• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kref.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/pinctrl/pinctrl.h>
27 #include <linux/pinctrl/machine.h>
28 
29 #ifdef CONFIG_GPIOLIB
30 #include "../gpio/gpiolib.h"
31 #include <asm-generic/gpio.h>
32 #endif
33 
34 #include "core.h"
35 #include "devicetree.h"
36 #include "pinmux.h"
37 #include "pinconf.h"
38 
39 
40 static bool pinctrl_dummy_state;
41 
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44 
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47 
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50 
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53 
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56 
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59 
60 
61 /**
62  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63  *
64  * Usually this function is called by platforms without pinctrl driver support
65  * but run with some shared drivers using pinctrl APIs.
66  * After calling this function, the pinctrl core will return successfully
67  * with creating a dummy state for the driver to keep going smoothly.
68  */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 	pinctrl_dummy_state = true;
72 }
73 
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 	/* We're not allowed to register devices without name */
77 	return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80 
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 	return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86 
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 	return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92 
93 /**
94  * get_pinctrl_dev_from_devname() - look up pin controller device
95  * @devname: the name of a device instance, as returned by dev_name()
96  *
97  * Looks up a pin control device matching a certain device name or pure device
98  * pointer, the pure device pointer will take precedence.
99  */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 	struct pinctrl_dev *pctldev;
103 
104 	if (!devname)
105 		return NULL;
106 
107 	mutex_lock(&pinctrldev_list_mutex);
108 
109 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 		if (!strcmp(dev_name(pctldev->dev), devname)) {
111 			/* Matched on device name */
112 			mutex_unlock(&pinctrldev_list_mutex);
113 			return pctldev;
114 		}
115 	}
116 
117 	mutex_unlock(&pinctrldev_list_mutex);
118 
119 	return NULL;
120 }
121 
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 	struct pinctrl_dev *pctldev;
125 
126 	mutex_lock(&pinctrldev_list_mutex);
127 
128 	list_for_each_entry(pctldev, &pinctrldev_list, node)
129 		if (pctldev->dev->of_node == np) {
130 			mutex_unlock(&pinctrldev_list_mutex);
131 			return pctldev;
132 		}
133 
134 	mutex_unlock(&pinctrldev_list_mutex);
135 
136 	return NULL;
137 }
138 
139 /**
140  * pin_get_from_name() - look up a pin number from a name
141  * @pctldev: the pin control device to lookup the pin on
142  * @name: the name of the pin to look up
143  */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 	unsigned i, pin;
147 
148 	/* The pin number can be retrived from the pin controller descriptor */
149 	for (i = 0; i < pctldev->desc->npins; i++) {
150 		struct pin_desc *desc;
151 
152 		pin = pctldev->desc->pins[i].number;
153 		desc = pin_desc_get(pctldev, pin);
154 		/* Pin space may be sparse */
155 		if (desc && !strcmp(name, desc->name))
156 			return pin;
157 	}
158 
159 	return -EINVAL;
160 }
161 
162 /**
163  * pin_get_name_from_id() - look up a pin name from a pin id
164  * @pctldev: the pin control device to lookup the pin on
165  * @pin: pin number/id to look up
166  */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 	const struct pin_desc *desc;
170 
171 	desc = pin_desc_get(pctldev, pin);
172 	if (!desc) {
173 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 			pin);
175 		return NULL;
176 	}
177 
178 	return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181 
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 				  const struct pinctrl_pin_desc *pins,
185 				  unsigned num_pins)
186 {
187 	int i;
188 
189 	for (i = 0; i < num_pins; i++) {
190 		struct pin_desc *pindesc;
191 
192 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 					    pins[i].number);
194 		if (pindesc) {
195 			radix_tree_delete(&pctldev->pin_desc_tree,
196 					  pins[i].number);
197 			if (pindesc->dynamic_name)
198 				kfree(pindesc->name);
199 		}
200 		kfree(pindesc);
201 	}
202 }
203 
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 				    const struct pinctrl_pin_desc *pin)
206 {
207 	struct pin_desc *pindesc;
208 
209 	pindesc = pin_desc_get(pctldev, pin->number);
210 	if (pindesc) {
211 		dev_err(pctldev->dev, "pin %d already registered\n",
212 			pin->number);
213 		return -EINVAL;
214 	}
215 
216 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
217 	if (!pindesc)
218 		return -ENOMEM;
219 
220 	/* Set owner */
221 	pindesc->pctldev = pctldev;
222 
223 	/* Copy basic pin info */
224 	if (pin->name) {
225 		pindesc->name = pin->name;
226 	} else {
227 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
228 		if (!pindesc->name) {
229 			kfree(pindesc);
230 			return -ENOMEM;
231 		}
232 		pindesc->dynamic_name = true;
233 	}
234 
235 	pindesc->drv_data = pin->drv_data;
236 
237 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
238 	pr_debug("registered pin %d (%s) on %s\n",
239 		 pin->number, pindesc->name, pctldev->desc->name);
240 	return 0;
241 }
242 
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_descs)243 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
244 				 const struct pinctrl_pin_desc *pins,
245 				 unsigned num_descs)
246 {
247 	unsigned i;
248 	int ret = 0;
249 
250 	for (i = 0; i < num_descs; i++) {
251 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
252 		if (ret)
253 			return ret;
254 	}
255 
256 	return 0;
257 }
258 
259 /**
260  * gpio_to_pin() - GPIO range GPIO number to pin number translation
261  * @range: GPIO range used for the translation
262  * @gpio: gpio pin to translate to a pin number
263  *
264  * Finds the pin number for a given GPIO using the specified GPIO range
265  * as a base for translation. The distinction between linear GPIO ranges
266  * and pin list based GPIO ranges is managed correctly by this function.
267  *
268  * This function assumes the gpio is part of the specified GPIO range, use
269  * only after making sure this is the case (e.g. by calling it on the
270  * result of successful pinctrl_get_device_gpio_range calls)!
271  */
gpio_to_pin(struct pinctrl_gpio_range * range,unsigned int gpio)272 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
273 				unsigned int gpio)
274 {
275 	unsigned int offset = gpio - range->base;
276 	if (range->pins)
277 		return range->pins[offset];
278 	else
279 		return range->pin_base + offset;
280 }
281 
282 /**
283  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284  * @pctldev: pin controller device to check
285  * @gpio: gpio pin to check taken from the global GPIO pin space
286  *
287  * Tries to match a GPIO pin number to the ranges handled by a certain pin
288  * controller, return the range or NULL
289  */
290 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292 {
293 	struct pinctrl_gpio_range *range;
294 
295 	mutex_lock(&pctldev->mutex);
296 	/* Loop over the ranges */
297 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 		/* Check if we're in the valid range */
299 		if (gpio >= range->base &&
300 		    gpio < range->base + range->npins) {
301 			mutex_unlock(&pctldev->mutex);
302 			return range;
303 		}
304 	}
305 	mutex_unlock(&pctldev->mutex);
306 	return NULL;
307 }
308 
309 /**
310  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311  * the same GPIO chip are in range
312  * @gpio: gpio pin to check taken from the global GPIO pin space
313  *
314  * This function is complement of pinctrl_match_gpio_range(). If the return
315  * value of pinctrl_match_gpio_range() is NULL, this function could be used
316  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317  * of the same GPIO chip don't have back-end pinctrl interface.
318  * If the return value is true, it means that pinctrl device is ready & the
319  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320  * is false, it means that pinctrl device may not be ready.
321  */
322 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)323 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324 {
325 	struct pinctrl_dev *pctldev;
326 	struct pinctrl_gpio_range *range = NULL;
327 	struct gpio_chip *chip = gpio_to_chip(gpio);
328 
329 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
330 		return false;
331 
332 	mutex_lock(&pinctrldev_list_mutex);
333 
334 	/* Loop over the pin controllers */
335 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
336 		/* Loop over the ranges */
337 		mutex_lock(&pctldev->mutex);
338 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
339 			/* Check if any gpio range overlapped with gpio chip */
340 			if (range->base + range->npins - 1 < chip->base ||
341 			    range->base > chip->base + chip->ngpio - 1)
342 				continue;
343 			mutex_unlock(&pctldev->mutex);
344 			mutex_unlock(&pinctrldev_list_mutex);
345 			return true;
346 		}
347 		mutex_unlock(&pctldev->mutex);
348 	}
349 
350 	mutex_unlock(&pinctrldev_list_mutex);
351 
352 	return false;
353 }
354 #else
pinctrl_ready_for_gpio_range(unsigned gpio)355 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
356 #endif
357 
358 /**
359  * pinctrl_get_device_gpio_range() - find device for GPIO range
360  * @gpio: the pin to locate the pin controller for
361  * @outdev: the pin control device if found
362  * @outrange: the GPIO range if found
363  *
364  * Find the pin controller handling a certain GPIO pin from the pinspace of
365  * the GPIO subsystem, return the device and the matching GPIO range. Returns
366  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
367  * may still have not been registered.
