability field can therefore be assumed as hard-wired enabled.
3401 	 */
3402 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3403 	acs_flags &= (cap | PCI_ACS_EC);
3404 
3405 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3406 	return (ctrl & acs_flags) == acs_flags;
3407 }
3408 
3409 /**
3410  * pci_acs_enabled - test ACS against required flags for a given device
3411  * @pdev: device to test
3412  * @acs_flags: required PCI ACS flags
3413  *
3414  * Return true if the device supports the provided flags.  Automatically
3415  * filters out flags that are not implemented on multifunction devices.
3416  *
3417  * Note that this interface checks the effective ACS capabilities of the
3418  * device rather than the actual capabilities.  For instance, most single
3419  * function endpoints are not required to support ACS because they have no
3420  * opportunity for peer-to-peer access.  We therefore return 'true'
3421  * regardless of whether the device exposes an ACS capability.  This makes
3422  * it much easier for callers of this function to ignore the actual type
3423  * or topology of the device when testing ACS support.
3424  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3425 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3426 {
3427 	int ret;
3428 
3429 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3430 	if (ret >= 0)
3431 		return ret > 0;
3432 
3433 	/*
3434 	 * Conventional PCI and PCI-X devices never support ACS, either
3435 	 * effectively or actually.  The shared bus topology implies that
3436 	 * any device on the bus can receive or snoop DMA.
3437 	 */
3438 	if (!pci_is_pcie(pdev))
3439 		return false;
3440 
3441 	switch (pci_pcie_type(pdev)) {
3442 	/*
3443 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3444 	 * but since their primary interface is PCI/X, we conservatively
3445 	 * handle them as we would a non-PCIe device.
3446 	 */
3447 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3448 	/*
3449 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3450 	 * applicable... must never implement an ACS Extended Capability...".
3451 	 * This seems arbitrary, but we take a conservative interpretation
3452 	 * of this statement.
3453 	 */
3454 	case PCI_EXP_TYPE_PCI_BRIDGE:
3455 	case PCI_EXP_TYPE_RC_EC:
3456 		return false;
3457 	/*
3458 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3459 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3460 	 * regardless of whether they are single- or multi-function devices.
3461 	 */
3462 	case PCI_EXP_TYPE_DOWNSTREAM:
3463 	case PCI_EXP_TYPE_ROOT_PORT:
3464 		return pci_acs_flags_enabled(pdev, acs_flags);
3465 	/*
3466 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3467 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3468 	 * capabilities, but only when they are part of a multifunction
3469 	 * device.  The footnote for section 6.12 indicates the specific
3470 	 * PCIe types included here.
3471 	 */
3472 	case PCI_EXP_TYPE_ENDPOINT:
3473 	case PCI_EXP_TYPE_UPSTREAM:
3474 	case PCI_EXP_TYPE_LEG_END:
3475 	case PCI_EXP_TYPE_RC_END:
3476 		if (!pdev->multifunction)
3477 			break;
3478 
3479 		return pci_acs_flags_enabled(pdev, acs_flags);
3480 	}
3481 
3482 	/*
3483 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3484 	 * to single function devices with the exception of downstream ports.
3485 	 */
3486 	return true;
3487 }
3488 
3489 /**
3490  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3491  * @start: starting downstream device
3492  * @end: ending upstream device or NULL to search to the root bus
3493  * @acs_flags: required flags
3494  *
3495  * Walk up a device tree from start to end testing PCI ACS support.  If
3496  * any step along the way does not support the required flags, return false.
3497  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3498 bool pci_acs_path_enabled(struct pci_dev *start,
3499 			  struct pci_dev *end, u16 acs_flags)
3500 {
3501 	struct pci_dev *pdev, *parent = start;
3502 
3503 	do {
3504 		pdev = parent;
3505 
3506 		if (!pci_acs_enabled(pdev, acs_flags))
3507 			return false;
3508 
3509 		if (pci_is_root_bus(pdev->bus))
3510 			return (end == NULL);
3511 
3512 		parent = pdev->bus->self;
3513 	} while (pdev != end);
3514 
3515 	return true;
3516 }
3517 
3518 /**
3519  * pci_acs_init - Initialize ACS if hardware supports it
3520  * @dev: the PCI device
3521  */
pci_acs_init(struct pci_dev * dev)3522 void pci_acs_init(struct pci_dev *dev)
3523 {
3524 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3525 
3526 	/*
3527 	 * Attempt to enable ACS regardless of capability because some Root
3528 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3529 	 * the standard ACS capability but still support ACS via those
3530 	 * quirks.
3531 	 */
3532 	pci_enable_acs(dev);
3533 }
3534 
3535 /**
3536  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3537  * @pdev: PCI device
3538  * @bar: BAR to find
3539  *
3540  * Helper to find the position of the ctrl register for a BAR.
3541  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3542  * Returns -ENOENT if no ctrl register for the BAR could be found.
3543  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3544 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3545 {
3546 	unsigned int pos, nbars, i;
3547 	u32 ctrl;
3548 
3549 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3550 	if (!pos)
3551 		return -ENOTSUPP;
3552 
3553 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3554 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3555 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3556 
3557 	for (i = 0; i < nbars; i++, pos += 8) {
3558 		int bar_idx;
3559 
3560 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3561 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3562 		if (bar_idx == bar)
3563 			return pos;
3564 	}
3565 
3566 	return -ENOENT;
3567 }
3568 
3569 /**
3570  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3571  * @pdev: PCI device
3572  * @bar: BAR to query
3573  *
3574  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3575  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3576  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3577 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3578 {
3579 	int pos;
3580 	u32 cap;
3581 
3582 	pos = pci_rebar_find_pos(pdev, bar);
3583 	if (pos < 0)
3584 		return 0;
3585 
3586 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3587 	cap &= PCI_REBAR_CAP_SIZES;
3588 
3589 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3590 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3591 	    bar == 0 && cap == 0x7000)
3592 		cap = 0x3f000;
3593 
3594 	return cap >> 4;
3595 }
3596 
3597 /**
3598  * pci_rebar_get_current_size - get the current size of a BAR
3599  * @pdev: PCI device
3600  * @bar: BAR to set size to
3601  *
3602  * Read the size of a BAR from the resizable BAR config.
3603  * Returns size if found or negative error code.
3604  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3605 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3606 {
3607 	int pos;
3608 	u32 ctrl;
3609 
3610 	pos = pci_rebar_find_pos(pdev, bar);
3611 	if (pos < 0)
3612 		return pos;
3613 
3614 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3615 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3616 }
3617 
3618 /**
3619  * pci_rebar_set_size - set a new size for a BAR
3620  * @pdev: PCI device
3621  * @bar: BAR to set size to
3622  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3623  *
3624  * Set the new size of a BAR as defined in the spec.
3625  * Returns zero if resizing was successful, error code otherwise.
3626  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3627 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3628 {
3629 	int pos;
3630 	u32 ctrl;
3631 
3632 	pos = pci_rebar_find_pos(pdev, bar);
3633 	if (pos < 0)
3634 		return pos;
3635 
3636 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3637 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3638 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3639 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3640 	return 0;
3641 }
3642 
3643 /**
3644  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3645  * @dev: the PCI device
3646  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3647  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3648  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3649  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3650  *
3651  * Return 0 if all upstream bridges support AtomicOp routing, egress
3652  * blocking is disabled on all upstream ports, and the root port supports
3653  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3654  * AtomicOp completion), or negative otherwise.
3655  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3656 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3657 {
3658 	struct pci_bus *bus = dev->bus;
3659 	struct pci_dev *bridge;
3660 	u32 cap, ctl2;
3661 
3662 	if (!pci_is_pcie(dev))
3663 		return -EINVAL;
3664 
3665 	/*
3666 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3667 	 * AtomicOp requesters.  For now, we only support endpoints as
3668 	 * requesters and root ports as completers.  No endpoints as
3669 	 * completers, and no peer-to-peer.
3670 	 */
3671 
3672 	switch (pci_pcie_type(dev)) {
3673 	case PCI_EXP_TYPE_ENDPOINT:
3674 	case PCI_EXP_TYPE_LEG_END:
3675 	case PCI_EXP_TYPE_RC_END:
3676 		break;
3677 	default:
3678 		return -EINVAL;
3679 	}
3680 
3681 	while (bus->parent) {
3682 		bridge = bus->self;
3683 
3684 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3685 
3686 		switch (pci_pcie_type(bridge)) {
3687 		/* Ensure switch ports support AtomicOp routing */
3688 		case PCI_EXP_TYPE_UPSTREAM:
3689 		case PCI_EXP_TYPE_DOWNSTREAM:
3690 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3691 				return -EINVAL;
3692 			break;
3693 
3694 		/* Ensure root port supports all the sizes we care about */
3695 		case PCI_EXP_TYPE_ROOT_PORT:
3696 			if ((cap & cap_mask) != cap_mask)
3697 				return -EINVAL;
3698 			break;
3699 		}
3700 
3701 		/* Ensure upstream ports don't block AtomicOps on egress */
3702 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3703 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3704 						   &ctl2);
3705 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3706 				return -EINVAL;
3707 		}
3708 
3709 		bus = bus->parent;
3710 	}
3711 
3712 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3713 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3714 	return 0;
3715 }
3716 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3717 
3718 /**
3719  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3720  * @dev: the PCI device
3721  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3722  *
3723  * Perform INTx swizzling for a device behind one level of bridge.  This is
3724  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3725  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3726  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3727  * the PCI Express Base Specification, Revision 2.1)
3728  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3729 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3730 {
3731 	int slot;
3732 
3733 	if (pci_ari_enabled(dev->bus))
3734 		slot = 0;
3735 	else
3736 		slot = PCI_SLOT(dev->devfn);
3737 
3738 	return (((pin - 1) + slot) % 4) + 1;
3739 }
3740 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3741 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3742 {
3743 	u8 pin;
3744 
3745 	pin = dev->pin;
3746 	if (!pin)
3747 		return -1;
3748 
3749 	while (!pci_is_root_bus(dev->bus)) {
3750 		pin = pci_swizzle_interrupt_pin(dev, pin);
3751 		dev = dev->bus->self;
3752 	}
3753 	*bridge = dev;
3754 	return pin;
3755 }
3756 
3757 /**
3758  * pci_common_swizzle - swizzle INTx all the way to root bridge
3759  * @dev: the PCI device
3760  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3761  *
3762  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3763  * bridges all the way up to a PCI root bus.
3764  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3765 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3766 {
3767 	u8 pin = *pinp;
3768 
3769 	while (!pci_is_root_bus(dev->bus)) {
3770 		pin = pci_swizzle_interrupt_pin(dev, pin);
3771 		dev = dev->bus->self;
3772 	}
3773 	*pinp = pin;
3774 	return PCI_SLOT(dev->devfn);
3775 }
3776 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3777 
3778 /**
3779  * pci_release_region - Release a PCI bar
3780  * @pdev: PCI device whose resources were previously reserved by
3781  *	  pci_request_region()
3782  * @bar: BAR to release
3783  *
3784  * Releases the PCI I/O and memory resources previously reserved by a
3785  * successful call to pci_request_region().  Call this function only
3786  * after all use of the PCI regions has ceased.
3787  */
pci_release_region(struct pci_dev * pdev,int bar)3788 void pci_release_region(struct pci_dev *pdev, int bar)
3789 {
3790 	struct pci_devres *dr;
3791 
3792 	if (pci_resource_len(pdev, bar) == 0)
3793 		return;
3794 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3795 		release_region(pci_resource_start(pdev, bar),
3796 				pci_resource_len(pdev, bar));
3797 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3798 		release_mem_region(pci_resource_start(pdev, bar),
3799 				pci_resource_len(pdev, bar));
3800 
3801 	dr = find_pci_dr(pdev);
3802 	if (dr)
3803 		dr->region_mask &= ~(1 << bar);
3804 }
3805 EXPORT_SYMBOL(pci_release_region);
3806 
3807 /**
3808  * __pci_request_region - Reserved PCI I/O and memory resource
3809  * @pdev: PCI device whose resources are to be reserved
3810  * @bar: BAR to be reserved
3811  * @res_name: Name to be associated with resource.
3812  * @exclusive: whether the region access is exclusive or not
3813  *
3814  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3815  * being reserved by owner @res_name.  Do not access any
3816  * address inside the PCI regions unless this call returns
3817  * successfully.
