1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Aic94xx SAS/SATA driver access to shared data structures and memory
4 * maps.
5 *
6 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
7 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
8 */
9
10 #include <linux/pci.h>
11 #include <linux/slab.h>
12 #include <linux/delay.h>
13
14 #include "aic94xx.h"
15 #include "aic94xx_reg.h"
16 #include "aic94xx_sds.h"
17
18 /* ---------- OCM stuff ---------- */
19
20 struct asd_ocm_dir_ent {
21 u8 type;
22 u8 offs[3];
23 u8 _r1;
24 u8 size[3];
25 } __attribute__ ((packed));
26
27 struct asd_ocm_dir {
28 char sig[2];
29 u8 _r1[2];
30 u8 major; /* 0 */
31 u8 minor; /* 0 */
32 u8 _r2;
33 u8 num_de;
34 struct asd_ocm_dir_ent entry[15];
35 } __attribute__ ((packed));
36
37 #define OCM_DE_OCM_DIR 0x00
38 #define OCM_DE_WIN_DRVR 0x01
39 #define OCM_DE_BIOS_CHIM 0x02
40 #define OCM_DE_RAID_ENGN 0x03
41 #define OCM_DE_BIOS_INTL 0x04
42 #define OCM_DE_BIOS_CHIM_OSM 0x05
43 #define OCM_DE_BIOS_CHIM_DYNAMIC 0x06
44 #define OCM_DE_ADDC2C_RES0 0x07
45 #define OCM_DE_ADDC2C_RES1 0x08
46 #define OCM_DE_ADDC2C_RES2 0x09
47 #define OCM_DE_ADDC2C_RES3 0x0A
48
49 #define OCM_INIT_DIR_ENTRIES 5
50 /***************************************************************************
51 * OCM directory default
52 ***************************************************************************/
53 static struct asd_ocm_dir OCMDirInit =
54 {
55 .sig = {0x4D, 0x4F}, /* signature */
56 .num_de = OCM_INIT_DIR_ENTRIES, /* no. of directory entries */
57 };
58
59 /***************************************************************************
60 * OCM directory Entries default
61 ***************************************************************************/
62 static struct asd_ocm_dir_ent OCMDirEntriesInit[OCM_INIT_DIR_ENTRIES] =
63 {
64 {
65 .type = (OCM_DE_ADDC2C_RES0), /* Entry type */
66 .offs = {128}, /* Offset */
67 .size = {0, 4}, /* size */
68 },
69 {
70 .type = (OCM_DE_ADDC2C_RES1), /* Entry type */
71 .offs = {128, 4}, /* Offset */
72 .size = {0, 4}, /* size */
73 },
74 {
75 .type = (OCM_DE_ADDC2C_RES2), /* Entry type */
76 .offs = {128, 8}, /* Offset */
77 .size = {0, 4}, /* size */
78 },
79 {
80 .type = (OCM_DE_ADDC2C_RES3), /* Entry type */
81 .offs = {128, 12}, /* Offset */
82 .size = {0, 4}, /* size */
83 },
84 {
85 .type = (OCM_DE_WIN_DRVR), /* Entry type */
86 .offs = {128, 16}, /* Offset */
87 .size = {128, 235, 1}, /* size */
88 },
89 };
90
91 struct asd_bios_chim_struct {
92 char sig[4];
93 u8 major; /* 1 */
94 u8 minor; /* 0 */
95 u8 bios_major;
96 u8 bios_minor;
97 __le32 bios_build;
98 u8 flags;
99 u8 pci_slot;
100 __le16 ue_num;
101 __le16 ue_size;
102 u8 _r[14];
103 /* The unit element array is right here.
104 */
105 } __attribute__ ((packed));
106
107 /**
108 * asd_read_ocm_seg - read an on chip memory (OCM) segment
109 * @asd_ha: pointer to the host adapter structure
110 * @buffer: where to write the read data
111 * @offs: offset into OCM where to read from
112 * @size: how many bytes to read
113 *
114 * Return the number of bytes not read. Return 0 on success.