368  */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)369 static int pinctrl_get_device_gpio_range(unsigned gpio,
370 					 struct pinctrl_dev **outdev,
371 					 struct pinctrl_gpio_range **outrange)
372 {
373 	struct pinctrl_dev *pctldev;
374 
375 	mutex_lock(&pinctrldev_list_mutex);
376 
377 	/* Loop over the pin controllers */
378 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
379 		struct pinctrl_gpio_range *range;
380 
381 		range = pinctrl_match_gpio_range(pctldev, gpio);
382 		if (range) {
383 			*outdev = pctldev;
384 			*outrange = range;
385 			mutex_unlock(&pinctrldev_list_mutex);
386 			return 0;
387 		}
388 	}
389 
390 	mutex_unlock(&pinctrldev_list_mutex);
391 
392 	return -EPROBE_DEFER;
393 }
394 
395 /**
396  * pinctrl_add_gpio_range() - register a GPIO range for a controller
397  * @pctldev: pin controller device to add the range to
398  * @range: the GPIO range to add
399  *
400  * This adds a range of GPIOs to be handled by a certain pin controller. Call
401  * this to register handled ranges after registering your pin controller.
402  */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)403 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
404 			    struct pinctrl_gpio_range *range)
405 {
406 	mutex_lock(&pctldev->mutex);
407 	list_add_tail(&range->node, &pctldev->gpio_ranges);
408 	mutex_unlock(&pctldev->mutex);
409 }
410 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
411 
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)412 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
413 			     struct pinctrl_gpio_range *ranges,
414 			     unsigned nranges)
415 {
416 	int i;
417 
418 	for (i = 0; i < nranges; i++)
419 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
420 }
421 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
422 
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)423 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
424 		struct pinctrl_gpio_range *range)
425 {
426 	struct pinctrl_dev *pctldev;
427 
428 	pctldev = get_pinctrl_dev_from_devname(devname);
429 
430 	/*
431 	 * If we can't find this device, let's assume that is because
432 	 * it has not probed yet, so the driver trying to register this
433 	 * range need to defer probing.
434 	 */
435 	if (!pctldev) {
436 		return ERR_PTR(-EPROBE_DEFER);
437 	}
438 	pinctrl_add_gpio_range(pctldev, range);
439 
440 	return pctldev;
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
443 
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned ** pins,unsigned * num_pins)444 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
445 				const unsigned **pins, unsigned *num_pins)
446 {
447 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
448 	int gs;
449 
450 	if (!pctlops->get_group_pins)
451 		return -EINVAL;
452 
453 	gs = pinctrl_get_group_selector(pctldev, pin_group);
454 	if (gs < 0)
455 		return gs;
456 
457 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
458 }
459 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
460 
461 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)462 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
463 					unsigned int pin)
464 {
465 	struct pinctrl_gpio_range *range;
466 
467 	/* Loop over the ranges */
468 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
469 		/* Check if we're in the valid range */
470 		if (range->pins) {
471 			int a;
472 			for (a = 0; a < range->npins; a++) {
473 				if (range->pins[a] == pin)
474 					return range;
475 			}
476 		} else if (pin >= range->pin_base &&
477 			   pin < range->pin_base + range->npins)
478 			return range;
479 	}
480 
481 	return NULL;
482 }
483 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
484 
485 /**
486  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
487  * @pctldev: the pin controller device to look in
488  * @pin: a controller-local number to find the range for
489  */
490 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)491 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
492 				 unsigned int pin)
493 {
494 	struct pinctrl_gpio_range *range;
495 
496 	mutex_lock(&pctldev->mutex);
497 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
498 	mutex_unlock(&pctldev->mutex);
499 
500 	return range;
501 }
502 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
503 
504 /**
505  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
506  * @pctldev: pin controller device to remove the range from
507  * @range: the GPIO range to remove
508  */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)509 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
510 			       struct pinctrl_gpio_range *range)
511 {
512 	mutex_lock(&pctldev->mutex);
513 	list_del(&range->node);
514 	mutex_unlock(&pctldev->mutex);
515 }
516 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
517 
518 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
519 
520 /**
521  * pinctrl_generic_get_group_count() - returns the number of pin groups
522  * @pctldev: pin controller device
523  */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)524 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
525 {
526 	return pctldev->num_groups;
527 }
528 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
529 
530 /**
531  * pinctrl_generic_get_group_name() - returns the name of a pin group
532  * @pctldev: pin controller device
533  * @selector: group number
534  */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)535 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
536 					   unsigned int selector)
537 {
538 	struct group_desc *group;
539 
540 	group = radix_tree_lookup(&pctldev->pin_group_tree,
541 				  selector);
542 	if (!group)
543 		return NULL;
544 
545 	return group->name;
546 }
547 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
548 
549 /**
550  * pinctrl_generic_get_group_pins() - gets the pin group pins
551  * @pctldev: pin controller device
552  * @selector: group number
553  * @pins: pins in the group
554  * @num_pins: number of pins in the group
555  */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)556 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
557 				   unsigned int selector,
558 				   const unsigned int **pins,
559 				   unsigned int *num_pins)
560 {
561 	struct group_desc *group;
562 
563 	group = radix_tree_lookup(&pctldev->pin_group_tree,
564 				  selector);
565 	if (!group) {
566 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
567 			__func__, selector);
568 		return -EINVAL;
569 	}
570 
571 	*pins = group->pins;
572 	*num_pins = group->num_pins;
573 
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
577 
578 /**
579  * pinctrl_generic_get_group() - returns a pin group based on the number
580  * @pctldev: pin controller device
581  * @selector: group number
582  */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)583 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
584 					     unsigned int selector)
585 {
586 	struct group_desc *group;
587 
588 	group = radix_tree_lookup(&pctldev->pin_group_tree,
589 				  selector);
590 	if (!group)
591 		return NULL;
592 
593 	return group;
594 }
595 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
596 
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)597 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
598 						  const char *function)
599 {
600 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
601 	int ngroups = ops->get_groups_count(pctldev);
602 	int selector = 0;
603 
604 	/* See if this pctldev has this group */
605 	while (selector < ngroups) {
606 		const char *gname = ops->get_group_name(pctldev, selector);
607 
608 		if (gname && !strcmp(function, gname))
609 			return selector;
610 
611 		selector++;
612 	}
613 
614 	return -EINVAL;
615 }
616 
617 /**
618  * pinctrl_generic_add_group() - adds a new pin group
619  * @pctldev: pin controller device
620  * @name: name of the pin group
621  * @pins: pins in the pin group
622  * @num_pins: number of pins in the pin group
623  * @data: pin controller driver specific data
624  *
625  * Note that the caller must take care of locking.
626  */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,int * pins,int num_pins,void * data)627 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
628 			      int *pins, int num_pins, void *data)
629 {
630 	struct group_desc *group;
631 	int selector;
632 
633 	if (!name)
634 		return -EINVAL;
635 
636 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
637 	if (selector >= 0)
638 		return selector;
639 
640 	selector = pctldev->num_groups;
641 
642 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
643 	if (!group)
644 		return -ENOMEM;
645 
646 	group->name = name;
647 	group->pins = pins;
648 	group->num_pins = num_pins;
649 	group->data = data;
650 
651 	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
652 
653 	pctldev->num_groups++;
654 
655 	return selector;
656 }
657 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
658 
659 /**
660  * pinctrl_generic_remove_group() - removes a numbered pin group
661  * @pctldev: pin controller device
662  * @selector: group number
663  *
664  * Note that the caller must take care of locking.