3818  *
3819  * If @exclusive is set, then the region is marked so that userspace
3820  * is explicitly not allowed to map the resource via /dev/mem or
3821  * sysfs MMIO access.
3822  *
3823  * Returns 0 on success, or %EBUSY on error.  A warning
3824  * message is also printed on failure.
3825  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3826 static int __pci_request_region(struct pci_dev *pdev, int bar,
3827 				const char *res_name, int exclusive)
3828 {
3829 	struct pci_devres *dr;
3830 
3831 	if (pci_resource_len(pdev, bar) == 0)
3832 		return 0;
3833 
3834 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3835 		if (!request_region(pci_resource_start(pdev, bar),
3836 			    pci_resource_len(pdev, bar), res_name))
3837 			goto err_out;
3838 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3839 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3840 					pci_resource_len(pdev, bar), res_name,
3841 					exclusive))
3842 			goto err_out;
3843 	}
3844 
3845 	dr = find_pci_dr(pdev);
3846 	if (dr)
3847 		dr->region_mask |= 1 << bar;
3848 
3849 	return 0;
3850 
3851 err_out:
3852 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3853 		 &pdev->resource[bar]);
3854 	return -EBUSY;
3855 }
3856 
3857 /**
3858  * pci_request_region - Reserve PCI I/O and memory resource
3859  * @pdev: PCI device whose resources are to be reserved
3860  * @bar: BAR to be reserved
3861  * @res_name: Name to be associated with resource
3862  *
3863  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3864  * being reserved by owner @res_name.  Do not access any
3865  * address inside the PCI regions unless this call returns
3866  * successfully.
3867  *
3868  * Returns 0 on success, or %EBUSY on error.  A warning
3869  * message is also printed on failure.
3870  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3871 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3872 {
3873 	return __pci_request_region(pdev, bar, res_name, 0);
3874 }
3875 EXPORT_SYMBOL(pci_request_region);
3876 
3877 /**
3878  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3879  * @pdev: PCI device whose resources were previously reserved
3880  * @bars: Bitmask of BARs to be released
3881  *
3882  * Release selected PCI I/O and memory resources previously reserved.
3883  * Call this function only after all use of the PCI regions has ceased.
3884  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3885 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3886 {
3887 	int i;
3888 
3889 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3890 		if (bars & (1 << i))
3891 			pci_release_region(pdev, i);
3892 }
3893 EXPORT_SYMBOL(pci_release_selected_regions);
3894 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3895 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3896 					  const char *res_name, int excl)
3897 {
3898 	int i;
3899 
3900 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3901 		if (bars & (1 << i))
3902 			if (__pci_request_region(pdev, i, res_name, excl))
3903 				goto err_out;
3904 	return 0;
3905 
3906 err_out:
3907 	while (--i >= 0)
3908 		if (bars & (1 << i))
3909 			pci_release_region(pdev, i);
3910 
3911 	return -EBUSY;
3912 }
3913 
3914 
3915 /**
3916  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3917  * @pdev: PCI device whose resources are to be reserved
3918  * @bars: Bitmask of BARs to be requested
3919  * @res_name: Name to be associated with resource
3920  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3921 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3922 				 const char *res_name)
3923 {
3924 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3925 }
3926 EXPORT_SYMBOL(pci_request_selected_regions);
3927 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3928 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3929 					   const char *res_name)
3930 {
3931 	return __pci_request_selected_regions(pdev, bars, res_name,
3932 			IORESOURCE_EXCLUSIVE);
3933 }
3934 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3935 
3936 /**
3937  * pci_release_regions - Release reserved PCI I/O and memory resources
3938  * @pdev: PCI device whose resources were previously reserved by
3939  *	  pci_request_regions()
3940  *
3941  * Releases all PCI I/O and memory resources previously reserved by a
3942  * successful call to pci_request_regions().  Call this function only
3943  * after all use of the PCI regions has ceased.
3944  */
3945 
pci_release_regions(struct pci_dev * pdev)3946 void pci_release_regions(struct pci_dev *pdev)
3947 {
3948 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3949 }
3950 EXPORT_SYMBOL(pci_release_regions);
3951 
3952 /**
3953  * pci_request_regions - Reserve PCI I/O and memory resources
3954  * @pdev: PCI device whose resources are to be reserved
3955  * @res_name: Name to be associated with resource.
3956  *
3957  * Mark all PCI regions associated with PCI device @pdev as
3958  * being reserved by owner @res_name.  Do not access any
3959  * address inside the PCI regions unless this call returns
3960  * successfully.
3961  *
3962  * Returns 0 on success, or %EBUSY on error.  A warning
3963  * message is also printed on failure.
3964  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3965 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3966 {
3967 	return pci_request_selected_regions(pdev,
3968 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3969 }
3970 EXPORT_SYMBOL(pci_request_regions);
3971 
3972 /**
3973  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3974  * @pdev: PCI device whose resources are to be reserved
3975  * @res_name: Name to be associated with resource.
3976  *
3977  * Mark all PCI regions associated with PCI device @pdev as being reserved
3978  * by owner @res_name.  Do not access any address inside the PCI regions
3979  * unless this call returns successfully.
3980  *
3981  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3982  * and the sysfs MMIO access will not be allowed.
3983  *
3984  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3985  * printed on failure.
3986  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3987 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3988 {
3989 	return pci_request_selected_regions_exclusive(pdev,
3990 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3991 }
3992 EXPORT_SYMBOL(pci_request_regions_exclusive);
3993 
3994 /*
3995  * Record the PCI IO range (expressed as CPU physical address + size).
3996  * Return a negative value if an error has occurred, zero otherwise
3997  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)3998 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3999 			resource_size_t	size)
4000 {
4001 	int ret = 0;
4002 #ifdef PCI_IOBASE
4003 	struct logic_pio_hwaddr *range;
4004 
4005 	if (!size || addr + size < addr)
4006 		return -EINVAL;
4007 
4008 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4009 	if (!range)
4010 		return -ENOMEM;
4011 
4012 	range->fwnode = fwnode;
4013 	range->size = size;
4014 	range->hw_start = addr;
4015 	range->flags = LOGIC_PIO_CPU_MMIO;
4016 
4017 	ret = logic_pio_register_range(range);
4018 	if (ret)
4019 		kfree(range);
4020 
4021 	/* Ignore duplicates due to deferred probing */
4022 	if (ret == -EEXIST)
4023 		ret = 0;
4024 #endif
4025 
4026 	return ret;
4027 }
4028 
pci_pio_to_address(unsigned long pio)4029 phys_addr_t pci_pio_to_address(unsigned long pio)
4030 {
4031 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4032 
4033 #ifdef PCI_IOBASE
4034 	if (pio >= MMIO_UPPER_LIMIT)
4035 		return address;
4036 
4037 	address = logic_pio_to_hwaddr(pio);
4038 #endif
4039 
4040 	return address;
4041 }
4042 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4043 
pci_address_to_pio(phys_addr_t address)4044 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4045 {
4046 #ifdef PCI_IOBASE
4047 	return logic_pio_trans_cpuaddr(address);
4048 #else
4049 	if (address > IO_SPACE_LIMIT)
4050 		return (unsigned long)-1;
4051 
4052 	return (unsigned long) address;
4053 #endif
4054 }
4055 
4056 /**
4057  * pci_remap_iospace - Remap the memory mapped I/O space
4058  * @res: Resource describing the I/O space
4059  * @phys_addr: physical address of range to be mapped
4060  *
4061  * Remap the memory mapped I/O space described by the @res and the CPU
4062  * physical address @phys_addr into virtual address space.  Only
4063  * architectures that have memory mapped IO functions defined (and the
4064  * PCI_IOBASE value defined) should call this function.
4065  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4066 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4067 {
4068 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4069 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4070 
4071 	if (!(res->flags & IORESOURCE_IO))
4072 		return -EINVAL;
4073 
4074 	if (res->end > IO_SPACE_LIMIT)
4075 		return -EINVAL;
4076 
4077 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4078 				  pgprot_device(PAGE_KERNEL));
4079 #else
4080 	/*
4081 	 * This architecture does not have memory mapped I/O space,
4082 	 * so this function should never be called
4083 	 */
4084 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4085 	return -ENODEV;
4086 #endif
4087 }
4088 EXPORT_SYMBOL(pci_remap_iospace);
4089 
4090 /**
4091  * pci_unmap_iospace - Unmap the memory mapped I/O space
4092  * @res: resource to be unmapped
4093  *
4094  * Unmap the CPU virtual address @res from virtual address space.  Only
4095  * architectures that have memory mapped IO functions defined (and the
4096  * PCI_IOBASE value defined) should call this function.
4097  */
pci_unmap_iospace(struct resource * res)4098 void pci_unmap_iospace(struct resource *res)
4099 {
4100 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4101 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4102 
4103 	unmap_kernel_range(vaddr, resource_size(res));
4104 #endif
4105 }
4106 EXPORT_SYMBOL(pci_unmap_iospace);
4107 
devm_pci_unmap_iospace(struct device * dev,void * ptr)4108 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4109 {
4110 	struct resource **res = ptr;
4111 
4112 	pci_unmap_iospace(*res);
4113 }
4114 
4115 /**
4116  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4117  * @dev: Generic device to remap IO address for
4118  * @res: Resource describing the I/O space
4119  * @phys_addr: physical address of range to be mapped
4120  *
4121  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4122  * detach.
4123  */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4124 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4125 			   phys_addr_t phys_addr)
4126 {
4127 	const struct resource **ptr;
4128 	int error;
4129 
4130 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4131 	if (!ptr)
4132 		return -ENOMEM;
4133 
4134 	error = pci_remap_iospace(res, phys_addr);
4135 	if (error) {
4136 		devres_free(ptr);
4137 	} else	{
4138 		*ptr = res;
4139 		devres_add(dev, ptr);
4140 	}
4141 
4142 	return error;
4143 }
4144 EXPORT_SYMBOL(devm_pci_remap_iospace);
4145 
4146 /**
4147  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4148  * @dev: Generic device to remap IO address for
4149  * @offset: Resource address to map
4150  * @size: Size of map
4151  *
4152  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4153  * detach.
4154  */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4155 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4156 				      resource_size_t offset,
4157 				      resource_size_t size)
4158 {
4159 	void __iomem **ptr, *addr;
4160 
4161 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4162 	if (!ptr)
4163 		return NULL;
4164 
4165 	addr = pci_remap_cfgspace(offset, size);
4166 	if (addr) {
4167 		*ptr = addr;
4168 		devres_add(dev, ptr);
4169 	} else
4170 		devres_free(ptr);
4171 
4172 	return addr;
4173 }
4174 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4175 
4176 /**
4177  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4178  * @dev: generic device to handle the resource for
4179  * @res: configuration space resource to be handled
4180  *
4181  * Checks that a resource is a valid memory region, requests the memory
4182  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4183  * proper PCI configuration space memory attributes are guaranteed.
4184  *
4185  * All operations are managed and will be undone on driver detach.
4186  *
4187  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4188  * on failure. Usage example::
4189  *
4190  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4191  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4192  *	if (IS_ERR(base))
4193  *		return PTR_ERR(base);
4194  */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4195 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4196 					  struct resource *res)
4197 {
4198 	resource_size_t size;
4199 	const char *name;
4200 	void __iomem *dest_ptr;
4201 
4202 	BUG_ON(!dev);
4203 
4204 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4205 		dev_err(dev, "invalid resource\n");
4206 		return IOMEM_ERR_PTR(-EINVAL);
4207 	}
4208 
4209 	size = resource_size(res);
4210 	name = res->name ?: dev_name(dev);
4211 
4212 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4213 		dev_err(dev, "can't request region for resource %pR\n", res);
4214 		return IOMEM_ERR_PTR(-EBUSY);
4215 	}
4216 
4217 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4218 	if (!dest_ptr) {
4219 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4220 		devm_release_mem_region(dev, res->start, size);
4221 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4222 	}
4223 
4224 	return dest_ptr;
4225 }
4226 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4227 
__pci_set_master(struct pci_dev * dev,bool enable)4228 static void __pci_set_master(struct pci_dev *dev, bool enable)
4229 {
4230 	u16 old_cmd, cmd;
4231 
4232 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4233 	if (enable)
4234 		cmd = old_cmd | PCI_COMMAND_MASTER;
4235 	else
4236 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4237 	if (cmd != old_cmd) {
4238 		pci_dbg(dev, "%s bus mastering\n",
4239 			enable ? "enabling" : "disabling");
4240 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4241 	}
4242 	dev->is_busmaster = enable;
4243 }
4244 
4245 /**
4246  * pcibios_setup - process "pci=" kernel boot arguments
4247  * @str: string used to pass in "pci=" kernel boot arguments
4248  *
4249  * Process kernel boot arguments.  This is the default implementation.