115 */
asd_read_ocm_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)116 static int asd_read_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
117 u32 offs, int size)
118 {
119 u8 *p = buffer;
120 if (unlikely(asd_ha->iospace))
121 asd_read_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
122 else {
123 for ( ; size > 0; size--, offs++, p++)
124 *p = asd_read_ocm_byte(asd_ha, offs);
125 }
126 return size;
127 }
128
asd_read_ocm_dir(struct asd_ha_struct * asd_ha,struct asd_ocm_dir * dir,u32 offs)129 static int asd_read_ocm_dir(struct asd_ha_struct *asd_ha,
130 struct asd_ocm_dir *dir, u32 offs)
131 {
132 int err = asd_read_ocm_seg(asd_ha, dir, offs, sizeof(*dir));
133 if (err) {
134 ASD_DPRINTK("couldn't read ocm segment\n");
135 return err;
136 }
137
138 if (dir->sig[0] != 'M' || dir->sig[1] != 'O') {
139 ASD_DPRINTK("no valid dir signature(%c%c) at start of OCM\n",
140 dir->sig[0], dir->sig[1]);
141 return -ENOENT;
142 }
143 if (dir->major != 0) {
144 asd_printk("unsupported major version of ocm dir:0x%x\n",
145 dir->major);
146 return -ENOENT;
147 }
148 dir->num_de &= 0xf;
149 return 0;
150 }
151
152 /**
153 * asd_write_ocm_seg - write an on chip memory (OCM) segment
154 * @asd_ha: pointer to the host adapter structure
155 * @buffer: where to read the write data
156 * @offs: offset into OCM to write to
157 * @size: how many bytes to write
158 *
159 * Return the number of bytes not written. Return 0 on success.
160 */
asd_write_ocm_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)161 static void asd_write_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
162 u32 offs, int size)
163 {
164 u8 *p = buffer;
165 if (unlikely(asd_ha->iospace))
166 asd_write_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
167 else {
168 for ( ; size > 0; size--, offs++, p++)
169 asd_write_ocm_byte(asd_ha, offs, *p);
170 }
171 return;
172 }
173
174 #define THREE_TO_NUM(X) ((X)[0] | ((X)[1] << 8) | ((X)[2] << 16))
175
asd_find_dir_entry(struct asd_ocm_dir * dir,u8 type,u32 * offs,u32 * size)176 static int asd_find_dir_entry(struct asd_ocm_dir *dir, u8 type,
177 u32 *offs, u32 *size)
178 {
179 int i;
180 struct asd_ocm_dir_ent *ent;
181
182 for (i = 0; i < dir->num_de; i++) {
183 if (dir->entry[i].type == type)
184 break;
185 }
186 if (i >= dir->num_de)
187 return -ENOENT;
188 ent = &dir->entry[i];
189 *offs = (u32) THREE_TO_NUM(ent->offs);
190 *size = (u32) THREE_TO_NUM(ent->size);
191 return 0;
192 }
193
194 #define OCM_BIOS_CHIM_DE 2
195 #define BC_BIOS_PRESENT 1
196
asd_get_bios_chim(struct asd_ha_struct * asd_ha,struct asd_ocm_dir * dir)197 static int asd_get_bios_chim(struct asd_ha_struct *asd_ha,
198 struct asd_ocm_dir *dir)
199 {
200 int err;
201 struct asd_bios_chim_struct *bc_struct;
202 u32 offs, size;
203
204 err = asd_find_dir_entry(dir, OCM_BIOS_CHIM_DE, &offs, &size);
205 if (err) {
206 ASD_DPRINTK("couldn't find BIOS_CHIM dir ent\n");
207 goto out;
208 }
209 err = -ENOMEM;
210 bc_struct = kmalloc(sizeof(*bc_struct), GFP_KERNEL);
211 if (!bc_struct) {
212 asd_printk("no memory for bios_chim struct\n");
213 goto out;
214 }
215 err = asd_read_ocm_seg(asd_ha, (void *)bc_struct, offs,
216 sizeof(*bc_struct));
217 if (err) {