665  */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)666 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
667 				 unsigned int selector)
668 {
669 	struct group_desc *group;
670 
671 	group = radix_tree_lookup(&pctldev->pin_group_tree,
672 				  selector);
673 	if (!group)
674 		return -ENOENT;
675 
676 	radix_tree_delete(&pctldev->pin_group_tree, selector);
677 	devm_kfree(pctldev->dev, group);
678 
679 	pctldev->num_groups--;
680 
681 	return 0;
682 }
683 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
684 
685 /**
686  * pinctrl_generic_free_groups() - removes all pin groups
687  * @pctldev: pin controller device
688  *
689  * Note that the caller must take care of locking. The pinctrl groups
690  * are allocated with devm_kzalloc() so no need to free them here.
691  */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)692 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
693 {
694 	struct radix_tree_iter iter;
695 	void __rcu **slot;
696 
697 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
698 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
699 
700 	pctldev->num_groups = 0;
701 }
702 
703 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)704 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
705 {
706 }
707 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
708 
709 /**
710  * pinctrl_get_group_selector() - returns the group selector for a group
711  * @pctldev: the pin controller handling the group
712  * @pin_group: the pin group to look up
713  */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)714 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
715 			       const char *pin_group)
716 {
717 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
718 	unsigned ngroups = pctlops->get_groups_count(pctldev);
719 	unsigned group_selector = 0;
720 
721 	while (group_selector < ngroups) {
722 		const char *gname = pctlops->get_group_name(pctldev,
723 							    group_selector);
724 		if (gname && !strcmp(gname, pin_group)) {
725 			dev_dbg(pctldev->dev,
726 				"found group selector %u for %s\n",
727 				group_selector,
728 				pin_group);
729 			return group_selector;
730 		}
731 
732 		group_selector++;
733 	}
734 
735 	dev_err(pctldev->dev, "does not have pin group %s\n",
736 		pin_group);
737 
738 	return -EINVAL;
739 }
740 
pinctrl_gpio_can_use_line(unsigned gpio)741 bool pinctrl_gpio_can_use_line(unsigned gpio)
742 {
743 	struct pinctrl_dev *pctldev;
744 	struct pinctrl_gpio_range *range;
745 	bool result;
746 	int pin;
747 
748 	/*
749 	 * Try to obtain GPIO range, if it fails
750 	 * we're probably dealing with GPIO driver
751 	 * without a backing pin controller - bail out.
752 	 */
753 	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
754 		return true;
755 
756 	mutex_lock(&pctldev->mutex);
757 
758 	/* Convert to the pin controllers number space */
759 	pin = gpio_to_pin(range, gpio);
760 
761 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
762 
763 	mutex_unlock(&pctldev->mutex);
764 
765 	return result;
766 }
767 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
768 
769 /**
770  * pinctrl_gpio_request() - request a single pin to be used as GPIO
771  * @gpio: the GPIO pin number from the GPIO subsystem number space
772  *
773  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
774  * as part of their gpio_request() semantics, platforms and individual drivers
775  * shall *NOT* request GPIO pins to be muxed in.
776  */
pinctrl_gpio_request(unsigned gpio)777 int pinctrl_gpio_request(unsigned gpio)
778 {
779 	struct pinctrl_dev *pctldev;
780 	struct pinctrl_gpio_range *range;
781 	int ret;
782 	int pin;
783 
784 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
785 	if (ret) {
786 		if (pinctrl_ready_for_gpio_range(gpio))
787 			ret = 0;
788 		return ret;
789 	}
790 
791 	mutex_lock(&pctldev->mutex);
792 
793 	/* Convert to the pin controllers number space */
794 	pin = gpio_to_pin(range, gpio);
795 
796 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
797 
798 	mutex_unlock(&pctldev->mutex);
799 
800 	return ret;
801 }
802 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
803 
804 /**
805  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
806  * @gpio: the GPIO pin number from the GPIO subsystem number space
807  *
808  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
809  * as part of their gpio_free() semantics, platforms and individual drivers
810  * shall *NOT* request GPIO pins to be muxed out.
811  */
pinctrl_gpio_free(unsigned gpio)812 void pinctrl_gpio_free(unsigned gpio)
813 {
814 	struct pinctrl_dev *pctldev;
815 	struct pinctrl_gpio_range *range;
816 	int ret;
817 	int pin;
818 
819 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
820 	if (ret) {
821 		return;
822 	}
823 	mutex_lock(&pctldev->mutex);
824 
825 	/* Convert to the pin controllers number space */
826 	pin = gpio_to_pin(range, gpio);
827 
828 	pinmux_free_gpio(pctldev, pin, range);
829 
830 	mutex_unlock(&pctldev->mutex);
831 }
832 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
833 
pinctrl_gpio_direction(unsigned gpio,bool input)834 static int pinctrl_gpio_direction(unsigned gpio, bool input)
835 {
836 	struct pinctrl_dev *pctldev;
837 	struct pinctrl_gpio_range *range;
838 	int ret;
839 	int pin;
840 
841 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
842 	if (ret) {
843 		return ret;
844 	}
845 
846 	mutex_lock(&pctldev->mutex);
847 
848 	/* Convert to the pin controllers number space */
849 	pin = gpio_to_pin(range, gpio);
850 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
851 
852 	mutex_unlock(&pctldev->mutex);
853 
854 	return ret;
855 }
856 
857 /**
858  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
859  * @gpio: the GPIO pin number from the GPIO subsystem number space
860  *
861  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
862  * as part of their gpio_direction_input() semantics, platforms and individual
863  * drivers shall *NOT* touch pin control GPIO calls.
864  */
pinctrl_gpio_direction_input(unsigned gpio)865 int pinctrl_gpio_direction_input(unsigned gpio)
866 {
867 	return pinctrl_gpio_direction(gpio, true);
868 }
869 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
870 
871 /**
872  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
873  * @gpio: the GPIO pin number from the GPIO subsystem number space
874  *
875  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
876  * as part of their gpio_direction_output() semantics, platforms and individual
877  * drivers shall *NOT* touch pin control GPIO calls.
878  */
pinctrl_gpio_direction_output(unsigned gpio)879 int pinctrl_gpio_direction_output(unsigned gpio)
880 {
881 	return pinctrl_gpio_direction(gpio, false);
882 }
883 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
884 
885 /**
886  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
887  * @gpio: the GPIO pin number from the GPIO subsystem number space
888  * @config: the configuration to apply to the GPIO
889  *
890  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
891  * they need to call the underlying pin controller to change GPIO config
892  * (for example set debounce time).
893  */
pinctrl_gpio_set_config(unsigned gpio,unsigned long config)894 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
895 {
896 	unsigned long configs[] = { config };
897 	struct pinctrl_gpio_range *range;
898 	struct pinctrl_dev *pctldev;
899 	int ret, pin;
900 
901 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
902 	if (ret)
903 		return ret;
904 
905 	mutex_lock(&pctldev->mutex);
906 	pin = gpio_to_pin(range, gpio);
907 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
908 	mutex_unlock(&pctldev->mutex);
909 
910 	return ret;
911 }
912 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
913 
find_state(struct pinctrl * p,const char * name)914 static struct pinctrl_state *find_state(struct pinctrl *p,
915 					const char *name)
916 {
917 	struct pinctrl_state *state;
918 
919 	list_for_each_entry(state, &p->states, node)
920 		if (!strcmp(state->name, name))
921 			return state;
922 
923 	return NULL;
924 }
925 
create_state(struct pinctrl * p,const char * name)926 static struct pinctrl_state *create_state(struct pinctrl *p,
927 					  const char *name)
928 {
929 	struct pinctrl_state *state;
930 
931 	state = kzalloc(sizeof(*state), GFP_KERNEL);
932 	if (!state)
933 		return ERR_PTR(-ENOMEM);
934 
935 	state->name = name;
936 	INIT_LIST_HEAD(&state->settings);
937 
938 	list_add_tail(&state->node, &p->states);
939 
940 	return state;
941 }
942 
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)943 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
944 		       const struct pinctrl_map *map)
945 {
946 	struct pinctrl_state *state;
947 	struct pinctrl_setting *setting;
948 	int ret;
949 
950 	state = find_state(p, map->name);
951 	if (!state)
952 		state = create_state(p, map->name);
953 	if (IS_ERR(state))
954 		return PTR_ERR(state);
955 
956 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
957 		return 0;
958 
959 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
960 	if (!setting)
961 		return -ENOMEM;
962 
963 	setting->type = map->type;
964 
965 	if (pctldev)
966 		setting->pctldev = pctldev;
967 	else
968 		setting->pctldev =
969 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
970 	if (!setting->pctldev) {
971 		kfree(setting);
972 		/* Do not defer probing of hogs (circular loop) */
973 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
974 			return -ENODEV;
975 		/*
976 		 * OK let us guess that the driver is not there yet, and
977 		 * let's defer obtaining this pinctrl handle to later...