4250  * Architecture specific implementations can override this as necessary.
4251  */
pcibios_setup(char * str)4252 char * __weak __init pcibios_setup(char *str)
4253 {
4254 	return str;
4255 }
4256 
4257 /**
4258  * pcibios_set_master - enable PCI bus-mastering for device dev
4259  * @dev: the PCI device to enable
4260  *
4261  * Enables PCI bus-mastering for the device.  This is the default
4262  * implementation.  Architecture specific implementations can override
4263  * this if necessary.
4264  */
pcibios_set_master(struct pci_dev * dev)4265 void __weak pcibios_set_master(struct pci_dev *dev)
4266 {
4267 	u8 lat;
4268 
4269 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4270 	if (pci_is_pcie(dev))
4271 		return;
4272 
4273 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4274 	if (lat < 16)
4275 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4276 	else if (lat > pcibios_max_latency)
4277 		lat = pcibios_max_latency;
4278 	else
4279 		return;
4280 
4281 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4282 }
4283 
4284 /**
4285  * pci_set_master - enables bus-mastering for device dev
4286  * @dev: the PCI device to enable
4287  *
4288  * Enables bus-mastering on the device and calls pcibios_set_master()
4289  * to do the needed arch specific settings.
4290  */
pci_set_master(struct pci_dev * dev)4291 void pci_set_master(struct pci_dev *dev)
4292 {
4293 	__pci_set_master(dev, true);
4294 	pcibios_set_master(dev);
4295 }
4296 EXPORT_SYMBOL(pci_set_master);
4297 
4298 /**
4299  * pci_clear_master - disables bus-mastering for device dev
4300  * @dev: the PCI device to disable
4301  */
pci_clear_master(struct pci_dev * dev)4302 void pci_clear_master(struct pci_dev *dev)
4303 {
4304 	__pci_set_master(dev, false);
4305 }
4306 EXPORT_SYMBOL(pci_clear_master);
4307 
4308 /**
4309  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4310  * @dev: the PCI device for which MWI is to be enabled
4311  *
4312  * Helper function for pci_set_mwi.
4313  * Originally copied from drivers/net/acenic.c.
4314  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4315  *
4316  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4317  */
pci_set_cacheline_size(struct pci_dev * dev)4318 int pci_set_cacheline_size(struct pci_dev *dev)
4319 {
4320 	u8 cacheline_size;
4321 
4322 	if (!pci_cache_line_size)
4323 		return -EINVAL;
4324 
4325 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4326 	   equal to or multiple of the right value. */
4327 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4328 	if (cacheline_size >= pci_cache_line_size &&
4329 	    (cacheline_size % pci_cache_line_size) == 0)
4330 		return 0;
4331 
4332 	/* Write the correct value. */
4333 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4334 	/* Read it back. */
4335 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4336 	if (cacheline_size == pci_cache_line_size)
4337 		return 0;
4338 
4339 	pci_info(dev, "cache line size of %d is not supported\n",
4340 		   pci_cache_line_size << 2);
4341 
4342 	return -EINVAL;
4343 }
4344 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4345 
4346 /**
4347  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4348  * @dev: the PCI device for which MWI is enabled
4349  *
4350  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4351  *
4352  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4353  */
pci_set_mwi(struct pci_dev * dev)4354 int pci_set_mwi(struct pci_dev *dev)
4355 {
4356 #ifdef PCI_DISABLE_MWI
4357 	return 0;
4358 #else
4359 	int rc;
4360 	u16 cmd;
4361 
4362 	rc = pci_set_cacheline_size(dev);
4363 	if (rc)
4364 		return rc;
4365 
4366 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4367 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4368 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4369 		cmd |= PCI_COMMAND_INVALIDATE;
4370 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4371 	}
4372 	return 0;
4373 #endif
4374 }
4375 EXPORT_SYMBOL(pci_set_mwi);
4376 
4377 /**
4378  * pcim_set_mwi - a device-managed pci_set_mwi()
4379  * @dev: the PCI device for which MWI is enabled
4380  *
4381  * Managed pci_set_mwi().
4382  *
4383  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4384  */
pcim_set_mwi(struct pci_dev * dev)4385 int pcim_set_mwi(struct pci_dev *dev)
4386 {
4387 	struct pci_devres *dr;
4388 
4389 	dr = find_pci_dr(dev);
4390 	if (!dr)
4391 		return -ENOMEM;
4392 
4393 	dr->mwi = 1;
4394 	return pci_set_mwi(dev);
4395 }
4396 EXPORT_SYMBOL(pcim_set_mwi);
4397 
4398 /**
4399  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4400  * @dev: the PCI device for which MWI is enabled
4401  *
4402  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403  * Callers are not required to check the return value.
4404  *
4405  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4406  */
pci_try_set_mwi(struct pci_dev * dev)4407 int pci_try_set_mwi(struct pci_dev *dev)
4408 {
4409 #ifdef PCI_DISABLE_MWI
4410 	return 0;
4411 #else
4412 	return pci_set_mwi(dev);
4413 #endif
4414 }
4415 EXPORT_SYMBOL(pci_try_set_mwi);
4416 
4417 /**
4418  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4419  * @dev: the PCI device to disable
4420  *
4421  * Disables PCI Memory-Write-Invalidate transaction on the device
4422  */
pci_clear_mwi(struct pci_dev * dev)4423 void pci_clear_mwi(struct pci_dev *dev)
4424 {
4425 #ifndef PCI_DISABLE_MWI
4426 	u16 cmd;
4427 
4428 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4429 	if (cmd & PCI_COMMAND_INVALIDATE) {
4430 		cmd &= ~PCI_COMMAND_INVALIDATE;
4431 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4432 	}
4433 #endif
4434 }
4435 EXPORT_SYMBOL(pci_clear_mwi);
4436 
4437 /**
4438  * pci_intx - enables/disables PCI INTx for device dev
4439  * @pdev: the PCI device to operate on
4440  * @enable: boolean: whether to enable or disable PCI INTx
4441  *
4442  * Enables/disables PCI INTx for device @pdev
4443  */
pci_intx(struct pci_dev * pdev,int enable)4444 void pci_intx(struct pci_dev *pdev, int enable)
4445 {
4446 	u16 pci_command, new;
4447 
4448 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4449 
4450 	if (enable)
4451 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4452 	else
4453 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4454 
4455 	if (new != pci_command) {
4456 		struct pci_devres *dr;
4457 
4458 		pci_write_config_word(pdev, PCI_COMMAND, new);
4459 
4460 		dr = find_pci_dr(pdev);
4461 		if (dr && !dr->restore_intx) {
4462 			dr->restore_intx = 1;
4463 			dr->orig_intx = !enable;
4464 		}
4465 	}
4466 }
4467 EXPORT_SYMBOL_GPL(pci_intx);
4468 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4469 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4470 {
4471 	struct pci_bus *bus = dev->bus;
4472 	bool mask_updated = true;
4473 	u32 cmd_status_dword;
4474 	u16 origcmd, newcmd;
4475 	unsigned long flags;
4476 	bool irq_pending;
4477 
4478 	/*
4479 	 * We do a single dword read to retrieve both command and status.
4480 	 * Document assumptions that make this possible.
4481 	 */
4482 	BUILD_BUG_ON(PCI_COMMAND % 4);
4483 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4484 
4485 	raw_spin_lock_irqsave(&pci_lock, flags);
4486 
4487 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4488 
4489 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4490 
4491 	/*
4492 	 * Check interrupt status register to see whether our device
4493 	 * triggered the interrupt (when masking) or the next IRQ is
4494 	 * already pending (when unmasking).
4495 	 */
4496 	if (mask != irq_pending) {
4497 		mask_updated = false;
4498 		goto done;
4499 	}
4500 
4501 	origcmd = cmd_status_dword;
4502 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4503 	if (mask)
4504 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4505 	if (newcmd != origcmd)
4506 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4507 
4508 done:
4509 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4510 
4511 	return mask_updated;
4512 }
4513 
4514 /**
4515  * pci_check_and_mask_intx - mask INTx on pending interrupt
4516  * @dev: the PCI device to operate on
4517  *
4518  * Check if the device dev has its INTx line asserted, mask it and return
4519  * true in that case. False is returned if no interrupt was pending.
4520  */
pci_check_and_mask_intx(struct pci_dev * dev)4521 bool pci_check_and_mask_intx(struct pci_dev *dev)
4522 {
4523 	return pci_check_and_set_intx_mask(dev, true);
4524 }
4525 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4526 
4527 /**
4528  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4529  * @dev: the PCI device to operate on
4530  *
4531  * Check if the device dev has its INTx line asserted, unmask it if not and
4532  * return true. False is returned and the mask remains active if there was
4533  * still an interrupt pending.
4534  */
pci_check_and_unmask_intx(struct pci_dev * dev)4535 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4536 {
4537 	return pci_check_and_set_intx_mask(dev, false);
4538 }
4539 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4540 
4541 /**
4542  * pci_wait_for_pending_transaction - wait for pending transaction
4543  * @dev: the PCI device to operate on
4544  *
4545  * Return 0 if transaction is pending 1 otherwise.
4546  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4547 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4548 {
4549 	if (!pci_is_pcie(dev))
4550 		return 1;
4551 
4552 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4553 				    PCI_EXP_DEVSTA_TRPND);
4554 }
4555 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4556 
4557 /**
4558  * pcie_has_flr - check if a device supports function level resets
4559  * @dev: device to check
4560  *
4561  * Returns true if the device advertises support for PCIe function level
4562  * resets.
4563  */
pcie_has_flr(struct pci_dev * dev)4564 bool pcie_has_flr(struct pci_dev *dev)
4565 {
4566 	u32 cap;
4567 
4568 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4569 		return false;
4570 
4571 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4572 	return cap & PCI_EXP_DEVCAP_FLR;
4573 }
4574 EXPORT_SYMBOL_GPL(pcie_has_flr);
4575 
4576 /**
4577  * pcie_flr - initiate a PCIe function level reset
4578  * @dev: device to reset
4579  *
4580  * Initiate a function level reset on @dev.  The caller should ensure the
4581  * device supports FLR before calling this function, e.g. by using the
4582  * pcie_has_flr() helper.
4583  */
pcie_flr(struct pci_dev * dev)4584 int pcie_flr(struct pci_dev *dev)
4585 {
4586 	if (!pci_wait_for_pending_transaction(dev))
4587 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4588 
4589 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4590 
4591 	if (dev->imm_ready)
4592 		return 0;
4593 
4594 	/*
4595 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4596 	 * 100ms, but may silently discard requests while the FLR is in
4597 	 * progress.  Wait 100ms before trying to access the device.
4598 	 */
4599 	msleep(100);
4600 
4601 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4602 }
4603 EXPORT_SYMBOL_GPL(pcie_flr);
4604 
pci_af_flr(struct pci_dev * dev,int probe)4605 static int pci_af_flr(struct pci_dev *dev, int probe)
4606 {
4607 	int pos;
4608 	u8 cap;
4609 
4610 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4611 	if (!pos)
4612 		return -ENOTTY;
4613 
4614 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4615 		return -ENOTTY;
4616 
4617 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4618 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4619 		return -ENOTTY;
4620 
4621 	if (probe)
4622 		return 0;
4623 
4624 	/*
4625 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4626 	 * is used, so we use the control offset rather than status and shift
4627 	 * the test bit to match.
4628 	 */
4629 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4630 				 PCI_AF_STATUS_TP << 8))
4631 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4632 
4633 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4634 
4635 	if (dev->imm_ready)
4636 		return 0;
4637 
4638 	/*
4639 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4640 	 * updated 27 July 2006; a device must complete an FLR within
4641 	 * 100ms, but may silently discard requests while the FLR is in
4642 	 * progress.  Wait 100ms before trying to access the device.