218 ASD_DPRINTK("couldn't read ocm segment\n");
219 goto out2;
220 }
221 if (strncmp(bc_struct->sig, "SOIB", 4)
222 && strncmp(bc_struct->sig, "IPSA", 4)) {
223 ASD_DPRINTK("BIOS_CHIM entry has no valid sig(%c%c%c%c)\n",
224 bc_struct->sig[0], bc_struct->sig[1],
225 bc_struct->sig[2], bc_struct->sig[3]);
226 err = -ENOENT;
227 goto out2;
228 }
229 if (bc_struct->major != 1) {
230 asd_printk("BIOS_CHIM unsupported major version:0x%x\n",
231 bc_struct->major);
232 err = -ENOENT;
233 goto out2;
234 }
235 if (bc_struct->flags & BC_BIOS_PRESENT) {
236 asd_ha->hw_prof.bios.present = 1;
237 asd_ha->hw_prof.bios.maj = bc_struct->bios_major;
238 asd_ha->hw_prof.bios.min = bc_struct->bios_minor;
239 asd_ha->hw_prof.bios.bld = le32_to_cpu(bc_struct->bios_build);
240 ASD_DPRINTK("BIOS present (%d,%d), %d\n",
241 asd_ha->hw_prof.bios.maj,
242 asd_ha->hw_prof.bios.min,
243 asd_ha->hw_prof.bios.bld);
244 }
245 asd_ha->hw_prof.ue.num = le16_to_cpu(bc_struct->ue_num);
246 asd_ha->hw_prof.ue.size= le16_to_cpu(bc_struct->ue_size);
247 ASD_DPRINTK("ue num:%d, ue size:%d\n", asd_ha->hw_prof.ue.num,
248 asd_ha->hw_prof.ue.size);
249 size = asd_ha->hw_prof.ue.num * asd_ha->hw_prof.ue.size;
250 if (size > 0) {
251 err = -ENOMEM;
252 asd_ha->hw_prof.ue.area = kmalloc(size, GFP_KERNEL);
253 if (!asd_ha->hw_prof.ue.area)
254 goto out2;
255 err = asd_read_ocm_seg(asd_ha, (void *)asd_ha->hw_prof.ue.area,
256 offs + sizeof(*bc_struct), size);
257 if (err) {
258 kfree(asd_ha->hw_prof.ue.area);
259 asd_ha->hw_prof.ue.area = NULL;
260 asd_ha->hw_prof.ue.num = 0;
261 asd_ha->hw_prof.ue.size = 0;
262 ASD_DPRINTK("couldn't read ue entries(%d)\n", err);
263 }
264 }
265 out2:
266 kfree(bc_struct);
267 out:
268 return err;
269 }
270
271 static void
asd_hwi_initialize_ocm_dir(struct asd_ha_struct * asd_ha)272 asd_hwi_initialize_ocm_dir (struct asd_ha_struct *asd_ha)
273 {
274 int i;
275
276 /* Zero OCM */
277 for (i = 0; i < OCM_MAX_SIZE; i += 4)
278 asd_write_ocm_dword(asd_ha, i, 0);
279
280 /* Write Dir */
281 asd_write_ocm_seg(asd_ha, &OCMDirInit, 0,
282 sizeof(struct asd_ocm_dir));
283
284 /* Write Dir Entries */
285 for (i = 0; i < OCM_INIT_DIR_ENTRIES; i++)
286 asd_write_ocm_seg(asd_ha, &OCMDirEntriesInit[i],
287 sizeof(struct asd_ocm_dir) +
288 (i * sizeof(struct asd_ocm_dir_ent))
289 , sizeof(struct asd_ocm_dir_ent));
290
291 }
292
293 static int
asd_hwi_check_ocm_access(struct asd_ha_struct * asd_ha)294 asd_hwi_check_ocm_access (struct asd_ha_struct *asd_ha)
295 {
296 struct pci_dev *pcidev = asd_ha->pcidev;
297 u32 reg;
298 int err = 0;
299 u32 v;
300
301 /* check if OCM has been initialized by BIOS */
302 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
303
304 if (!(reg & OCMINITIALIZED)) {
305 err = pci_read_config_dword(pcidev, PCIC_INTRPT_STAT, &v);
306 if (err) {
307 asd_printk("couldn't access PCIC_INTRPT_STAT of %s\n",
308 pci_name(pcidev));
309 goto out;
310 }
311
312 printk(KERN_INFO "OCM is not initialized by BIOS,"
313 "reinitialize it and ignore it, current IntrptStatus"
314 "is 0x%x\n", v);
315
316 if (v)
317 err = pci_write_config_dword(pcidev,
318 PCIC_INTRPT_STAT, v);
319 if (err) {
320 asd_printk("couldn't write PCIC_INTRPT_STAT of %s\n",
321 pci_name(pcidev));
322 goto out;