978 		 */
979 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
980 			map->ctrl_dev_name);
981 		return -EPROBE_DEFER;
982 	}
983 
984 	setting->dev_name = map->dev_name;
985 
986 	switch (map->type) {
987 	case PIN_MAP_TYPE_MUX_GROUP:
988 		ret = pinmux_map_to_setting(map, setting);
989 		break;
990 	case PIN_MAP_TYPE_CONFIGS_PIN:
991 	case PIN_MAP_TYPE_CONFIGS_GROUP:
992 		ret = pinconf_map_to_setting(map, setting);
993 		break;
994 	default:
995 		ret = -EINVAL;
996 		break;
997 	}
998 	if (ret < 0) {
999 		kfree(setting);
1000 		return ret;
1001 	}
1002 
1003 	list_add_tail(&setting->node, &state->settings);
1004 
1005 	return 0;
1006 }
1007 
find_pinctrl(struct device * dev)1008 static struct pinctrl *find_pinctrl(struct device *dev)
1009 {
1010 	struct pinctrl *p;
1011 
1012 	mutex_lock(&pinctrl_list_mutex);
1013 	list_for_each_entry(p, &pinctrl_list, node)
1014 		if (p->dev == dev) {
1015 			mutex_unlock(&pinctrl_list_mutex);
1016 			return p;
1017 		}
1018 
1019 	mutex_unlock(&pinctrl_list_mutex);
1020 	return NULL;
1021 }
1022 
1023 static void pinctrl_free(struct pinctrl *p, bool inlist);
1024 
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1025 static struct pinctrl *create_pinctrl(struct device *dev,
1026 				      struct pinctrl_dev *pctldev)
1027 {
1028 	struct pinctrl *p;
1029 	const char *devname;
1030 	struct pinctrl_maps *maps_node;
1031 	int i;
1032 	const struct pinctrl_map *map;
1033 	int ret;
1034 
1035 	/*
1036 	 * create the state cookie holder struct pinctrl for each
1037 	 * mapping, this is what consumers will get when requesting
1038 	 * a pin control handle with pinctrl_get()
1039 	 */
1040 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1041 	if (!p)
1042 		return ERR_PTR(-ENOMEM);
1043 	p->dev = dev;
1044 	INIT_LIST_HEAD(&p->states);
1045 	INIT_LIST_HEAD(&p->dt_maps);
1046 
1047 	ret = pinctrl_dt_to_map(p, pctldev);
1048 	if (ret < 0) {
1049 		kfree(p);
1050 		return ERR_PTR(ret);
1051 	}
1052 
1053 	devname = dev_name(dev);
1054 
1055 	mutex_lock(&pinctrl_maps_mutex);
1056 	/* Iterate over the pin control maps to locate the right ones */
1057 	for_each_maps(maps_node, i, map) {
1058 		/* Map must be for this device */
1059 		if (strcmp(map->dev_name, devname))
1060 			continue;
1061 		/*
1062 		 * If pctldev is not null, we are claiming hog for it,
1063 		 * that means, setting that is served by pctldev by itself.
1064 		 *
1065 		 * Thus we must skip map that is for this device but is served
1066 		 * by other device.
1067 		 */
1068 		if (pctldev &&
1069 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070 			continue;
1071 
1072 		ret = add_setting(p, pctldev, map);
1073 		/*
1074 		 * At this point the adding of a setting may:
1075 		 *
1076 		 * - Defer, if the pinctrl device is not yet available
1077 		 * - Fail, if the pinctrl device is not yet available,
1078 		 *   AND the setting is a hog. We cannot defer that, since
1079 		 *   the hog will kick in immediately after the device
1080 		 *   is registered.
1081 		 *
1082 		 * If the error returned was not -EPROBE_DEFER then we
1083 		 * accumulate the errors to see if we end up with
1084 		 * an -EPROBE_DEFER later, as that is the worst case.
1085 		 */
1086 		if (ret == -EPROBE_DEFER) {
1087 			pinctrl_free(p, false);
1088 			mutex_unlock(&pinctrl_maps_mutex);
1089 			return ERR_PTR(ret);
1090 		}
1091 	}
1092 	mutex_unlock(&pinctrl_maps_mutex);
1093 
1094 	if (ret < 0) {
1095 		/* If some other error than deferral occurred, return here */
1096 		pinctrl_free(p, false);
1097 		return ERR_PTR(ret);
1098 	}
1099 
1100 	kref_init(&p->users);
1101 
1102 	/* Add the pinctrl handle to the global list */
1103 	mutex_lock(&pinctrl_list_mutex);
1104 	list_add_tail(&p->node, &pinctrl_list);
1105 	mutex_unlock(&pinctrl_list_mutex);
1106 
1107 	return p;
1108 }
1109 
1110 /**
1111  * pinctrl_get() - retrieves the pinctrl handle for a device
1112  * @dev: the device to obtain the handle for
1113  */
pinctrl_get(struct device * dev)1114 struct pinctrl *pinctrl_get(struct device *dev)
1115 {
1116 	struct pinctrl *p;
1117 
1118 	if (WARN_ON(!dev))
1119 		return ERR_PTR(-EINVAL);
1120 
1121 	/*
1122 	 * See if somebody else (such as the device core) has already
1123 	 * obtained a handle to the pinctrl for this device. In that case,
1124 	 * return another pointer to it.
1125 	 */
1126 	p = find_pinctrl(dev);
1127 	if (p) {
1128 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129 		kref_get(&p->users);
1130 		return p;
1131 	}
1132 
1133 	return create_pinctrl(dev, NULL);
1134 }
1135 EXPORT_SYMBOL_GPL(pinctrl_get);
1136 
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1137 static void pinctrl_free_setting(bool disable_setting,
1138 				 struct pinctrl_setting *setting)
1139 {
1140 	switch (setting->type) {
1141 	case PIN_MAP_TYPE_MUX_GROUP:
1142 		if (disable_setting)
1143 			pinmux_disable_setting(setting);
1144 		pinmux_free_setting(setting);
1145 		break;
1146 	case PIN_MAP_TYPE_CONFIGS_PIN:
1147 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1148 		pinconf_free_setting(setting);
1149 		break;
1150 	default:
1151 		break;
1152 	}
1153 }
1154 
pinctrl_free(struct pinctrl * p,bool inlist)1155 static void pinctrl_free(struct pinctrl *p, bool inlist)
1156 {
1157 	struct pinctrl_state *state, *n1;
1158 	struct pinctrl_setting *setting, *n2;
1159 
1160 	mutex_lock(&pinctrl_list_mutex);
1161 	list_for_each_entry_safe(state, n1, &p->states, node) {
1162 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163 			pinctrl_free_setting(state == p->state, setting);
1164 			list_del(&setting->node);
1165 			kfree(setting);
1166 		}
1167 		list_del(&state->node);
1168 		kfree(state);
1169 	}
1170 
1171 	pinctrl_dt_free_maps(p);
1172 
1173 	if (inlist)
1174 		list_del(&p->node);
1175 	kfree(p);
1176 	mutex_unlock(&pinctrl_list_mutex);
1177 }
1178 
1179 /**
1180  * pinctrl_release() - release the pinctrl handle
1181  * @kref: the kref in the pinctrl being released
1182  */
pinctrl_release(struct kref * kref)1183 static void pinctrl_release(struct kref *kref)
1184 {
1185 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186 
1187 	pinctrl_free(p, true);
1188 }
1189 
1190 /**
1191  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192  * @p: the pinctrl handle to release
1193  */
pinctrl_put(struct pinctrl * p)1194 void pinctrl_put(struct pinctrl *p)
1195 {
1196 	kref_put(&p->users, pinctrl_release);
1197 }
1198 EXPORT_SYMBOL_GPL(pinctrl_put);
1199 
1200 /**
1201  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202  * @p: the pinctrl handle to retrieve the state from
1203  * @name: the state name to retrieve
1204  */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1205 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206 						 const char *name)
1207 {
1208 	struct pinctrl_state *state;
1209 
1210 	state = find_state(p, name);
1211 	if (!state) {
1212 		if (pinctrl_dummy_state) {
1213 			/* create dummy state */
1214 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215 				name);
1216 			state = create_state(p, name);
1217 		} else
1218 			state = ERR_PTR(-ENODEV);
1219 	}
1220 
1221 	return state;
1222 }
1223 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224 
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1225 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226 			     struct device *consumer)
1227 {
1228 	if (pctldev->desc->link_consumers)
1229 		device_link_add(consumer, pctldev->dev,
1230 				DL_FLAG_PM_RUNTIME |
1231 				DL_FLAG_AUTOREMOVE_CONSUMER);
1232 }
1233 
1234 /**
1235  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236  * @p: the pinctrl handle for the device that requests configuration
1237  * @state: the state handle to select/activate/program
1238  */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1239 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240 {
1241 	struct pinctrl_setting *setting, *setting2;
1242 	struct pinctrl_state *old_state = p->state;
1243 	int ret;
1244 
1245 	if (p->state) {
1246 		/*
1247 		 * For each pinmux setting in the old state, forget SW's record
1248 		 * of mux owner for that pingroup. Any pingroups which are
1249 		 * still owned by the new state will be re-acquired by the call
1250 		 * to pinmux_enable_setting() in the loop below.