4643 	 */
4644 	msleep(100);
4645 
4646 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4647 }
4648 
4649 /**
4650  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4651  * @dev: Device to reset.
4652  * @probe: If set, only check if the device can be reset this way.
4653  *
4654  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4655  * unset, it will be reinitialized internally when going from PCI_D3hot to
4656  * PCI_D0.  If that's the case and the device is not in a low-power state
4657  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4658  *
4659  * NOTE: This causes the caller to sleep for twice the device power transition
4660  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4661  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4662  * Moreover, only devices in D0 can be reset by this function.
4663  */
pci_pm_reset(struct pci_dev * dev,int probe)4664 static int pci_pm_reset(struct pci_dev *dev, int probe)
4665 {
4666 	u16 csr;
4667 
4668 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4669 		return -ENOTTY;
4670 
4671 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4672 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4673 		return -ENOTTY;
4674 
4675 	if (probe)
4676 		return 0;
4677 
4678 	if (dev->current_state != PCI_D0)
4679 		return -EINVAL;
4680 
4681 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4682 	csr |= PCI_D3hot;
4683 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4684 	pci_dev_d3_sleep(dev);
4685 
4686 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4687 	csr |= PCI_D0;
4688 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4689 	pci_dev_d3_sleep(dev);
4690 
4691 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4692 }
4693 
4694 /**
4695  * pcie_wait_for_link_delay - Wait until link is active or inactive
4696  * @pdev: Bridge device
4697  * @active: waiting for active or inactive?
4698  * @delay: Delay to wait after link has become active (in ms)
4699  *
4700  * Use this to wait till link becomes active or inactive.
4701  */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4702 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4703 				     int delay)
4704 {
4705 	int timeout = 1000;
4706 	bool ret;
4707 	u16 lnk_status;
4708 
4709 	/*
4710 	 * Some controllers might not implement link active reporting. In this
4711 	 * case, we wait for 1000 ms + any delay requested by the caller.
4712 	 */
4713 	if (!pdev->link_active_reporting) {
4714 		msleep(timeout + delay);
4715 		return true;
4716 	}
4717 
4718 	/*
4719 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4720 	 * after which we should expect an link active if the reset was
4721 	 * successful. If so, software must wait a minimum 100ms before sending
4722 	 * configuration requests to devices downstream this port.
4723 	 *
4724 	 * If the link fails to activate, either the device was physically
4725 	 * removed or the link is permanently failed.
4726 	 */
4727 	if (active)
4728 		msleep(20);
4729 	for (;;) {
4730 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4731 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4732 		if (ret == active)
4733 			break;
4734 		if (timeout <= 0)
4735 			break;
4736 		msleep(10);
4737 		timeout -= 10;
4738 	}
4739 	if (active && ret)
4740 		msleep(delay);
4741 
4742 	return ret == active;
4743 }
4744 
4745 /**
4746  * pcie_wait_for_link - Wait until link is active or inactive
4747  * @pdev: Bridge device
4748  * @active: waiting for active or inactive?
4749  *
4750  * Use this to wait till link becomes active or inactive.
4751  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4752 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4753 {
4754 	return pcie_wait_for_link_delay(pdev, active, 100);
4755 }
4756 
4757 /*
4758  * Find maximum D3cold delay required by all the devices on the bus.  The
4759  * spec says 100 ms, but firmware can lower it and we allow drivers to
4760  * increase it as well.
4761  *
4762  * Called with @pci_bus_sem locked for reading.
4763  */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4764 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4765 {
4766 	const struct pci_dev *pdev;
4767 	int min_delay = 100;
4768 	int max_delay = 0;
4769 
4770 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4771 		if (pdev->d3cold_delay < min_delay)
4772 			min_delay = pdev->d3cold_delay;
4773 		if (pdev->d3cold_delay > max_delay)
4774 			max_delay = pdev->d3cold_delay;
4775 	}
4776 
4777 	return max(min_delay, max_delay);
4778 }
4779 
4780 /**
4781  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4782  * @dev: PCI bridge
4783  *
4784  * Handle necessary delays before access to the devices on the secondary
4785  * side of the bridge are permitted after D3cold to D0 transition.
4786  *
4787  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4788  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4789  * 4.3.2.
4790  */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev)4791 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4792 {
4793 	struct pci_dev *child;
4794 	int delay;
4795 
4796 	if (pci_dev_is_disconnected(dev))
4797 		return;
4798 
4799 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4800 		return;
4801 
4802 	down_read(&pci_bus_sem);
4803 
4804 	/*
4805 	 * We only deal with devices that are present currently on the bus.
4806 	 * For any hot-added devices the access delay is handled in pciehp
4807 	 * board_added(). In case of ACPI hotplug the firmware is expected
4808 	 * to configure the devices before OS is notified.
4809 	 */
4810 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4811 		up_read(&pci_bus_sem);
4812 		return;
4813 	}
4814 
4815 	/* Take d3cold_delay requirements into account */
4816 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4817 	if (!delay) {
4818 		up_read(&pci_bus_sem);
4819 		return;
4820 	}
4821 
4822 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4823 				 bus_list);
4824 	up_read(&pci_bus_sem);
4825 
4826 	/*
4827 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4828 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4829 	 * practice this should not be needed because we don't do power
4830 	 * management for them (see pci_bridge_d3_possible()).
4831 	 */
4832 	if (!pci_is_pcie(dev)) {
4833 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4834 		msleep(1000 + delay);
4835 		return;
4836 	}
4837 
4838 	/*
4839 	 * For PCIe downstream and root ports that do not support speeds
4840 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4841 	 * speeds (gen3) we need to wait first for the data link layer to
4842 	 * become active.
4843 	 *
4844 	 * However, 100 ms is the minimum and the PCIe spec says the
4845 	 * software must allow at least 1s before it can determine that the
4846 	 * device that did not respond is a broken device. There is
4847 	 * evidence that 100 ms is not always enough, for example certain
4848 	 * Titan Ridge xHCI controller does not always respond to
4849 	 * configuration requests if we only wait for 100 ms (see
4850 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4851 	 *
4852 	 * Therefore we wait for 100 ms and check for the device presence.
4853 	 * If it is still not present give it an additional 100 ms.
4854 	 */
4855 	if (!pcie_downstream_port(dev))
4856 		return;
4857 
4858 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4859 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4860 		msleep(delay);
4861 	} else {
4862 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4863 			delay);
4864 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4865 			/* Did not train, no need to wait any further */
4866 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4867 			return;
4868 		}
4869 	}
4870 
4871 	if (!pci_device_is_present(child)) {
4872 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4873 		msleep(delay);
4874 	}
4875 }
4876 
pci_reset_secondary_bus(struct pci_dev * dev)4877 void pci_reset_secondary_bus(struct pci_dev *dev)
4878 {
4879 	u16 ctrl;
4880 
4881 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4882 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4883 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4884 
4885 	/*
4886 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4887 	 * this to 2ms to ensure that we meet the minimum requirement.
4888 	 */
4889 	msleep(2);
4890 
4891 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4892 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4893 
4894 	/*
4895 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4896 	 * Assuming a minimum 33MHz clock this results in a 1s
4897 	 * delay before we can consider subordinate devices to
4898 	 * be re-initialized.  PCIe has some ways to shorten this,
4899 	 * but we don't make use of them yet.
4900 	 */
4901 	ssleep(1);
4902 }
4903 
pcibios_reset_secondary_bus(struct pci_dev * dev)4904 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4905 {
4906 	pci_reset_secondary_bus(dev);
4907 }
4908 
4909 /**
4910  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4911  * @dev: Bridge device
4912  *
4913  * Use the bridge control register to assert reset on the secondary bus.
4914  * Devices on the secondary bus are left in power-on state.
4915  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4916 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4917 {
4918 	pcibios_reset_secondary_bus(dev);
4919 
4920 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4921 }
4922 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4923 
pci_parent_bus_reset(struct pci_dev * dev,int probe)4924 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4925 {
4926 	struct pci_dev *pdev;
4927 
4928 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4929 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4930 		return -ENOTTY;
4931 
4932 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4933 		if (pdev != dev)
4934 			return -ENOTTY;
4935 
4936 	if (probe)
4937 		return 0;
4938 
4939 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4940 }
4941 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4942 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4943 {
4944 	int rc = -ENOTTY;
4945 
4946 	if (!hotplug || !try_module_get(hotplug->owner))
4947 		return rc;
4948 
4949 	if (hotplug->ops->reset_slot)
4950 		rc = hotplug->ops->reset_slot(hotplug, probe);
4951 
4952 	module_put(hotplug->owner);
4953 
4954 	return rc;
4955 }
4956 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4957 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4958 {
4959 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4960 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4961 		return -ENOTTY;
4962 
4963 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4964 }
4965 
pci_dev_lock(struct pci_dev * dev)4966 static void pci_dev_lock(struct pci_dev *dev)
4967 {
4968 	pci_cfg_access_lock(dev);
4969 	/* block PM suspend, driver probe, etc. */
4970 	device_lock(&dev->dev);
4971 }
4972 
4973 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4974 static int pci_dev_trylock(struct pci_dev *dev)
4975 {
4976 	if (pci_cfg_access_trylock(dev)) {
4977 		if (device_trylock(&dev->dev))
4978 			return 1;
4979 		pci_cfg_access_unlock(dev);
4980 	}
4981 
4982 	return 0;
4983 }
4984 
pci_dev_unlock(struct pci_dev * dev)4985 static void pci_dev_unlock(struct pci_dev *dev)
4986 {
4987 	device_unlock(&dev->dev);
4988 	pci_cfg_access_unlock(dev);
4989 }
4990 
pci_dev_save_and_disable(struct pci_dev * dev)4991 static void pci_dev_save_and_disable(struct pci_dev *dev)
4992 {
4993 	const struct pci_error_handlers *err_handler =
4994 			dev->driver ? dev->driver->err_handler : NULL;
4995 
4996 	/*
4997 	 * dev->driver->err_handler->reset_prepare() is protected against
4998 	 * races with ->remove() by the device lock, which must be held by
4999 	 * the caller.
5000 	 */
5001 	if (err_handler && err_handler->reset_prepare)
5002 		err_handler->reset_prepare(dev);
5003 
5004 	/*
5005 	 * Wake-up device prior to save.  PM registers default to D0 after
5006 	 * reset and a simple register restore doesn't reliably return
5007 	 * to a non-D0 state anyway.
5008 	 */
5009 	pci_set_power_state(dev, PCI_D0);
5010 
5011 	pci_save_state(dev);
5012 	/*
5013 	 * Disable the device by clearing the Command register, except for
5014 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5015 	 * BARs, but also prevents the device from being Bus Master, preventing
5016 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5017 	 * compliant devices, INTx-disable prevents legacy interrupts.
5018 	 */
5019 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5020 }
5021 
pci_dev_restore(struct pci_dev * dev)5022 static void pci_dev_restore(struct pci_dev *dev)
5023 {
5024 	const struct pci_error_handlers *err_handler =
5025 			dev->driver ? dev->driver->err_handler : NULL;
5026 
5027 	pci_restore_state(dev);
5028 
5029 	/*
5030 	 * dev->driver->err_handler->reset_done() is protected against
5031 	 * races with ->remove() by the device lock, which must be held by
5032 	 * the caller.
5033 	 */
5034 	if (err_handler && err_handler->reset_done)
5035 		err_handler->reset_done(dev);
5036 }
5037 
5038 /**
5039  * __pci_reset_function_locked - reset a PCI device function while holding
5040  * the @dev mutex lock.
5041  * @dev: PCI device to reset
5042  *
5043  * Some devices allow an individual function to be reset without affecting
5044  * other functions in the same device.  The PCI device must be responsive
5045  * to PCI config space in order to use this function.
5046  *
5047  * The device function is presumed to be unused and the caller is holding
5048  * the device mutex lock when this function is called.
5049  *
5050  * Resetting the device will make the contents of PCI configuration space
5051  * random, so any caller of this must be prepared to reinitialise the
5052  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5053  * etc.
5054  *
5055  * Returns 0 if the device function was successfully reset or negative if the
5056  * device doesn't support resetting a single function.