323 }
324
325 asd_hwi_initialize_ocm_dir(asd_ha);
326
327 }
328 out:
329 return err;
330 }
331
332 /**
333 * asd_read_ocm - read on chip memory (OCM)
334 * @asd_ha: pointer to the host adapter structure
335 */
asd_read_ocm(struct asd_ha_struct * asd_ha)336 int asd_read_ocm(struct asd_ha_struct *asd_ha)
337 {
338 int err;
339 struct asd_ocm_dir *dir;
340
341 if (asd_hwi_check_ocm_access(asd_ha))
342 return -1;
343
344 dir = kmalloc(sizeof(*dir), GFP_KERNEL);
345 if (!dir) {
346 asd_printk("no memory for ocm dir\n");
347 return -ENOMEM;
348 }
349
350 err = asd_read_ocm_dir(asd_ha, dir, 0);
351 if (err)
352 goto out;
353
354 err = asd_get_bios_chim(asd_ha, dir);
355 out:
356 kfree(dir);
357 return err;
358 }
359
360 /* ---------- FLASH stuff ---------- */
361
362 #define FLASH_RESET 0xF0
363
364 #define ASD_FLASH_SIZE 0x200000
365 #define FLASH_DIR_COOKIE "*** ADAPTEC FLASH DIRECTORY *** "
366 #define FLASH_NEXT_ENTRY_OFFS 0x2000
367 #define FLASH_MAX_DIR_ENTRIES 32
368
369 #define FLASH_DE_TYPE_MASK 0x3FFFFFFF
370 #define FLASH_DE_MS 0x120
371 #define FLASH_DE_CTRL_A_USER 0xE0
372
373 struct asd_flash_de {
374 __le32 type;
375 __le32 offs;
376 __le32 pad_size;
377 __le32 image_size;
378 __le32 chksum;
379 u8 _r[12];
380 u8 version[32];
381 } __attribute__ ((packed));
382
383 struct asd_flash_dir {
384 u8 cookie[32];
385 __le32 rev; /* 2 */
386 __le32 chksum;
387 __le32 chksum_antidote;
388 __le32 bld;
389 u8 bld_id[32]; /* build id data */
390 u8 ver_data[32]; /* date and time of build */
391 __le32 ae_mask;
392 __le32 v_mask;
393 __le32 oc_mask;
394 u8 _r[20];
395 struct asd_flash_de dir_entry[FLASH_MAX_DIR_ENTRIES];
396 } __attribute__ ((packed));
397
398 struct asd_manuf_sec {
399 char sig[2]; /* 'S', 'M' */
400 u16 offs_next;
401 u8 maj; /* 0 */
402 u8 min; /* 0 */
403 u16 chksum;
404 u16 size;
405 u8 _r[6];
406 u8 sas_addr[SAS_ADDR_SIZE];
407 u8 pcba_sn[ASD_PCBA_SN_SIZE];
408 /* Here start the other segments */
409 u8 linked_list[];
410 } __attribute__ ((packed));
411
412 struct asd_manuf_phy_desc {
413 u8 state; /* low 4 bits */
414 #define MS_PHY_STATE_ENABLED 0
415 #define MS_PHY_STATE_REPORTED 1
416 #define MS_PHY_STATE_HIDDEN 2
417 u8 phy_id;
418 u16 _r;
419 u8 phy_control_0; /* mode 5 reg 0x160 */
420 u8 phy_control_1; /* mode 5 reg 0x161 */
421 u8 phy_control_2; /* mode 5 reg 0x162 */
422 u8 phy_control_3; /* mode 5 reg 0x163 */
423 } __attribute__ ((packed));
424
425 struct asd_manuf_phy_param {
426 char sig[2]; /* 'P', 'M' */
427 u16 next;
428 u8 maj; /* 0 */
429 u8 min; /* 2 */
430 u8 num_phy_desc; /* 8 */
431 u8 phy_desc_size; /* 8 */
432 u8 _r[3];
433 u8 usage_model_id;
434 u32 _r2;
435 struct asd_manuf_phy_desc phy_desc[ASD_MAX_PHYS];
436 } __attribute__ ((packed));
437
438 #if 0
439 static const char *asd_sb_type[] = {
440 "unknown",
441 "SGPIO",
442 [2 ... 0x7F] = "unknown",
443 [0x80] = "ADPT_I2C",
444 [0x81 ... 0xFF] = "VENDOR_UNIQUExx"
445 };
446 #endif
447
448 struct asd_ms_sb_desc {
449 u8 type;
450 u8 node_desc_index;
451 u8 conn_desc_index;
452 u8 _recvd[];
453 } __attribute__ ((packed));
454
455 #if 0
456 static const char *asd_conn_type[] = {
457 [0 ... 7] = "unknown",
458 "SFF8470",
459 "SFF8482",
460 "SFF8484",