1251 		 */
1252 		list_for_each_entry(setting, &p->state->settings, node) {
1253 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254 				continue;
1255 			pinmux_disable_setting(setting);
1256 		}
1257 	}
1258 
1259 	p->state = NULL;
1260 
1261 	/* Apply all the settings for the new state */
1262 	list_for_each_entry(setting, &state->settings, node) {
1263 		switch (setting->type) {
1264 		case PIN_MAP_TYPE_MUX_GROUP:
1265 			ret = pinmux_enable_setting(setting);
1266 			break;
1267 		case PIN_MAP_TYPE_CONFIGS_PIN:
1268 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1269 			ret = pinconf_apply_setting(setting);
1270 			break;
1271 		default:
1272 			ret = -EINVAL;
1273 			break;
1274 		}
1275 
1276 		if (ret < 0) {
1277 			goto unapply_new_state;
1278 		}
1279 
1280 		/* Do not link hogs (circular dependency) */
1281 		if (p != setting->pctldev->p)
1282 			pinctrl_link_add(setting->pctldev, p->dev);
1283 	}
1284 
1285 	p->state = state;
1286 
1287 	return 0;
1288 
1289 unapply_new_state:
1290 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1291 
1292 	list_for_each_entry(setting2, &state->settings, node) {
1293 		if (&setting2->node == &setting->node)
1294 			break;
1295 		/*
1296 		 * All we can do here is pinmux_disable_setting.
1297 		 * That means that some pins are muxed differently now
1298 		 * than they were before applying the setting (We can't
1299 		 * "unmux a pin"!), but it's not a big deal since the pins
1300 		 * are free to be muxed by another apply_setting.
1301 		 */
1302 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1303 			pinmux_disable_setting(setting2);
1304 	}
1305 
1306 	/* There's no infinite recursive loop here because p->state is NULL */
1307 	if (old_state)
1308 		pinctrl_select_state(p, old_state);
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1315  * @p: the pinctrl handle for the device that requests configuration
1316  * @state: the state handle to select/activate/program
1317  */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1318 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1319 {
1320 	if (p->state == state)
1321 		return 0;
1322 
1323 	return pinctrl_commit_state(p, state);
1324 }
1325 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1326 
devm_pinctrl_release(struct device * dev,void * res)1327 static void devm_pinctrl_release(struct device *dev, void *res)
1328 {
1329 	pinctrl_put(*(struct pinctrl **)res);
1330 }
1331 
1332 /**
1333  * devm_pinctrl_get() - Resource managed pinctrl_get()
1334  * @dev: the device to obtain the handle for
1335  *
1336  * If there is a need to explicitly destroy the returned struct pinctrl,
1337  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1338  */
devm_pinctrl_get(struct device * dev)1339 struct pinctrl *devm_pinctrl_get(struct device *dev)
1340 {
1341 	struct pinctrl **ptr, *p;
1342 
1343 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1344 	if (!ptr)
1345 		return ERR_PTR(-ENOMEM);
1346 
1347 	p = pinctrl_get(dev);
1348 	if (!IS_ERR(p)) {
1349 		*ptr = p;
1350 		devres_add(dev, ptr);
1351 	} else {
1352 		devres_free(ptr);
1353 	}
1354 
1355 	return p;
1356 }
1357 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1358 
devm_pinctrl_match(struct device * dev,void * res,void * data)1359 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1360 {
1361 	struct pinctrl **p = res;
1362 
1363 	return *p == data;
1364 }
1365 
1366 /**
1367  * devm_pinctrl_put() - Resource managed pinctrl_put()
1368  * @p: the pinctrl handle to release
1369  *
1370  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1371  * this function will not need to be called and the resource management
1372  * code will ensure that the resource is freed.
1373  */
devm_pinctrl_put(struct pinctrl * p)1374 void devm_pinctrl_put(struct pinctrl *p)
1375 {
1376 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1377 			       devm_pinctrl_match, p));
1378 }
1379 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1380 
1381 /**
1382  * pinctrl_register_mappings() - register a set of pin controller mappings
1383  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1384  *	keeps a reference to the passed in maps, so they should _not_ be
1385  *	marked with __initdata.
1386  * @num_maps: the number of maps in the mapping table
1387  */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned num_maps)1388 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1389 			      unsigned num_maps)
1390 {
1391 	int i, ret;
1392 	struct pinctrl_maps *maps_node;
1393 
1394 	pr_debug("add %u pinctrl maps\n", num_maps);
1395 
1396 	/* First sanity check the new mapping */
1397 	for (i = 0; i < num_maps; i++) {
1398 		if (!maps[i].dev_name) {
1399 			pr_err("failed to register map %s (%d): no device given\n",
1400 			       maps[i].name, i);
1401 			return -EINVAL;
1402 		}
1403 
1404 		if (!maps[i].name) {
1405 			pr_err("failed to register map %d: no map name given\n",
1406 			       i);
1407 			return -EINVAL;
1408 		}
1409 
1410 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1411 				!maps[i].ctrl_dev_name) {
1412 			pr_err("failed to register map %s (%d): no pin control device given\n",
1413 			       maps[i].name, i);
1414 			return -EINVAL;
1415 		}
1416 
1417 		switch (maps[i].type) {
1418 		case PIN_MAP_TYPE_DUMMY_STATE:
1419 			break;
1420 		case PIN_MAP_TYPE_MUX_GROUP:
1421 			ret = pinmux_validate_map(&maps[i], i);
1422 			if (ret < 0)
1423 				return ret;
1424 			break;
1425 		case PIN_MAP_TYPE_CONFIGS_PIN:
1426 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1427 			ret = pinconf_validate_map(&maps[i], i);
1428 			if (ret < 0)
1429 				return ret;
1430 			break;
1431 		default:
1432 			pr_err("failed to register map %s (%d): invalid type given\n",
1433 			       maps[i].name, i);
1434 			return -EINVAL;
1435 		}
1436 	}
1437 
1438 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1439 	if (!maps_node)
1440 		return -ENOMEM;
1441 
1442 	maps_node->maps = maps;
1443 	maps_node->num_maps = num_maps;
1444 
1445 	mutex_lock(&pinctrl_maps_mutex);
1446 	list_add_tail(&maps_node->node, &pinctrl_maps);
1447 	mutex_unlock(&pinctrl_maps_mutex);
1448 
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1452 
1453 /**
1454  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1455  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1456  *	when registering the mappings.
1457  */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1458 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1459 {
1460 	struct pinctrl_maps *maps_node;
1461 
1462 	mutex_lock(&pinctrl_maps_mutex);
1463 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1464 		if (maps_node->maps == map) {
1465 			list_del(&maps_node->node);
1466 			kfree(maps_node);
1467 			mutex_unlock(&pinctrl_maps_mutex);
1468 			return;
1469 		}
1470 	}
1471 	mutex_unlock(&pinctrl_maps_mutex);
1472 }
1473 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1474 
1475 /**
1476  * pinctrl_force_sleep() - turn a given controller device into sleep state
1477  * @pctldev: pin controller device
1478  */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1479 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1480 {
1481 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1482 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1486 
1487 /**
1488  * pinctrl_force_default() - turn a given controller device into default state
1489  * @pctldev: pin controller device
1490  */
pinctrl_force_default(struct pinctrl_dev * pctldev)1491 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1492 {
1493 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1494 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1495 	return 0;
1496 }
1497 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1498 
1499 /**
1500  * pinctrl_init_done() - tell pinctrl probe is done
1501  *
1502  * We'll use this time to switch the pins from "init" to "default" unless the
1503  * driver selected some other state.