5057  */
__pci_reset_function_locked(struct pci_dev * dev)5058 int __pci_reset_function_locked(struct pci_dev *dev)
5059 {
5060 	int rc;
5061 
5062 	might_sleep();
5063 
5064 	/*
5065 	 * A reset method returns -ENOTTY if it doesn't support this device
5066 	 * and we should try the next method.
5067 	 *
5068 	 * If it returns 0 (success), we're finished.  If it returns any
5069 	 * other error, we're also finished: this indicates that further
5070 	 * reset mechanisms might be broken on the device.
5071 	 */
5072 	rc = pci_dev_specific_reset(dev, 0);
5073 	if (rc != -ENOTTY)
5074 		return rc;
5075 	if (pcie_has_flr(dev)) {
5076 		rc = pcie_flr(dev);
5077 		if (rc != -ENOTTY)
5078 			return rc;
5079 	}
5080 	rc = pci_af_flr(dev, 0);
5081 	if (rc != -ENOTTY)
5082 		return rc;
5083 	rc = pci_pm_reset(dev, 0);
5084 	if (rc != -ENOTTY)
5085 		return rc;
5086 	rc = pci_dev_reset_slot_function(dev, 0);
5087 	if (rc != -ENOTTY)
5088 		return rc;
5089 	return pci_parent_bus_reset(dev, 0);
5090 }
5091 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5092 
5093 /**
5094  * pci_probe_reset_function - check whether the device can be safely reset
5095  * @dev: PCI device to reset
5096  *
5097  * Some devices allow an individual function to be reset without affecting
5098  * other functions in the same device.  The PCI device must be responsive
5099  * to PCI config space in order to use this function.
5100  *
5101  * Returns 0 if the device function can be reset or negative if the
5102  * device doesn't support resetting a single function.
5103  */
pci_probe_reset_function(struct pci_dev * dev)5104 int pci_probe_reset_function(struct pci_dev *dev)
5105 {
5106 	int rc;
5107 
5108 	might_sleep();
5109 
5110 	rc = pci_dev_specific_reset(dev, 1);
5111 	if (rc != -ENOTTY)
5112 		return rc;
5113 	if (pcie_has_flr(dev))
5114 		return 0;
5115 	rc = pci_af_flr(dev, 1);
5116 	if (rc != -ENOTTY)
5117 		return rc;
5118 	rc = pci_pm_reset(dev, 1);
5119 	if (rc != -ENOTTY)
5120 		return rc;
5121 	rc = pci_dev_reset_slot_function(dev, 1);
5122 	if (rc != -ENOTTY)
5123 		return rc;
5124 
5125 	return pci_parent_bus_reset(dev, 1);
5126 }
5127 
5128 /**
5129  * pci_reset_function - quiesce and reset a PCI device function
5130  * @dev: PCI device to reset
5131  *
5132  * Some devices allow an individual function to be reset without affecting
5133  * other functions in the same device.  The PCI device must be responsive
5134  * to PCI config space in order to use this function.
5135  *
5136  * This function does not just reset the PCI portion of a device, but
5137  * clears all the state associated with the device.  This function differs
5138  * from __pci_reset_function_locked() in that it saves and restores device state
5139  * over the reset and takes the PCI device lock.
5140  *
5141  * Returns 0 if the device function was successfully reset or negative if the
5142  * device doesn't support resetting a single function.
5143  */
pci_reset_function(struct pci_dev * dev)5144 int pci_reset_function(struct pci_dev *dev)
5145 {
5146 	int rc;
5147 
5148 	if (!dev->reset_fn)
5149 		return -ENOTTY;
5150 
5151 	pci_dev_lock(dev);
5152 	pci_dev_save_and_disable(dev);
5153 
5154 	rc = __pci_reset_function_locked(dev);
5155 
5156 	pci_dev_restore(dev);
5157 	pci_dev_unlock(dev);
5158 
5159 	return rc;
5160 }
5161 EXPORT_SYMBOL_GPL(pci_reset_function);
5162 
5163 /**
5164  * pci_reset_function_locked - quiesce and reset a PCI device function
5165  * @dev: PCI device to reset
5166  *
5167  * Some devices allow an individual function to be reset without affecting
5168  * other functions in the same device.  The PCI device must be responsive
5169  * to PCI config space in order to use this function.
5170  *
5171  * This function does not just reset the PCI portion of a device, but
5172  * clears all the state associated with the device.  This function differs
5173  * from __pci_reset_function_locked() in that it saves and restores device state
5174  * over the reset.  It also differs from pci_reset_function() in that it
5175  * requires the PCI device lock to be held.
5176  *
5177  * Returns 0 if the device function was successfully reset or negative if the
5178  * device doesn't support resetting a single function.
5179  */
pci_reset_function_locked(struct pci_dev * dev)5180 int pci_reset_function_locked(struct pci_dev *dev)
5181 {
5182 	int rc;
5183 
5184 	if (!dev->reset_fn)
5185 		return -ENOTTY;
5186 
5187 	pci_dev_save_and_disable(dev);
5188 
5189 	rc = __pci_reset_function_locked(dev);
5190 
5191 	pci_dev_restore(dev);
5192 
5193 	return rc;
5194 }
5195 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5196 
5197 /**
5198  * pci_try_reset_function - quiesce and reset a PCI device function
5199  * @dev: PCI device to reset
5200  *
5201  * Same as above, except return -EAGAIN if unable to lock device.
5202  */
pci_try_reset_function(struct pci_dev * dev)5203 int pci_try_reset_function(struct pci_dev *dev)
5204 {
5205 	int rc;
5206 
5207 	if (!dev->reset_fn)
5208 		return -ENOTTY;
5209 
5210 	if (!pci_dev_trylock(dev))
5211 		return -EAGAIN;
5212 
5213 	pci_dev_save_and_disable(dev);
5214 	rc = __pci_reset_function_locked(dev);
5215 	pci_dev_restore(dev);
5216 	pci_dev_unlock(dev);
5217 
5218 	return rc;
5219 }
5220 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5221 
5222 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5223 static bool pci_bus_resetable(struct pci_bus *bus)
5224 {
5225 	struct pci_dev *dev;
5226 
5227 
5228 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5229 		return false;
5230 
5231 	list_for_each_entry(dev, &bus->devices, bus_list) {
5232 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5233 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5234 			return false;
5235 	}
5236 
5237 	return true;
5238 }
5239 
5240 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5241 static void pci_bus_lock(struct pci_bus *bus)
5242 {
5243 	struct pci_dev *dev;
5244 
5245 	list_for_each_entry(dev, &bus->devices, bus_list) {
5246 		pci_dev_lock(dev);
5247 		if (dev->subordinate)
5248 			pci_bus_lock(dev->subordinate);
5249 	}
5250 }
5251 
5252 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5253 static void pci_bus_unlock(struct pci_bus *bus)
5254 {
5255 	struct pci_dev *dev;
5256 
5257 	list_for_each_entry(dev, &bus->devices, bus_list) {
5258 		if (dev->subordinate)
5259 			pci_bus_unlock(dev->subordinate);
5260 		pci_dev_unlock(dev);
5261 	}
5262 }
5263 
5264 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5265 static int pci_bus_trylock(struct pci_bus *bus)
5266 {
5267 	struct pci_dev *dev;
5268 
5269 	list_for_each_entry(dev, &bus->devices, bus_list) {
5270 		if (!pci_dev_trylock(dev))
5271 			goto unlock;
5272 		if (dev->subordinate) {
5273 			if (!pci_bus_trylock(dev->subordinate)) {
5274 				pci_dev_unlock(dev);
5275 				goto unlock;
5276 			}
5277 		}
5278 	}
5279 	return 1;
5280 
5281 unlock:
5282 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5283 		if (dev->subordinate)
5284 			pci_bus_unlock(dev->subordinate);
5285 		pci_dev_unlock(dev);
5286 	}
5287 	return 0;
5288 }
5289 
5290 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5291 static bool pci_slot_resetable(struct pci_slot *slot)
5292 {
5293 	struct pci_dev *dev;
5294 
5295 	if (slot->bus->self &&
5296 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5297 		return false;
5298 
5299 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5300 		if (!dev->slot || dev->slot != slot)
5301 			continue;
5302 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5303 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5304 			return false;
5305 	}
5306 
5307 	return true;
5308 }
5309 
5310 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5311 static void pci_slot_lock(struct pci_slot *slot)
5312 {
5313 	struct pci_dev *dev;
5314 
5315 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5316 		if (!dev->slot || dev->slot != slot)
5317 			continue;
5318 		pci_dev_lock(dev);
5319 		if (dev->subordinate)
5320 			pci_bus_lock(dev->subordinate);
5321 	}
5322 }
5323 
5324 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5325 static void pci_slot_unlock(struct pci_slot *slot)
5326 {
5327 	struct pci_dev *dev;
5328 
5329 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5330 		if (!dev->slot || dev->slot != slot)
5331 			continue;
5332 		if (dev->subordinate)
5333 			pci_bus_unlock(dev->subordinate);
5334 		pci_dev_unlock(dev);
5335 	}
5336 }
5337 
5338 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5339 static int pci_slot_trylock(struct pci_slot *slot)
5340 {
5341 	struct pci_dev *dev;
5342 
5343 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5344 		if (!dev->slot || dev->slot != slot)
5345 			continue;
5346 		if (!pci_dev_trylock(dev))
5347 			goto unlock;
5348 		if (dev->subordinate) {
5349 			if (!pci_bus_trylock(dev->subordinate)) {
5350 				pci_dev_unlock(dev);
5351 				goto unlock;
5352 			}
5353 		}
5354 	}
5355 	return 1;
5356 
5357 unlock:
5358 	list_for_each_entry_continue_reverse(dev,
5359 					     &slot->bus->devices, bus_list) {
5360 		if (!dev->slot || dev->slot != slot)
5361 			continue;
5362 		if (dev->subordinate)
5363 			pci_bus_unlock(dev->subordinate);
5364 		pci_dev_unlock(dev);
5365 	}
5366 	return 0;
5367 }
5368 
5369 /*
5370  * Save and disable devices from the top of the tree down while holding
5371  * the @dev mutex lock for the entire tree.
5372  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5373 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5374 {
5375 	struct pci_dev *dev;
5376 
5377 	list_for_each_entry(dev, &bus->devices, bus_list) {
5378 		pci_dev_save_and_disable(dev);
5379 		if (dev->subordinate)
5380 			pci_bus_save_and_disable_locked(dev->subordinate);
5381 	}
5382 }
5383 
5384 /*
5385  * Restore devices from top of the tree down while holding @dev mutex lock
5386  * for the entire tree.  Parent bridges need to be restored before we can
5387  * get to subordinate devices.
5388  */
pci_bus_restore_locked(struct pci_bus * bus)5389 static void pci_bus_restore_locked(struct pci_bus *bus)
5390 {
5391 	struct pci_dev *dev;
5392 
5393 	list_for_each_entry(dev, &bus->devices, bus_list) {
5394 		pci_dev_restore(dev);
5395 		if (dev->subordinate)
5396 			pci_bus_restore_locked(dev->subordinate);
5397 	}
5398 }
5399 
5400 /*
5401  * Save and disable devices from the top of the tree down while holding
5402  * the @dev mutex lock for the entire tree.
5403  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5404 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5405 {
5406 	struct pci_dev *dev;
5407 
5408 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5409 		if (!dev->slot || dev->slot != slot)
5410 			continue;
5411 		pci_dev_save_and_disable(dev);
5412 		if (dev->subordinate)
5413 			pci_bus_save_and_disable_locked(dev->subordinate);
5414 	}
5415 }
5416 
5417 /*
5418  * Restore devices from top of the tree down while holding @dev mutex lock
5419  * for the entire tree.  Parent bridges need to be restored before we can
5420  * get to subordinate devices.