461 [0x80] = "PCIX_DAUGHTER0",
462 [0x81] = "SAS_DAUGHTER0",
463 [0x82 ... 0xFF] = "VENDOR_UNIQUExx"
464 };
465
466 static const char *asd_conn_location[] = {
467 "unknown",
468 "internal",
469 "external",
470 "board_to_board",
471 };
472 #endif
473
474 struct asd_ms_conn_desc {
475 u8 type;
476 u8 location;
477 u8 num_sideband_desc;
478 u8 size_sideband_desc;
479 u32 _resvd;
480 u8 name[16];
481 struct asd_ms_sb_desc sb_desc[];
482 } __attribute__ ((packed));
483
484 struct asd_nd_phy_desc {
485 u8 vp_attch_type;
486 u8 attch_specific[];
487 } __attribute__ ((packed));
488
489 #if 0
490 static const char *asd_node_type[] = {
491 "IOP",
492 "IO_CONTROLLER",
493 "EXPANDER",
494 "PORT_MULTIPLIER",
495 "PORT_MULTIPLEXER",
496 "MULTI_DROP_I2C_BUS",
497 };
498 #endif
499
500 struct asd_ms_node_desc {
501 u8 type;
502 u8 num_phy_desc;
503 u8 size_phy_desc;
504 u8 _resvd;
505 u8 name[16];
506 struct asd_nd_phy_desc phy_desc[];
507 } __attribute__ ((packed));
508
509 struct asd_ms_conn_map {
510 char sig[2]; /* 'M', 'C' */
511 __le16 next;
512 u8 maj; /* 0 */
513 u8 min; /* 0 */
514 __le16 cm_size; /* size of this struct */
515 u8 num_conn;
516 u8 conn_size;
517 u8 num_nodes;
518 u8 usage_model_id;
519 u32 _resvd;
520 struct asd_ms_conn_desc conn_desc[0];
521 struct asd_ms_node_desc node_desc[];
522 } __attribute__ ((packed));
523
524 struct asd_ctrla_phy_entry {
525 u8 sas_addr[SAS_ADDR_SIZE];
526 u8 sas_link_rates; /* max in hi bits, min in low bits */
527 u8 flags;
528 u8 sata_link_rates;
529 u8 _r[5];
530 } __attribute__ ((packed));
531
532 struct asd_ctrla_phy_settings {
533 u8 id0; /* P'h'y */
534 u8 _r;
535 u16 next;
536 u8 num_phys; /* number of PHYs in the PCI function */
537 u8 _r2[3];
538 struct asd_ctrla_phy_entry phy_ent[ASD_MAX_PHYS];
539 } __attribute__ ((packed));
540
541 struct asd_ll_el {
542 u8 id0;
543 u8 id1;
544 __le16 next;
545 u8 something_here[];
546 } __attribute__ ((packed));
547
asd_poll_flash(struct asd_ha_struct * asd_ha)548 static int asd_poll_flash(struct asd_ha_struct *asd_ha)
549 {
550 int c;
551 u8 d;
552
553 for (c = 5000; c > 0; c--) {
554 d = asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
555 d ^= asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
556 if (!d)
557 return 0;
558 udelay(5);
559 }
560 return -ENOENT;
561 }
562
asd_reset_flash(struct asd_ha_struct * asd_ha)563 static int asd_reset_flash(struct asd_ha_struct *asd_ha)
564 {
565 int err;
566
567 err = asd_poll_flash(asd_ha);
568 if (err)
569 return err;
570 asd_write_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar, FLASH_RESET);
571 err = asd_poll_flash(asd_ha);
572
573 return err;
574 }
575
asd_read_flash_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)576 static int asd_read_flash_seg(struct asd_ha_struct *asd_ha,
577 void *buffer, u32 offs, int size)
578 {
579 asd_read_reg_string(asd_ha, buffer, asd_ha->hw_prof.flash.bar+offs,
580 size);
581 return 0;
582 }
583
584 /**
585 * asd_find_flash_dir - finds and reads the flash directory
586 * @asd_ha: pointer to the host adapter structure
587 * @flash_dir: pointer to flash directory structure
588 *
589 * If found, the flash directory segment will be copied to
590 * @flash_dir. Return 1 if found, 0 if not.