1504  *
1505  * @dev: device to that's done probing
1506  */
pinctrl_init_done(struct device * dev)1507 int pinctrl_init_done(struct device *dev)
1508 {
1509 	struct dev_pin_info *pins = dev->pins;
1510 	int ret;
1511 
1512 	if (!pins)
1513 		return 0;
1514 
1515 	if (IS_ERR(pins->init_state))
1516 		return 0; /* No such state */
1517 
1518 	if (pins->p->state != pins->init_state)
1519 		return 0; /* Not at init anyway */
1520 
1521 	if (IS_ERR(pins->default_state))
1522 		return 0; /* No default state */
1523 
1524 	ret = pinctrl_select_state(pins->p, pins->default_state);
1525 	if (ret)
1526 		dev_err(dev, "failed to activate default pinctrl state\n");
1527 
1528 	return ret;
1529 }
1530 
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1531 static int pinctrl_select_bound_state(struct device *dev,
1532 				      struct pinctrl_state *state)
1533 {
1534 	struct dev_pin_info *pins = dev->pins;
1535 	int ret;
1536 
1537 	if (IS_ERR(state))
1538 		return 0; /* No such state */
1539 	ret = pinctrl_select_state(pins->p, state);
1540 	if (ret)
1541 		dev_err(dev, "failed to activate pinctrl state %s\n",
1542 			state->name);
1543 	return ret;
1544 }
1545 
1546 /**
1547  * pinctrl_select_default_state() - select default pinctrl state
1548  * @dev: device to select default state for
1549  */
pinctrl_select_default_state(struct device * dev)1550 int pinctrl_select_default_state(struct device *dev)
1551 {
1552 	if (!dev->pins)
1553 		return 0;
1554 
1555 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1556 }
1557 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1558 
1559 #ifdef CONFIG_PM
1560 
1561 /**
1562  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1563  * @dev: device to select default state for
1564  */
pinctrl_pm_select_default_state(struct device * dev)1565 int pinctrl_pm_select_default_state(struct device *dev)
1566 {
1567 	return pinctrl_select_default_state(dev);
1568 }
1569 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1570 
1571 /**
1572  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1573  * @dev: device to select sleep state for
1574  */
pinctrl_pm_select_sleep_state(struct device * dev)1575 int pinctrl_pm_select_sleep_state(struct device *dev)
1576 {
1577 	if (!dev->pins)
1578 		return 0;
1579 
1580 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1581 }
1582 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1583 
1584 /**
1585  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1586  * @dev: device to select idle state for
1587  */
pinctrl_pm_select_idle_state(struct device * dev)1588 int pinctrl_pm_select_idle_state(struct device *dev)
1589 {
1590 	if (!dev->pins)
1591 		return 0;
1592 
1593 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1594 }
1595 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1596 #endif
1597 
1598 #ifdef CONFIG_DEBUG_FS
1599 
pinctrl_pins_show(struct seq_file * s,void * what)1600 static int pinctrl_pins_show(struct seq_file *s, void *what)
1601 {
1602 	struct pinctrl_dev *pctldev = s->private;
1603 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1604 	unsigned i, pin;
1605 #ifdef CONFIG_GPIOLIB
1606 	struct pinctrl_gpio_range *range;
1607 	struct gpio_chip *chip;
1608 	int gpio_num;
1609 #endif
1610 
1611 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1612 
1613 	mutex_lock(&pctldev->mutex);
1614 
1615 	/* The pin number can be retrived from the pin controller descriptor */
1616 	for (i = 0; i < pctldev->desc->npins; i++) {
1617 		struct pin_desc *desc;
1618 
1619 		pin = pctldev->desc->pins[i].number;
1620 		desc = pin_desc_get(pctldev, pin);
1621 		/* Pin space may be sparse */
1622 		if (!desc)
1623 			continue;
1624 
1625 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1626 
1627 #ifdef CONFIG_GPIOLIB
1628 		gpio_num = -1;
1629 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1630 			if ((pin >= range->pin_base) &&
1631 			    (pin < (range->pin_base + range->npins))) {
1632 				gpio_num = range->base + (pin - range->pin_base);
1633 				break;
1634 			}
1635 		}
1636 		if (gpio_num >= 0)
1637 			chip = gpio_to_chip(gpio_num);
1638 		else
1639 			chip = NULL;
1640 		if (chip)
1641 			seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1642 		else
1643 			seq_puts(s, "0:? ");
1644 #endif
1645 
1646 		/* Driver-specific info per pin */
1647 		if (ops->pin_dbg_show)
1648 			ops->pin_dbg_show(pctldev, s, pin);
1649 
1650 		seq_puts(s, "\n");
1651 	}
1652 
1653 	mutex_unlock(&pctldev->mutex);
1654 
1655 	return 0;
1656 }
1657 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1658 
pinctrl_groups_show(struct seq_file * s,void * what)1659 static int pinctrl_groups_show(struct seq_file *s, void *what)
1660 {
1661 	struct pinctrl_dev *pctldev = s->private;
1662 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1663 	unsigned ngroups, selector = 0;
1664 
1665 	mutex_lock(&pctldev->mutex);
1666 
1667 	ngroups = ops->get_groups_count(pctldev);
1668 
1669 	seq_puts(s, "registered pin groups:\n");
1670 	while (selector < ngroups) {
1671 		const unsigned *pins = NULL;
1672 		unsigned num_pins = 0;
1673 		const char *gname = ops->get_group_name(pctldev, selector);
1674 		const char *pname;
1675 		int ret = 0;
1676 		int i;
1677 
1678 		if (ops->get_group_pins)
1679 			ret = ops->get_group_pins(pctldev, selector,
1680 						  &pins, &num_pins);
1681 		if (ret)
1682 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1683 				   gname);
1684 		else {
1685 			seq_printf(s, "group: %s\n", gname);
1686 			for (i = 0; i < num_pins; i++) {
1687 				pname = pin_get_name(pctldev, pins[i]);
1688 				if (WARN_ON(!pname)) {
1689 					mutex_unlock(&pctldev->mutex);
1690 					return -EINVAL;
1691 				}
1692 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1693 			}
1694 			seq_puts(s, "\n");
1695 		}
1696 		selector++;
1697 	}
1698 
1699 	mutex_unlock(&pctldev->mutex);
1700 
1701 	return 0;
1702 }
1703 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1704 
pinctrl_gpioranges_show(struct seq_file * s,void * what)1705 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1706 {
1707 	struct pinctrl_dev *pctldev = s->private;
1708 	struct pinctrl_gpio_range *range;
1709 
1710 	seq_puts(s, "GPIO ranges handled:\n");
1711 
1712 	mutex_lock(&pctldev->mutex);
1713 
1714 	/* Loop over the ranges */
1715 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1716 		if (range->pins) {
1717 			int a;
1718 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1719 				range->id, range->name,
1720 				range->base, (range->base + range->npins - 1));
1721 			for (a = 0; a < range->npins - 1; a++)
1722 				seq_printf(s, "%u, ", range->pins[a]);
1723 			seq_printf(s, "%u}\n", range->pins[a]);
1724 		}
1725 		else
1726 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1727 				range->id, range->name,
1728 				range->base, (range->base + range->npins - 1),
1729 				range->pin_base,
1730 				(range->pin_base + range->npins - 1));
1731 	}
1732 
1733 	mutex_unlock(&pctldev->mutex);
1734 
1735 	return 0;
1736 }
1737 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1738 
pinctrl_devices_show(struct seq_file * s,void * what)1739 static int pinctrl_devices_show(struct seq_file *s, void *what)
1740 {
1741 	struct pinctrl_dev *pctldev;
1742 
1743 	seq_puts(s, "name [pinmux] [pinconf]\n");
1744 
1745 	mutex_lock(&pinctrldev_list_mutex);
1746 
1747 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1748 		seq_printf(s, "%s ", pctldev->desc->name);
1749 		if (pctldev->desc->pmxops)
1750 			seq_puts(s, "yes ");
1751 		else
1752 			seq_puts(s, "no ");
1753 		if (pctldev->desc->confops)
1754 			seq_puts(s, "yes");
1755 		else
1756 			seq_puts(s, "no");
1757 		seq_puts(s, "\n");
1758 	}
1759 
1760 	mutex_unlock(&pinctrldev_list_mutex);
1761 
1762 	return 0;
1763 }
1764 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1765 
map_type(enum pinctrl_map_type type)1766 static inline const char *map_type(enum pinctrl_map_type type)
1767 {
1768 	static const char * const names[] = {
1769 		"INVALID",
1770 		"DUMMY_STATE",
1771 		"MUX_GROUP",
1772 		"CONFIGS_PIN",
1773 		"CONFIGS_GROUP",
1774 	};
1775 
1776 	if (type >= ARRAY_SIZE(names))
1777 		return "UNKNOWN";
1778 
1779 	return names[type];
1780 }
1781 
pinctrl_maps_show(struct seq_file * s,void * what)1782 static int pinctrl_maps_show(struct seq_file *s, void *what)
1783 {
1784 	struct pinctrl_maps *maps_node;
1785 	int i;
1786 	const struct pinctrl_map *map;
1787 
1788 	seq_puts(s, "Pinctrl maps:\n");
1789 
1790 	mutex_lock(&pinctrl_maps_mutex);
1791 	for_each_maps(maps_node, i, map) {
1792 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1793 			   map->dev_name, map->name, map_type(map->type),
1794 			   map->type);
1795 
1796 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1797 			seq_printf(s, "controlling device %s\n",
1798 				   map->ctrl_dev_name);
1799 
1800 		switch (map->type) {
1801 		case PIN_MAP_TYPE_MUX_GROUP:
1802 			pinmux_show_map(s, map);
1803 			break;
1804 		case PIN_MAP_TYPE_CONFIGS_PIN:
1805 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1806 			pinconf_show_map(s, map);
1807 			break;
1808 		default:
1809 			break;
1810 		}
1811 
1812 		seq_putc(s, '\n');
1813 	}
1814 	mutex_unlock(&pinctrl_maps_mutex);
1815 
1816 	return 0;
1817 }
1818 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1819 