5421  */
pci_slot_restore_locked(struct pci_slot * slot)5422 static void pci_slot_restore_locked(struct pci_slot *slot)
5423 {
5424 	struct pci_dev *dev;
5425 
5426 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5427 		if (!dev->slot || dev->slot != slot)
5428 			continue;
5429 		pci_dev_restore(dev);
5430 		if (dev->subordinate)
5431 			pci_bus_restore_locked(dev->subordinate);
5432 	}
5433 }
5434 
pci_slot_reset(struct pci_slot * slot,int probe)5435 static int pci_slot_reset(struct pci_slot *slot, int probe)
5436 {
5437 	int rc;
5438 
5439 	if (!slot || !pci_slot_resetable(slot))
5440 		return -ENOTTY;
5441 
5442 	if (!probe)
5443 		pci_slot_lock(slot);
5444 
5445 	might_sleep();
5446 
5447 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5448 
5449 	if (!probe)
5450 		pci_slot_unlock(slot);
5451 
5452 	return rc;
5453 }
5454 
5455 /**
5456  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5457  * @slot: PCI slot to probe
5458  *
5459  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5460  */
pci_probe_reset_slot(struct pci_slot * slot)5461 int pci_probe_reset_slot(struct pci_slot *slot)
5462 {
5463 	return pci_slot_reset(slot, 1);
5464 }
5465 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5466 
5467 /**
5468  * __pci_reset_slot - Try to reset a PCI slot
5469  * @slot: PCI slot to reset
5470  *
5471  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5472  * independent of other slots.  For instance, some slots may support slot power
5473  * control.  In the case of a 1:1 bus to slot architecture, this function may
5474  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5475  * Generally a slot reset should be attempted before a bus reset.  All of the
5476  * function of the slot and any subordinate buses behind the slot are reset
5477  * through this function.  PCI config space of all devices in the slot and
5478  * behind the slot is saved before and restored after reset.
5479  *
5480  * Same as above except return -EAGAIN if the slot cannot be locked
5481  */
__pci_reset_slot(struct pci_slot * slot)5482 static int __pci_reset_slot(struct pci_slot *slot)
5483 {
5484 	int rc;
5485 
5486 	rc = pci_slot_reset(slot, 1);
5487 	if (rc)
5488 		return rc;
5489 
5490 	if (pci_slot_trylock(slot)) {
5491 		pci_slot_save_and_disable_locked(slot);
5492 		might_sleep();
5493 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5494 		pci_slot_restore_locked(slot);
5495 		pci_slot_unlock(slot);
5496 	} else
5497 		rc = -EAGAIN;
5498 
5499 	return rc;
5500 }
5501 
pci_bus_reset(struct pci_bus * bus,int probe)5502 static int pci_bus_reset(struct pci_bus *bus, int probe)
5503 {
5504 	int ret;
5505 
5506 	if (!bus->self || !pci_bus_resetable(bus))
5507 		return -ENOTTY;
5508 
5509 	if (probe)
5510 		return 0;
5511 
5512 	pci_bus_lock(bus);
5513 
5514 	might_sleep();
5515 
5516 	ret = pci_bridge_secondary_bus_reset(bus->self);
5517 
5518 	pci_bus_unlock(bus);
5519 
5520 	return ret;
5521 }
5522 
5523 /**
5524  * pci_bus_error_reset - reset the bridge's subordinate bus
5525  * @bridge: The parent device that connects to the bus to reset
5526  *
5527  * This function will first try to reset the slots on this bus if the method is
5528  * available. If slot reset fails or is not available, this will fall back to a
5529  * secondary bus reset.
5530  */
pci_bus_error_reset(struct pci_dev * bridge)5531 int pci_bus_error_reset(struct pci_dev *bridge)
5532 {
5533 	struct pci_bus *bus = bridge->subordinate;
5534 	struct pci_slot *slot;
5535 
5536 	if (!bus)
5537 		return -ENOTTY;
5538 
5539 	mutex_lock(&pci_slot_mutex);
5540 	if (list_empty(&bus->slots))
5541 		goto bus_reset;
5542 
5543 	list_for_each_entry(slot, &bus->slots, list)
5544 		if (pci_probe_reset_slot(slot))
5545 			goto bus_reset;
5546 
5547 	list_for_each_entry(slot, &bus->slots, list)
5548 		if (pci_slot_reset(slot, 0))
5549 			goto bus_reset;
5550 
5551 	mutex_unlock(&pci_slot_mutex);
5552 	return 0;
5553 bus_reset:
5554 	mutex_unlock(&pci_slot_mutex);
5555 	return pci_bus_reset(bridge->subordinate, 0);
5556 }
5557 
5558 /**
5559  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5560  * @bus: PCI bus to probe
5561  *
5562  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5563  */
pci_probe_reset_bus(struct pci_bus * bus)5564 int pci_probe_reset_bus(struct pci_bus *bus)
5565 {
5566 	return pci_bus_reset(bus, 1);
5567 }
5568 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5569 
5570 /**
5571  * __pci_reset_bus - Try to reset a PCI bus
5572  * @bus: top level PCI bus to reset
5573  *
5574  * Same as above except return -EAGAIN if the bus cannot be locked
5575  */
__pci_reset_bus(struct pci_bus * bus)5576 static int __pci_reset_bus(struct pci_bus *bus)
5577 {
5578 	int rc;
5579 
5580 	rc = pci_bus_reset(bus, 1);
5581 	if (rc)
5582 		return rc;
5583 
5584 	if (pci_bus_trylock(bus)) {
5585 		pci_bus_save_and_disable_locked(bus);
5586 		might_sleep();
5587 		rc = pci_bridge_secondary_bus_reset(bus->self);
5588 		pci_bus_restore_locked(bus);
5589 		pci_bus_unlock(bus);
5590 	} else
5591 		rc = -EAGAIN;
5592 
5593 	return rc;
5594 }
5595 
5596 /**
5597  * pci_reset_bus - Try to reset a PCI bus
5598  * @pdev: top level PCI device to reset via slot/bus
5599  *
5600  * Same as above except return -EAGAIN if the bus cannot be locked
5601  */
pci_reset_bus(struct pci_dev * pdev)5602 int pci_reset_bus(struct pci_dev *pdev)
5603 {
5604 	return (!pci_probe_reset_slot(pdev->slot)) ?
5605 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5606 }
5607 EXPORT_SYMBOL_GPL(pci_reset_bus);
5608 
5609 /**
5610  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5611  * @dev: PCI device to query
5612  *
5613  * Returns mmrbc: maximum designed memory read count in bytes or
5614  * appropriate error value.
5615  */
pcix_get_max_mmrbc(struct pci_dev * dev)5616 int pcix_get_max_mmrbc(struct pci_dev *dev)
5617 {
5618 	int cap;
5619 	u32 stat;
5620 
5621 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5622 	if (!cap)
5623 		return -EINVAL;
5624 
5625 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5626 		return -EINVAL;
5627 
5628 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5629 }
5630 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5631 
5632 /**
5633  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5634  * @dev: PCI device to query
5635  *
5636  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5637  * value.
5638  */
pcix_get_mmrbc(struct pci_dev * dev)5639 int pcix_get_mmrbc(struct pci_dev *dev)
5640 {
5641 	int cap;
5642 	u16 cmd;
5643 
5644 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5645 	if (!cap)
5646 		return -EINVAL;
5647 
5648 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5649 		return -EINVAL;
5650 
5651 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5652 }
5653 EXPORT_SYMBOL(pcix_get_mmrbc);
5654 
5655 /**
5656  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5657  * @dev: PCI device to query
5658  * @mmrbc: maximum memory read count in bytes
5659  *    valid values are 512, 1024, 2048, 4096
5660  *
5661  * If possible sets maximum memory read byte count, some bridges have errata
5662  * that prevent this.
5663  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5664 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5665 {
5666 	int cap;
5667 	u32 stat, v, o;
5668 	u16 cmd;
5669 
5670 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5671 		return -EINVAL;
5672 
5673 	v = ffs(mmrbc) - 10;
5674 
5675 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5676 	if (!cap)
5677 		return -EINVAL;
5678 
5679 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5680 		return -EINVAL;
5681 
5682 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5683 		return -E2BIG;
5684 
5685 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5686 		return -EINVAL;
5687 
5688 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5689 	if (o != v) {
5690 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5691 			return -EIO;
5692 
5693 		cmd &= ~PCI_X_CMD_MAX_READ;
5694 		cmd |= v << 2;
5695 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5696 			return -EIO;
5697 	}
5698 	return 0;
5699 }
5700 EXPORT_SYMBOL(pcix_set_mmrbc);
5701 
5702 /**
5703  * pcie_get_readrq - get PCI Express read request size
5704  * @dev: PCI device to query
5705  *
5706  * Returns maximum memory read request in bytes or appropriate error value.
5707  */
pcie_get_readrq(struct pci_dev * dev)5708 int pcie_get_readrq(struct pci_dev *dev)
5709 {
5710 	u16 ctl;
5711 
5712 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5713 
5714 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5715 }
5716 EXPORT_SYMBOL(pcie_get_readrq);
5717 
5718 /**
5719  * pcie_set_readrq - set PCI Express maximum memory read request
5720  * @dev: PCI device to query
5721  * @rq: maximum memory read count in bytes
5722  *    valid values are 128, 256, 512, 1024, 2048, 4096
5723  *
5724  * If possible sets maximum memory read request in bytes
5725  */
pcie_set_readrq(struct pci_dev * dev,int rq)5726 int pcie_set_readrq(struct pci_dev *dev, int rq)
5727 {
5728 	u16 v;
5729 	int ret;
5730 
5731 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5732 		return -EINVAL;
5733 
5734 	/*
5735 	 * If using the "performance" PCIe config, we clamp the read rq
5736 	 * size to the max packet size to keep the host bridge from
5737 	 * generating requests larger than we can cope with.
5738 	 */
5739 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5740 		int mps = pcie_get_mps(dev);
5741 
5742 		if (mps < rq)
5743 			rq = mps;
5744 	}
5745 
5746 	v = (ffs(rq) - 8) << 12;
5747 
5748 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5749 						  PCI_EXP_DEVCTL_READRQ, v);
5750 
5751 	return pcibios_err_to_errno(ret);
5752 }
5753 EXPORT_SYMBOL(pcie_set_readrq);
5754 
5755 /**
5756  * pcie_get_mps - get PCI Express maximum payload size
5757  * @dev: PCI device to query
5758  *
5759  * Returns maximum payload size in bytes
5760  */
pcie_get_mps(struct pci_dev * dev)5761 int pcie_get_mps(struct pci_dev *dev)
5762 {
5763 	u16 ctl;
5764 
5765 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5766 
5767 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5768 }
5769 EXPORT_SYMBOL(pcie_get_mps);
5770 
5771 /**
5772  * pcie_set_mps - set PCI Express maximum payload size
5773  * @dev: PCI device to query
5774  * @mps: maximum payload size in bytes
5775  *    valid values are 128, 256, 512, 1024, 2048, 4096
5776  *
5777  * If possible sets maximum payload size
5778  */
pcie_set_mps(struct pci_dev * dev,int mps)5779 int pcie_set_mps(struct pci_dev *dev, int mps)
5780 {
5781 	u16 v;
5782 	int ret;
5783 
5784 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5785 		return -EINVAL;
5786 
5787 	v = ffs(mps) - 8;
5788 	if (v > dev->pcie_mpss)
5789 		return -EINVAL;
5790 	v <<= 5;
5791 
5792 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5793 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5794 
5795 	return pcibios_err_to_errno(ret);
5796 }
5797 EXPORT_SYMBOL(pcie_set_mps);
5798 
5799 /**
5800  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5801  *			      device and its bandwidth limitation
5802  * @dev: PCI device to query
5803  * @limiting_dev: storage for device causing the bandwidth limitation
5804  * @speed: storage for speed of limiting device
5805  * @width: storage for width of limiting device
5806  *
5807  * Walk up the PCI device chain and find the point where the minimum
5808  * bandwidth is available.  Return the bandwidth available there and (if
5809  * limiting_dev, speed, and width pointers are supplied) information about
5810  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5811  * raw bandwidth.