591 */
asd_find_flash_dir(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)592 static int asd_find_flash_dir(struct asd_ha_struct *asd_ha,
593 struct asd_flash_dir *flash_dir)
594 {
595 u32 v;
596 for (v = 0; v < ASD_FLASH_SIZE; v += FLASH_NEXT_ENTRY_OFFS) {
597 asd_read_flash_seg(asd_ha, flash_dir, v,
598 sizeof(FLASH_DIR_COOKIE)-1);
599 if (memcmp(flash_dir->cookie, FLASH_DIR_COOKIE,
600 sizeof(FLASH_DIR_COOKIE)-1) == 0) {
601 asd_ha->hw_prof.flash.dir_offs = v;
602 asd_read_flash_seg(asd_ha, flash_dir, v,
603 sizeof(*flash_dir));
604 return 1;
605 }
606 }
607 return 0;
608 }
609
asd_flash_getid(struct asd_ha_struct * asd_ha)610 static int asd_flash_getid(struct asd_ha_struct *asd_ha)
611 {
612 int err = 0;
613 u32 reg;
614
615 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
616
617 if (pci_read_config_dword(asd_ha->pcidev, PCI_CONF_FLSH_BAR,
618 &asd_ha->hw_prof.flash.bar)) {
619 asd_printk("couldn't read PCI_CONF_FLSH_BAR of %s\n",
620 pci_name(asd_ha->pcidev));
621 return -ENOENT;
622 }
623 asd_ha->hw_prof.flash.present = 1;
624 asd_ha->hw_prof.flash.wide = reg & FLASHW ? 1 : 0;
625 err = asd_reset_flash(asd_ha);
626 if (err) {
627 ASD_DPRINTK("couldn't reset flash(%d)\n", err);
628 return err;
629 }
630 return 0;
631 }
632
asd_calc_flash_chksum(u16 * p,int size)633 static u16 asd_calc_flash_chksum(u16 *p, int size)
634 {
635 u16 chksum = 0;
636
637 while (size-- > 0)
638 chksum += *p++;
639
640 return chksum;
641 }
642
643
asd_find_flash_de(struct asd_flash_dir * flash_dir,u32 entry_type,u32 * offs,u32 * size)644 static int asd_find_flash_de(struct asd_flash_dir *flash_dir, u32 entry_type,
645 u32 *offs, u32 *size)
646 {
647 int i;
648 struct asd_flash_de *de;
649
650 for (i = 0; i < FLASH_MAX_DIR_ENTRIES; i++) {
651 u32 type = le32_to_cpu(flash_dir->dir_entry[i].type);
652
653 type &= FLASH_DE_TYPE_MASK;
654 if (type == entry_type)
655 break;
656 }
657 if (i >= FLASH_MAX_DIR_ENTRIES)
658 return -ENOENT;
659 de = &flash_dir->dir_entry[i];
660 *offs = le32_to_cpu(de->offs);
661 *size = le32_to_cpu(de->pad_size);
662 return 0;
663 }
664
asd_validate_ms(struct asd_manuf_sec * ms)665 static int asd_validate_ms(struct asd_manuf_sec *ms)
666 {
667 if (ms->sig[0] != 'S' || ms->sig[1] != 'M') {
668 ASD_DPRINTK("manuf sec: no valid sig(%c%c)\n",
669 ms->sig[0], ms->sig[1]);
670 return -ENOENT;
671 }
672 if (ms->maj != 0) {
673 asd_printk("unsupported manuf. sector. major version:%x\n",
674 ms->maj);
675 return -ENOENT;
676 }
677 ms->offs_next = le16_to_cpu((__force __le16) ms->offs_next);
678 ms->chksum = le16_to_cpu((__force __le16) ms->chksum);
679 ms->size = le16_to_cpu((__force __le16) ms->size);
680