pinctrl_show(struct seq_file * s,void * what)1820 static int pinctrl_show(struct seq_file *s, void *what)
1821 {
1822 	struct pinctrl *p;
1823 	struct pinctrl_state *state;
1824 	struct pinctrl_setting *setting;
1825 
1826 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1827 
1828 	mutex_lock(&pinctrl_list_mutex);
1829 
1830 	list_for_each_entry(p, &pinctrl_list, node) {
1831 		seq_printf(s, "device: %s current state: %s\n",
1832 			   dev_name(p->dev),
1833 			   p->state ? p->state->name : "none");
1834 
1835 		list_for_each_entry(state, &p->states, node) {
1836 			seq_printf(s, "  state: %s\n", state->name);
1837 
1838 			list_for_each_entry(setting, &state->settings, node) {
1839 				struct pinctrl_dev *pctldev = setting->pctldev;
1840 
1841 				seq_printf(s, "    type: %s controller %s ",
1842 					   map_type(setting->type),
1843 					   pinctrl_dev_get_name(pctldev));
1844 
1845 				switch (setting->type) {
1846 				case PIN_MAP_TYPE_MUX_GROUP:
1847 					pinmux_show_setting(s, setting);
1848 					break;
1849 				case PIN_MAP_TYPE_CONFIGS_PIN:
1850 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1851 					pinconf_show_setting(s, setting);
1852 					break;
1853 				default:
1854 					break;
1855 				}
1856 			}
1857 		}
1858 	}
1859 
1860 	mutex_unlock(&pinctrl_list_mutex);
1861 
1862 	return 0;
1863 }
1864 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1865 
1866 static struct dentry *debugfs_root;
1867 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1868 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1869 {
1870 	struct dentry *device_root;
1871 	const char *debugfs_name;
1872 
1873 	if (pctldev->desc->name &&
1874 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1875 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1876 				"%s-%s", dev_name(pctldev->dev),
1877 				pctldev->desc->name);
1878 		if (!debugfs_name) {
1879 			pr_warn("failed to determine debugfs dir name for %s\n",
1880 				dev_name(pctldev->dev));
1881 			return;
1882 		}
1883 	} else {
1884 		debugfs_name = dev_name(pctldev->dev);
1885 	}
1886 
1887 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1888 	pctldev->device_root = device_root;
1889 
1890 	if (IS_ERR(device_root) || !device_root) {
1891 		pr_warn("failed to create debugfs directory for %s\n",
1892 			dev_name(pctldev->dev));
1893 		return;
1894 	}
1895 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1896 			    device_root, pctldev, &pinctrl_pins_fops);
1897 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1898 			    device_root, pctldev, &pinctrl_groups_fops);
1899 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1900 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1901 	if (pctldev->desc->pmxops)
1902 		pinmux_init_device_debugfs(device_root, pctldev);
1903 	if (pctldev->desc->confops)
1904 		pinconf_init_device_debugfs(device_root, pctldev);
1905 }
1906 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1907 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1908 {
1909 	debugfs_remove_recursive(pctldev->device_root);
1910 }
1911 
pinctrl_init_debugfs(void)1912 static void pinctrl_init_debugfs(void)
1913 {
1914 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1915 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1916 		pr_warn("failed to create debugfs directory\n");
1917 		debugfs_root = NULL;
1918 		return;
1919 	}
1920 
1921 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1922 			    debugfs_root, NULL, &pinctrl_devices_fops);
1923 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1924 			    debugfs_root, NULL, &pinctrl_maps_fops);
1925 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1926 			    debugfs_root, NULL, &pinctrl_fops);
1927 }
1928 
1929 #else /* CONFIG_DEBUG_FS */
1930 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1931 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1932 {
1933 }
1934 
pinctrl_init_debugfs(void)1935 static void pinctrl_init_debugfs(void)
1936 {
1937 }
1938 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1939 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1940 {
1941 }
1942 
1943 #endif
1944 
pinctrl_check_ops(struct pinctrl_dev * pctldev)1945 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1946 {
1947 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1948 
1949 	if (!ops ||
1950 	    !ops->get_groups_count ||
1951 	    !ops->get_group_name)
1952 		return -EINVAL;
1953 
1954 	return 0;
1955 }
1956 
1957 /**
1958  * pinctrl_init_controller() - init a pin controller device
1959  * @pctldesc: descriptor for this pin controller
1960  * @dev: parent device for this pin controller
1961  * @driver_data: private pin controller data for this pin controller
1962  */
1963 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)1964 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1965 			void *driver_data)
1966 {
1967 	struct pinctrl_dev *pctldev;
1968 	int ret;
1969 
1970 	if (!pctldesc)
1971 		return ERR_PTR(-EINVAL);
1972 	if (!pctldesc->name)
1973 		return ERR_PTR(-EINVAL);
1974 
1975 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1976 	if (!pctldev)
1977 		return ERR_PTR(-ENOMEM);
1978 
1979 	/* Initialize pin control device struct */
1980 	pctldev->owner = pctldesc->owner;
1981 	pctldev->desc = pctldesc;
1982 	pctldev->driver_data = driver_data;
1983 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1984 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1985 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1986 #endif
1987 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1988 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1989 #endif
1990 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1991 	INIT_LIST_HEAD(&pctldev->node);
1992 	pctldev->dev = dev;
1993 	mutex_init(&pctldev->mutex);
1994 
1995 	/* check core ops for sanity */
1996 	ret = pinctrl_check_ops(pctldev);
1997 	if (ret) {
1998 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1999 		goto out_err;
2000 	}
2001 
2002 	/* If we're implementing pinmuxing, check the ops for sanity */
2003 	if (pctldesc->pmxops) {
2004 		ret = pinmux_check_ops(pctldev);
2005 		if (ret)
2006 			goto out_err;
2007 	}
2008 
2009 	/* If we're implementing pinconfig, check the ops for sanity */
2010 	if (pctldesc->confops) {
2011 		ret = pinconf_check_ops(pctldev);
2012 		if (ret)
2013 			goto out_err;
2014 	}
2015 
2016 	/* Register all the pins */
2017 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2018 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2019 	if (ret) {
2020 		dev_err(dev, "error during pin registration\n");
2021 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2022 				      pctldesc->npins);
2023 		goto out_err;
2024 	}
2025 
2026 	return pctldev;
2027 
2028 out_err:
2029 	mutex_destroy(&pctldev->mutex);
2030 	kfree(pctldev);
2031 	return ERR_PTR(ret);
2032 }
2033 
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2034 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2035 {
2036 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2037 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2038 		dev_dbg(pctldev->dev, "no hogs found\n");
2039 
2040 		return 0;
2041 	}
2042 
2043 	if (IS_ERR(pctldev->p)) {
2044 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2045 			PTR_ERR(pctldev->p));
2046 
2047 		return PTR_ERR(pctldev->p);
2048 	}
2049 
2050 	pctldev->hog_default =
2051 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2052 	if (IS_ERR(pctldev->hog_default)) {
2053 		dev_dbg(pctldev->dev,
2054 			"failed to lookup the default state\n");
2055 	} else {
2056 		if (pinctrl_select_state(pctldev->p,
2057 					 pctldev->hog_default))
2058 			dev_err(pctldev->dev,
2059 				"failed to select default state\n");
2060 	}
2061 
2062 	pctldev->hog_sleep =
2063 		pinctrl_lookup_state(pctldev->p,
2064 				     PINCTRL_STATE_SLEEP);
2065 	if (IS_ERR(pctldev->hog_sleep))
2066 		dev_dbg(pctldev->dev,
2067 			"failed to lookup the sleep state\n");
2068 
2069 	return 0;
2070 }
2071 
pinctrl_enable(struct pinctrl_dev * pctldev)2072 int pinctrl_enable(struct pinctrl_dev *pctldev)
2073 {
2074 	int error;
2075 
2076 	error = pinctrl_claim_hogs(pctldev);
2077 	if (error) {
2078 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2079 			error);
2080 		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2081 				      pctldev->desc->npins);
2082 		mutex_destroy(&pctldev->mutex);
2083 		kfree(pctldev);
2084 
2085 		return error;
2086 	}
2087 
2088 	mutex_lock(&pinctrldev_list_mutex);
2089 	list_add_tail(&pctldev->node, &pinctrldev_list);
2090 	mutex_unlock(&pinctrldev_list_mutex);
2091 
2092 	pinctrl_init_device_debugfs(pctldev);
2093 
2094 	return 0;
2095 }
2096 EXPORT_SYMBOL_GPL(pinctrl_enable);
2097 
2098 /**
2099  * pinctrl_register() - register a pin controller device
2100  * @pctldesc: descriptor for this pin controller
2101  * @dev: parent device for this pin controller
2102  * @driver_data: private pin controller data for this pin controller
2103  *
2104  * Note that pinctrl_register() is known to have problems as the pin
2105  * controller driver functions are called before the driver has a
2106  * struct pinctrl_dev handle. To avoid issues later on, please use the
2107  * new pinctrl_register_and_init() below instead.