5812  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5813 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5814 			     enum pci_bus_speed *speed,
5815 			     enum pcie_link_width *width)
5816 {
5817 	u16 lnksta;
5818 	enum pci_bus_speed next_speed;
5819 	enum pcie_link_width next_width;
5820 	u32 bw, next_bw;
5821 
5822 	if (speed)
5823 		*speed = PCI_SPEED_UNKNOWN;
5824 	if (width)
5825 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5826 
5827 	bw = 0;
5828 
5829 	while (dev) {
5830 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5831 
5832 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5833 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5834 			PCI_EXP_LNKSTA_NLW_SHIFT;
5835 
5836 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5837 
5838 		/* Check if current device limits the total bandwidth */
5839 		if (!bw || next_bw <= bw) {
5840 			bw = next_bw;
5841 
5842 			if (limiting_dev)
5843 				*limiting_dev = dev;
5844 			if (speed)
5845 				*speed = next_speed;
5846 			if (width)
5847 				*width = next_width;
5848 		}
5849 
5850 		dev = pci_upstream_bridge(dev);
5851 	}
5852 
5853 	return bw;
5854 }
5855 EXPORT_SYMBOL(pcie_bandwidth_available);
5856 
5857 /**
5858  * pcie_get_speed_cap - query for the PCI device's link speed capability
5859  * @dev: PCI device to query
5860  *
5861  * Query the PCI device speed capability.  Return the maximum link speed
5862  * supported by the device.
5863  */
pcie_get_speed_cap(struct pci_dev * dev)5864 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5865 {
5866 	u32 lnkcap2, lnkcap;
5867 
5868 	/*
5869 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5870 	 * implementation note there recommends using the Supported Link
5871 	 * Speeds Vector in Link Capabilities 2 when supported.
5872 	 *
5873 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5874 	 * should use the Supported Link Speeds field in Link Capabilities,
5875 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5876 	 */
5877 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5878 
5879 	/* PCIe r3.0-compliant */
5880 	if (lnkcap2)
5881 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5882 
5883 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5884 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5885 		return PCIE_SPEED_5_0GT;
5886 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5887 		return PCIE_SPEED_2_5GT;
5888 
5889 	return PCI_SPEED_UNKNOWN;
5890 }
5891 EXPORT_SYMBOL(pcie_get_speed_cap);
5892 
5893 /**
5894  * pcie_get_width_cap - query for the PCI device's link width capability
5895  * @dev: PCI device to query
5896  *
5897  * Query the PCI device width capability.  Return the maximum link width
5898  * supported by the device.
5899  */
pcie_get_width_cap(struct pci_dev * dev)5900 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5901 {
5902 	u32 lnkcap;
5903 
5904 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5905 	if (lnkcap)
5906 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5907 
5908 	return PCIE_LNK_WIDTH_UNKNOWN;
5909 }
5910 EXPORT_SYMBOL(pcie_get_width_cap);
5911 
5912 /**
5913  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5914  * @dev: PCI device
5915  * @speed: storage for link speed
5916  * @width: storage for link width
5917  *
5918  * Calculate a PCI device's link bandwidth by querying for its link speed
5919  * and width, multiplying them, and applying encoding overhead.  The result
5920  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5921  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5922 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5923 			   enum pcie_link_width *width)
5924 {
5925 	*speed = pcie_get_speed_cap(dev);
5926 	*width = pcie_get_width_cap(dev);
5927 
5928 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5929 		return 0;
5930 
5931 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5932 }
5933 
5934 /**
5935  * __pcie_print_link_status - Report the PCI device's link speed and width
5936  * @dev: PCI device to query
5937  * @verbose: Print info even when enough bandwidth is available
5938  *
5939  * If the available bandwidth at the device is less than the device is
5940  * capable of, report the device's maximum possible bandwidth and the
5941  * upstream link that limits its performance.  If @verbose, always print
5942  * the available bandwidth, even if the device isn't constrained.
5943  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)5944 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5945 {
5946 	enum pcie_link_width width, width_cap;
5947 	enum pci_bus_speed speed, speed_cap;
5948 	struct pci_dev *limiting_dev = NULL;
5949 	u32 bw_avail, bw_cap;
5950 
5951 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5952 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5953 
5954 	if (bw_avail >= bw_cap && verbose)
5955 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5956 			 bw_cap / 1000, bw_cap % 1000,
5957 			 pci_speed_string(speed_cap), width_cap);
5958 	else if (bw_avail < bw_cap)
5959 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5960 			 bw_avail / 1000, bw_avail % 1000,
5961 			 pci_speed_string(speed), width,
5962 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5963 			 bw_cap / 1000, bw_cap % 1000,
5964 			 pci_speed_string(speed_cap), width_cap);
5965 }
5966 
5967 /**
5968  * pcie_print_link_status - Report the PCI device's link speed and width
5969  * @dev: PCI device to query
5970  *
5971  * Report the available bandwidth at the device.
5972  */
pcie_print_link_status(struct pci_dev * dev)5973 void pcie_print_link_status(struct pci_dev *dev)
5974 {
5975 	__pcie_print_link_status(dev, true);
5976 }
5977 EXPORT_SYMBOL(pcie_print_link_status);
5978 
5979 /**
5980  * pci_select_bars - Make BAR mask from the type of resource
5981  * @dev: the PCI device for which BAR mask is made
5982  * @flags: resource type mask to be selected
5983  *
5984  * This helper routine makes bar mask from the type of resource.
5985  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5986 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5987 {
5988 	int i, bars = 0;
5989 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5990 		if (pci_resource_flags(dev, i) & flags)
5991 			bars |= (1 << i);
5992 	return bars;
5993 }
5994 EXPORT_SYMBOL(pci_select_bars);
5995 
5996 /* Some architectures require additional programming to enable VGA */
5997 static arch_set_vga_state_t arch_set_vga_state;
5998 
pci_register_set_vga_state(arch_set_vga_state_t func)5999 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6000 {
6001 	arch_set_vga_state = func;	/* NULL disables */
6002 }
6003 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6004 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6005 				  unsigned int command_bits, u32 flags)
6006 {
6007 	if (arch_set_vga_state)
6008 		return arch_set_vga_state(dev, decode, command_bits,
6009 						flags);
6010 	return 0;
6011 }
6012 
6013 /**
6014  * pci_set_vga_state - set VGA decode state on device and parents if requested
6015  * @dev: the PCI device
6016  * @decode: true = enable decoding, false = disable decoding
6017  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6018  * @flags: traverse ancestors and change bridges
6019  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6020  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6021 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6022 		      unsigned int command_bits, u32 flags)
6023 {
6024 	struct pci_bus *bus;
6025 	struct pci_dev *bridge;
6026 	u16 cmd;
6027 	int rc;
6028 
6029 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6030 
6031 	/* ARCH specific VGA enables */
6032 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6033 	if (rc)
6034 		return rc;
6035 
6036 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6037 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6038 		if (decode)
6039 			cmd |= command_bits;
6040 		else
6041 			cmd &= ~command_bits;
6042 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6043 	}
6044 
6045 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6046 		return 0;
6047 
6048 	bus = dev->bus;
6049 	while (bus) {
6050 		bridge = bus->self;
6051 		if (bridge) {
6052 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6053 					     &cmd);
6054 			if (decode)
6055 				cmd |= PCI_BRIDGE_CTL_VGA;
6056 			else
6057 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6058 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6059 					      cmd);
6060 		}
6061 		bus = bus->parent;
6062 	}
6063 	return 0;
6064 }
6065 
6066 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6067 bool pci_pr3_present(struct pci_dev *pdev)
6068 {
6069 	struct acpi_device *adev;
6070 
6071 	if (acpi_disabled)
6072 		return false;
6073 
6074 	adev = ACPI_COMPANION(&pdev->dev);
6075 	if (!adev)
6076 		return false;
6077 
6078 	return adev->power.flags.power_resources &&
6079 		acpi_has_method(adev->handle, "_PR3");
6080 }
6081 EXPORT_SYMBOL_GPL(pci_pr3_present);
6082 #endif
6083 
6084 /**
6085  * pci_add_dma_alias - Add a DMA devfn alias for a device
6086  * @dev: the PCI device for which alias is added
6087  * @devfn_from: alias slot and function
6088  * @nr_devfns: number of subsequent devfns to alias
6089  *
6090  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6091  * which is used to program permissible bus-devfn source addresses for DMA
6092  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6093  * and are useful for devices generating DMA requests beyond or different
6094  * from their logical bus-devfn.  Examples include device quirks where the
6095  * device simply uses the wrong devfn, as well as non-transparent bridges
6096  * where the alias may be a proxy for devices in another domain.
6097  *
6098  * IOMMU group creation is performed during device discovery or addition,
6099  * prior to any potential DMA mapping and therefore prior to driver probing
6100  * (especially for userspace assigned devices where IOMMU group definition
6101  * cannot be left as a userspace activity).  DMA aliases should therefore
6102  * be configured via quirks, such as the PCI fixup header quirk.
6103  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6104 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6105 {
6106 	int devfn_to;
6107 
6108 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6109 	devfn_to = devfn_from + nr_devfns - 1;
6110 
6111 	if (!dev->dma_alias_mask)
6112 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6113 	if (!dev->dma_alias_mask) {
6114 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6115 		return;
6116 	}
6117 
6118 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6119 
6120 	if (nr_devfns == 1)
6121 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6122 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6123 	else if (nr_devfns > 1)
6124 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6125 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6126 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6127 }
6128 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6129 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6130 {
6131 	return (dev1->dma_alias_mask &&
6132 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6133 	       (dev2->dma_alias_mask &&
6134 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6135 	       pci_real_dma_dev(dev1) == dev2 ||
6136 	       pci_real_dma_dev(dev2) == dev1;
6137 }
6138 
pci_device_is_present(struct pci_dev * pdev)6139 bool pci_device_is_present(struct pci_dev *pdev)
6140 {
6141 	u32 v;
6142 
6143 	if (pci_dev_is_disconnected(pdev))
6144 		return false;
6145 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6146 }
6147 EXPORT_SYMBOL_GPL(pci_device_is_present);
6148 
pci_ignore_hotplug(struct pci_dev * dev)6149 void pci_ignore_hotplug(struct pci_dev *dev)
6150 {
6151 	struct pci_dev *bridge = dev->bus->self;
6152 
6153 	dev->ignore_hotplug = 1;
6154 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6155 	if (bridge)
6156 		bridge->ignore_hotplug = 1;
6157 }
6158 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6159 
6160 /**
6161  * pci_real_dma_dev - Get PCI DMA device for PCI device
6162  * @dev: the PCI device that may have a PCI DMA alias
6163  *
6164  * Permits the platform to provide architecture-specific functionality to
6165  * devices needing to alias DMA to another PCI device on another PCI bus. If
6166  * the PCI device is on the same bus, it is recommended to use
6167  * pci_add_dma_alias(). This is the default implementation. Architecture
6168  * implementations can override this.
6169  */
pci_real_dma_dev(struct pci_dev * dev)6170 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6171 {
6172 	return dev;
6173 }
6174 
pcibios_default_alignment(void)6175 resource_size_t __weak pcibios_default_alignment(void)
6176 {
6177 	return 0;
6178 }
6179 
6180 /*
6181  * Arches that don't want to expose struct resource to userland as-is in
6182  * sysfs and /proc can implement their own pci_resource_to_user().
6183  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6184 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6185 				 const struct resource *rsrc,
6186 				 resource_size_t *start, resource_size_t *end)
6187 {
6188 	*start = rsrc->start;
6189 	*end = rsrc->end;
6190 }
6191 
6192 static char *resource_alignment_param;
6193 static DEFINE_SPINLOCK(resource_alignment_lock);
6194 
6195 /**
6196  * pci_specified_resource_alignment - get resource alignment specified by user.
6197  * @dev: the PCI device to get
6198  * @resize: whether or not to change resources' size when reassigning alignment
6199  *
6200  * RETURNS: Resource alignment if it is specified.
6201  *          Zero if it is not specified.