681 if (asd_calc_flash_chksum((u16 *)ms, ms->size/2)) {
682 asd_printk("failed manuf sector checksum\n");
683 }
684
685 return 0;
686 }
687
asd_ms_get_sas_addr(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * ms)688 static int asd_ms_get_sas_addr(struct asd_ha_struct *asd_ha,
689 struct asd_manuf_sec *ms)
690 {
691 memcpy(asd_ha->hw_prof.sas_addr, ms->sas_addr, SAS_ADDR_SIZE);
692 return 0;
693 }
694
asd_ms_get_pcba_sn(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * ms)695 static int asd_ms_get_pcba_sn(struct asd_ha_struct *asd_ha,
696 struct asd_manuf_sec *ms)
697 {
698 memcpy(asd_ha->hw_prof.pcba_sn, ms->pcba_sn, ASD_PCBA_SN_SIZE);
699 asd_ha->hw_prof.pcba_sn[ASD_PCBA_SN_SIZE] = '\0';
700 return 0;
701 }
702
703 /**
704 * asd_find_ll_by_id - find a linked list entry by its id
705 * @start: void pointer to the first element in the linked list
706 * @id0: the first byte of the id (offs 0)
707 * @id1: the second byte of the id (offs 1)
708 *
709 * @start has to be the _base_ element start, since the
710 * linked list entries's offset is from this pointer.
711 * Some linked list entries use only the first id, in which case
712 * you can pass 0xFF for the second.
713 */
asd_find_ll_by_id(void * const start,const u8 id0,const u8 id1)714 static void *asd_find_ll_by_id(void * const start, const u8 id0, const u8 id1)
715 {
716 struct asd_ll_el *el = start;
717
718 do {
719 switch (id1) {
720 default:
721 if (el->id1 == id1)
722 case 0xFF:
723 if (el->id0 == id0)
724 return el;
725 }
726 el = start + le16_to_cpu(el->next);
727 } while (el != start);
728
729 return NULL;
730 }
731
732 /**
733 * asd_ms_get_phy_params - get phy parameters from the manufacturing sector
734 * @asd_ha: pointer to the host adapter structure
735 * @manuf_sec: pointer to the manufacturing sector
736 *
737 * The manufacturing sector contans also the linked list of sub-segments,
738 * since when it was read, its size was taken from the flash directory,
739 * not from the structure size.
740 *
741 * HIDDEN phys do not count in the total count. REPORTED phys cannot
742 * be enabled but are reported and counted towards the total.
743 * ENABLED phys are enabled by default and count towards the total.
744 * The absolute total phy number is ASD_MAX_PHYS. hw_prof->num_phys
745 * merely specifies the number of phys the host adapter decided to
746 * report. E.g., it is possible for phys 0, 1 and 2 to be HIDDEN,
747 * phys 3, 4 and 5 to be REPORTED and phys 6 and 7 to be ENABLED.
748 * In this case ASD_MAX_PHYS is 8, hw_prof->num_phys is 5, and only 2
749 * are actually enabled (enabled by default, max number of phys
750 * enableable in this case).