2108  */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2109 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2110 				    struct device *dev, void *driver_data)
2111 {
2112 	struct pinctrl_dev *pctldev;
2113 	int error;
2114 
2115 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2116 	if (IS_ERR(pctldev))
2117 		return pctldev;
2118 
2119 	error = pinctrl_enable(pctldev);
2120 	if (error)
2121 		return ERR_PTR(error);
2122 
2123 	return pctldev;
2124 }
2125 EXPORT_SYMBOL_GPL(pinctrl_register);
2126 
2127 /**
2128  * pinctrl_register_and_init() - register and init pin controller device
2129  * @pctldesc: descriptor for this pin controller
2130  * @dev: parent device for this pin controller
2131  * @driver_data: private pin controller data for this pin controller
2132  * @pctldev: pin controller device
2133  *
2134  * Note that pinctrl_enable() still needs to be manually called after
2135  * this once the driver is ready.
2136  */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2137 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2138 			      struct device *dev, void *driver_data,
2139 			      struct pinctrl_dev **pctldev)
2140 {
2141 	struct pinctrl_dev *p;
2142 
2143 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2144 	if (IS_ERR(p))
2145 		return PTR_ERR(p);
2146 
2147 	/*
2148 	 * We have pinctrl_start() call functions in the pin controller
2149 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2150 	 * let's make sure pctldev is properly initialized for the
2151 	 * pin controller driver before we do anything.
2152 	 */
2153 	*pctldev = p;
2154 
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2158 
2159 /**
2160  * pinctrl_unregister() - unregister pinmux
2161  * @pctldev: pin controller to unregister
2162  *
2163  * Called by pinmux drivers to unregister a pinmux.
2164  */
pinctrl_unregister(struct pinctrl_dev * pctldev)2165 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2166 {
2167 	struct pinctrl_gpio_range *range, *n;
2168 
2169 	if (!pctldev)
2170 		return;
2171 
2172 	mutex_lock(&pctldev->mutex);
2173 	pinctrl_remove_device_debugfs(pctldev);
2174 	mutex_unlock(&pctldev->mutex);
2175 
2176 	if (!IS_ERR_OR_NULL(pctldev->p))
2177 		pinctrl_put(pctldev->p);
2178 
2179 	mutex_lock(&pinctrldev_list_mutex);
2180 	mutex_lock(&pctldev->mutex);
2181 	/* TODO: check that no pinmuxes are still active? */
2182 	list_del(&pctldev->node);
2183 	pinmux_generic_free_functions(pctldev);
2184 	pinctrl_generic_free_groups(pctldev);
2185 	/* Destroy descriptor tree */
2186 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2187 			      pctldev->desc->npins);
2188 	/* remove gpio ranges map */
2189 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2190 		list_del(&range->node);
2191 
2192 	mutex_unlock(&pctldev->mutex);
2193 	mutex_destroy(&pctldev->mutex);
2194 	kfree(pctldev);
2195 	mutex_unlock(&pinctrldev_list_mutex);
2196 }
2197 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2198 
devm_pinctrl_dev_release(struct device * dev,void * res)2199 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2200 {
2201 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2202 
2203 	pinctrl_unregister(pctldev);
2204 }
2205 
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2206 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2207 {
2208 	struct pctldev **r = res;
2209 
2210 	if (WARN_ON(!r || !*r))
2211 		return 0;
2212 
2213 	return *r == data;
2214 }
2215 
2216 /**
2217  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2218  * @dev: parent device for this pin controller
2219  * @pctldesc: descriptor for this pin controller
2220  * @driver_data: private pin controller data for this pin controller
2221  *
2222  * Returns an error pointer if pincontrol register failed. Otherwise
2223  * it returns valid pinctrl handle.
2224  *
2225  * The pinctrl device will be automatically released when the device is unbound.
2226  */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2227 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2228 					  struct pinctrl_desc *pctldesc,
2229 					  void *driver_data)
2230 {
2231 	struct pinctrl_dev **ptr, *pctldev;
2232 
2233 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2234 	if (!ptr)
2235 		return ERR_PTR(-ENOMEM);
2236 
2237 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2238 	if (IS_ERR(pctldev)) {
2239 		devres_free(ptr);
2240 		return pctldev;
2241 	}
2242 
2243 	*ptr = pctldev;
2244 	devres_add(dev, ptr);
2245 
2246 	return pctldev;
2247 }
2248 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2249 
2250 /**
2251  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2252  * @dev: parent device for this pin controller
2253  * @pctldesc: descriptor for this pin controller
2254  * @driver_data: private pin controller data for this pin controller
2255  * @pctldev: pin controller device
2256  *
2257  * Returns zero on success or an error number on failure.
2258  *
2259  * The pinctrl device will be automatically released when the device is unbound.
2260  */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2261 int devm_pinctrl_register_and_init(struct device *dev,
2262 				   struct pinctrl_desc *pctldesc,
2263 				   void *driver_data,
2264 				   struct pinctrl_dev **pctldev)
2265 {
2266 	struct pinctrl_dev **ptr;
2267 	int error;
2268 
2269 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2270 	if (!ptr)
2271 		return -ENOMEM;
2272 
2273 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2274 	if (error) {
2275 		devres_free(ptr);
2276 		return error;
2277 	}
2278 
2279 	*ptr = *pctldev;
2280 	devres_add(dev, ptr);
2281 
2282 	return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2285 
2286 /**
2287  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2288  * @dev: device for which which resource was allocated
2289  * @pctldev: the pinctrl device to unregister.
2290  */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2291 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2292 {
2293 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2294 			       devm_pinctrl_dev_match, pctldev));
2295 }
2296 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2297 
pinctrl_init(void)2298 static int __init pinctrl_init(void)
2299 {
2300 	pr_info("initialized pinctrl subsystem\n");
2301 	pinctrl_init_debugfs();
2302 	return 0;
2303 }
2304 
2305 /* init early since many drivers really need to initialized pinmux early */
2306 core_initcall(pinctrl_init);
2307