6202  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6203 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6204 							bool *resize)
6205 {
6206 	int align_order, count;
6207 	resource_size_t align = pcibios_default_alignment();
6208 	const char *p;
6209 	int ret;
6210 
6211 	spin_lock(&resource_alignment_lock);
6212 	p = resource_alignment_param;
6213 	if (!p || !*p)
6214 		goto out;
6215 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6216 		align = 0;
6217 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6218 		goto out;
6219 	}
6220 
6221 	while (*p) {
6222 		count = 0;
6223 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6224 		    p[count] == '@') {
6225 			p += count + 1;
6226 			if (align_order > 63) {
6227 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6228 				       align_order);
6229 				align_order = PAGE_SHIFT;
6230 			}
6231 		} else {
6232 			align_order = PAGE_SHIFT;
6233 		}
6234 
6235 		ret = pci_dev_str_match(dev, p, &p);
6236 		if (ret == 1) {
6237 			*resize = true;
6238 			align = 1ULL << align_order;
6239 			break;
6240 		} else if (ret < 0) {
6241 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6242 			       p);
6243 			break;
6244 		}
6245 
6246 		if (*p != ';' && *p != ',') {
6247 			/* End of param or invalid format */
6248 			break;
6249 		}
6250 		p++;
6251 	}
6252 out:
6253 	spin_unlock(&resource_alignment_lock);
6254 	return align;
6255 }
6256 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6257 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6258 					   resource_size_t align, bool resize)
6259 {
6260 	struct resource *r = &dev->resource[bar];
6261 	resource_size_t size;
6262 
6263 	if (!(r->flags & IORESOURCE_MEM))
6264 		return;
6265 
6266 	if (r->flags & IORESOURCE_PCI_FIXED) {
6267 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6268 			 bar, r, (unsigned long long)align);
6269 		return;
6270 	}
6271 
6272 	size = resource_size(r);
6273 	if (size >= align)
6274 		return;
6275 
6276 	/*
6277 	 * Increase the alignment of the resource.  There are two ways we
6278 	 * can do this:
6279 	 *
6280 	 * 1) Increase the size of the resource.  BARs are aligned on their
6281 	 *    size, so when we reallocate space for this resource, we'll
6282 	 *    allocate it with the larger alignment.  This also prevents
6283 	 *    assignment of any other BARs inside the alignment region, so
6284 	 *    if we're requesting page alignment, this means no other BARs
6285 	 *    will share the page.
6286 	 *
6287 	 *    The disadvantage is that this makes the resource larger than
6288 	 *    the hardware BAR, which may break drivers that compute things
6289 	 *    based on the resource size, e.g., to find registers at a
6290 	 *    fixed offset before the end of the BAR.
6291 	 *
6292 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6293 	 *    set r->start to the desired alignment.  By itself this
6294 	 *    doesn't prevent other BARs being put inside the alignment
6295 	 *    region, but if we realign *every* resource of every device in
6296 	 *    the system, none of them will share an alignment region.
6297 	 *
6298 	 * When the user has requested alignment for only some devices via
6299 	 * the "pci=resource_alignment" argument, "resize" is true and we
6300 	 * use the first method.  Otherwise we assume we're aligning all
6301 	 * devices and we use the second.
6302 	 */
6303 
6304 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6305 		 bar, r, (unsigned long long)align);
6306 
6307 	if (resize) {
6308 		r->start = 0;
6309 		r->end = align - 1;
6310 	} else {
6311 		r->flags &= ~IORESOURCE_SIZEALIGN;
6312 		r->flags |= IORESOURCE_STARTALIGN;
6313 		r->start = align;
6314 		r->end = r->start + size - 1;
6315 	}
6316 	r->flags |= IORESOURCE_UNSET;
6317 }
6318 
6319 /*
6320  * This function disables memory decoding and releases memory resources
6321  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6322  * It also rounds up size to specified alignment.
6323  * Later on, the kernel will assign page-aligned memory resource back
6324  * to the device.
6325  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6326 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6327 {
6328 	int i;
6329 	struct resource *r;
6330 	resource_size_t align;
6331 	u16 command;
6332 	bool resize = false;
6333 
6334 	/*
6335 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6336 	 * 3.4.1.11.  Their resources are allocated from the space
6337 	 * described by the VF BARx register in the PF's SR-IOV capability.
6338 	 * We can't influence their alignment here.
6339 	 */
6340 	if (dev->is_virtfn)
6341 		return;
6342 
6343 	/* check if specified PCI is target device to reassign */
6344 	align = pci_specified_resource_alignment(dev, &resize);
6345 	if (!align)
6346 		return;
6347 
6348 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6349 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6350 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6351 		return;
6352 	}
6353 
6354 	pci_read_config_word(dev, PCI_COMMAND, &command);
6355 	command &= ~PCI_COMMAND_MEMORY;
6356 	pci_write_config_word(dev, PCI_COMMAND, command);
6357 
6358 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6359 		pci_request_resource_alignment(dev, i, align, resize);
6360 
6361 	/*
6362 	 * Need to disable bridge's resource window,
6363 	 * to enable the kernel to reassign new resource
6364 	 * window later on.
6365 	 */
6366 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6367 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6368 			r = &dev->resource[i];
6369 			if (!(r->flags & IORESOURCE_MEM))
6370 				continue;
6371 			r->flags |= IORESOURCE_UNSET;
6372 			r->end = resource_size(r) - 1;
6373 			r->start = 0;
6374 		}
6375 		pci_disable_bridge_window(dev);
6376 	}
6377 }
6378 
resource_alignment_show(struct bus_type * bus,char * buf)6379 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6380 {
6381 	size_t count = 0;
6382 
6383 	spin_lock(&resource_alignment_lock);
6384 	if (resource_alignment_param)
6385 		count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6386 	spin_unlock(&resource_alignment_lock);
6387 
6388 	/*
6389 	 * When set by the command line, resource_alignment_param will not
6390 	 * have a trailing line feed, which is ugly. So conditionally add
6391 	 * it here.
6392 	 */
6393 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6394 		buf[count - 1] = '\n';
6395 		buf[count++] = 0;
6396 	}
6397 
6398 	return count;
6399 }
6400 
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6401 static ssize_t resource_alignment_store(struct bus_type *bus,
6402 					const char *buf, size_t count)
6403 {
6404 	char *param = kstrndup(buf, count, GFP_KERNEL);
6405 
6406 	if (!param)
6407 		return -ENOMEM;
6408 
6409 	spin_lock(&resource_alignment_lock);
6410 	kfree(resource_alignment_param);
6411 	resource_alignment_param = param;
6412 	spin_unlock(&resource_alignment_lock);
6413 	return count;
6414 }
6415 
6416 static BUS_ATTR_RW(resource_alignment);
6417 
pci_resource_alignment_sysfs_init(void)6418 static int __init pci_resource_alignment_sysfs_init(void)
6419 {
6420 	return bus_create_file(&pci_bus_type,
6421 					&bus_attr_resource_alignment);
6422 }
6423 late_initcall(pci_resource_alignment_sysfs_init);
6424 
pci_no_domains(void)6425 static void pci_no_domains(void)
6426 {
6427 #ifdef CONFIG_PCI_DOMAINS
6428 	pci_domains_supported = 0;
6429 #endif
6430 }
6431 
6432 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6433 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6434 
pci_get_new_domain_nr(void)6435 static int pci_get_new_domain_nr(void)
6436 {
6437 	return atomic_inc_return(&__domain_nr);
6438 }
6439 
of_pci_bus_find_domain_nr(struct device * parent)6440 static int of_pci_bus_find_domain_nr(struct device *parent)
6441 {
6442 	static int use_dt_domains = -1;
6443 	int domain = -1;
6444 
6445 	if (parent)
6446 		domain = of_get_pci_domain_nr(parent->of_node);
6447 
6448 	/*
6449 	 * Check DT domain and use_dt_domains values.
6450 	 *
6451 	 * If DT domain property is valid (domain >= 0) and
6452 	 * use_dt_domains != 0, the DT assignment is valid since this means
6453 	 * we have not previously allocated a domain number by using
6454 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6455 	 * 1, to indicate that we have just assigned a domain number from
6456 	 * DT.
6457 	 *
6458 	 * If DT domain property value is not valid (ie domain < 0), and we
6459 	 * have not previously assigned a domain number from DT
6460 	 * (use_dt_domains != 1) we should assign a domain number by
6461 	 * using the:
6462 	 *
6463 	 * pci_get_new_domain_nr()
6464 	 *
6465 	 * API and update the use_dt_domains value to keep track of method we
6466 	 * are using to assign domain numbers (use_dt_domains = 0).
6467 	 *
6468 	 * All other combinations imply we have a platform that is trying
6469 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6470 	 * which is a recipe for domain mishandling and it is prevented by
6471 	 * invalidating the domain value (domain = -1) and printing a
6472 	 * corresponding error.
6473 	 */
6474 	if (domain >= 0 && use_dt_domains) {
6475 		use_dt_domains = 1;
6476 	} else if (domain < 0 && use_dt_domains != 1) {
6477 		use_dt_domains = 0;
6478 		domain = pci_get_new_domain_nr();
6479 	} else {
6480 		if (parent)
6481 			pr_err("Node %pOF has ", parent->of_node);
6482 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6483 		domain = -1;
6484 	}
6485 
6486 	return domain;
6487 }
6488 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6489 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6490 {
6491 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6492 			       acpi_pci_bus_find_domain_nr(bus);
6493 }
6494 #endif
6495 
6496 /**
6497  * pci_ext_cfg_avail - can we access extended PCI config space?
6498  *
6499  * Returns 1 if we can access PCI extended config space (offsets
6500  * greater than 0xff). This is the default implementation. Architecture
6501  * implementations can override this.
6502  */
pci_ext_cfg_avail(void)6503 int __weak pci_ext_cfg_avail(void)
6504 {
6505 	return 1;
6506 }
6507 
pci_fixup_cardbus(struct pci_bus * bus)6508 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6509 {
6510 }
6511 EXPORT_SYMBOL(pci_fixup_cardbus);
6512 
pci_setup(char * str)6513 static int __init pci_setup(char *str)
6514 {
6515 	while (str) {
6516 		char *k = strchr(str, ',');
6517 		if (k)
6518 			*k++ = 0;
6519 		if (*str && (str = pcibios_setup(str)) && *str) {
6520 			if (!strcmp(str, "nomsi")) {
6521 				pci_no_msi();
6522 			} else if (!strncmp(str, "noats", 5)) {
6523 				pr_info("PCIe: ATS is disabled\n");
6524 				pcie_ats_disabled = true;
6525 			} else if (!strcmp(str, "noaer")) {
6526 				pci_no_aer();
6527 			} else if (!strcmp(str, "earlydump")) {
6528 				pci_early_dump = true;
6529 			} else if (!strncmp(str, "realloc=", 8)) {
6530 				pci_realloc_get_opt(str + 8);
6531 			} else if (!strncmp(str, "realloc", 7)) {
6532 				pci_realloc_get_opt("on");
6533 			} else if (!strcmp(str, "nodomains")) {
6534 				pci_no_domains();
6535 			} else if (!strncmp(str, "noari", 5)) {
6536 				pcie_ari_disabled = true;
6537 			} else if (!strncmp(str, "cbiosize=", 9)) {
6538 				pci_cardbus_io_size = memparse(str + 9, &str);
6539 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6540 				pci_cardbus_mem_size = memparse(str + 10, &str);
6541 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6542 				resource_alignment_param = str + 19;
6543 			} else if (!strncmp(str, "ecrc=", 5)) {
6544 				pcie_ecrc_get_policy(str + 5);
6545 			} else if (!strncmp(str, "hpiosize=", 9)) {
6546 				pci_hotplug_io_size = memparse(str + 9, &str);
6547 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6548 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6549 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6550 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6551 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6552 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6553 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6554 			} else if (!strncmp(str, "hpbussize=", 10)) {
6555 				pci_hotplug_bus_size =
6556 					simple_strtoul(str + 10, &str, 0);
6557 				if (pci_hotplug_bus_size > 0xff)
6558 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6559 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6560 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6561 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6562 				pcie_bus_config = PCIE_BUS_SAFE;
6563 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6564 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6565 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6566 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6567 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6568 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6569 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6570 				disable_acs_redir_param = str + 18;
6571 			} else {
6572 				pr_err("PCI: Unknown option `%s'\n", str);
6573 			}
6574 		}
6575 		str = k;
6576 	}
6577 	return 0;
6578 }
6579 early_param("pci", pci_setup);
6580 
6581 /*
6582  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6583  * in pci_setup(), above, to point to data in the __initdata section which
6584  * will be freed after the init sequence is complete. We can't allocate memory
6585  * in pci_setup() because some architectures do not have any memory allocation
6586  * service available during an early_param() call. So we allocate memory and
6587  * copy the variable here before the init section is freed.
6588  *
6589  */
pci_realloc_setup_params(void)6590 static int __init pci_realloc_setup_params(void)
6591 {
6592 	resource_alignment_param = kstrdup(resource_alignment_param,
6593 					   GFP_KERNEL);
6594 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6595 
6596 	return 0;
6597 }
6598 pure_initcall(pci_realloc_setup_params);
6599