751 */
asd_ms_get_phy_params(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * manuf_sec)752 static int asd_ms_get_phy_params(struct asd_ha_struct *asd_ha,
753 struct asd_manuf_sec *manuf_sec)
754 {
755 int i;
756 int en_phys = 0;
757 int rep_phys = 0;
758 struct asd_manuf_phy_param *phy_param;
759 struct asd_manuf_phy_param dflt_phy_param;
760
761 phy_param = asd_find_ll_by_id(manuf_sec, 'P', 'M');
762 if (!phy_param) {
763 ASD_DPRINTK("ms: no phy parameters found\n");
764 ASD_DPRINTK("ms: Creating default phy parameters\n");
765 dflt_phy_param.sig[0] = 'P';
766 dflt_phy_param.sig[1] = 'M';
767 dflt_phy_param.maj = 0;
768 dflt_phy_param.min = 2;
769 dflt_phy_param.num_phy_desc = 8;
770 dflt_phy_param.phy_desc_size = sizeof(struct asd_manuf_phy_desc);
771 for (i =0; i < ASD_MAX_PHYS; i++) {
772 dflt_phy_param.phy_desc[i].state = 0;
773 dflt_phy_param.phy_desc[i].phy_id = i;
774 dflt_phy_param.phy_desc[i].phy_control_0 = 0xf6;
775 dflt_phy_param.phy_desc[i].phy_control_1 = 0x10;
776 dflt_phy_param.phy_desc[i].phy_control_2 = 0x43;
777 dflt_phy_param.phy_desc[i].phy_control_3 = 0xeb;
778 }
779
780 phy_param = &dflt_phy_param;
781
782 }
783
784 if (phy_param->maj != 0) {
785 asd_printk("unsupported manuf. phy param major version:0x%x\n",
786 phy_param->maj);
787 return -ENOENT;
788 }
789
790 ASD_DPRINTK("ms: num_phy_desc: %d\n", phy_param->num_phy_desc);
791 asd_ha->hw_prof.enabled_phys = 0;
792 for (i = 0; i < phy_param->num_phy_desc; i++) {
793 struct asd_manuf_phy_desc *pd = &phy_param->phy_desc[i];
794 switch (pd->state & 0xF) {
795 case MS_PHY_STATE_HIDDEN:
796 ASD_DPRINTK("ms: phy%d: HIDDEN\n", i);
797 continue;
798 case MS_PHY_STATE_REPORTED:
799 ASD_DPRINTK("ms: phy%d: REPORTED\n", i);
800 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
801 rep_phys++;
802 continue;
803 case MS_PHY_STATE_ENABLED:
804 ASD_DPRINTK("ms: phy%d: ENABLED\n", i);
805 asd_ha->hw_prof.enabled_phys |= (1 << i);
806 en_phys++;
807 break;
808 }
809 asd_ha->hw_prof.phy_desc[i].phy_control_0 = pd->phy_control_0;
810 asd_ha->hw_prof.phy_desc[i].phy_control_1 = pd->phy_control_1;
811 asd_ha->hw_prof.phy_desc[i].phy_control_2 = pd->phy_control_2;
812 asd_ha->hw_prof.phy_desc[i].phy_control_3 = pd->phy_control_3;
813 }
814 asd_ha->hw_prof.max_phys = rep_phys + en_phys;
815 asd_ha->hw_prof.num_phys = en_phys;
816 ASD_DPRINTK("ms: max_phys:0x%x, num_phys:0x%x\n",
817 asd_ha->hw_prof.max_phys, asd_ha->hw_prof.num_phys);
818 ASD_DPRINTK("ms: enabled_phys:0x%x\n", asd_ha->hw_prof.enabled_phys);
819 return 0;
820 }
821
asd_ms_get_connector_map(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * manuf_sec)822 static int asd_ms_get_connector_map(struct asd_ha_struct *asd_ha,
823 struct asd_manuf_sec *manuf_sec)
824 {
825 struct asd_ms_conn_map *cm;
826
827 cm = asd_find_ll_by_id(manuf_sec, 'M', 'C');
828 if (!cm) {
829 ASD_DPRINTK("ms: no connector map found\n");
830 return 0;
831 }
832
833 if (cm->maj != 0) {
834 ASD_DPRINTK("ms: unsupported: connector map major version 0x%x"
835 "\n", cm->maj);
836 return -ENOENT;
837 }
838
839 /* XXX */
840
841 return 0;
842 }
843
844
845 /**
846 * asd_process_ms - find and extract information from the manufacturing sector
847 * @asd_ha: pointer to the host adapter structure
848 * @flash_dir: pointer to the flash directory
849 */
asd_process_ms(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)850 static int asd_process_ms(struct asd_ha_struct *asd_ha,
851 struct asd_flash_dir *flash_dir)
852 {
853 int err;
854 struct asd_manuf_sec *manuf_sec;
855 u32 offs, size;
856
857 err = asd_find_flash_de(flash_dir, FLASH_DE_MS, &offs, &size);
858 if (err) {
859 ASD_DPRINTK("Couldn't find the manuf. sector\n");
860 goto out;
861 }
862
863 if (size == 0)
864 goto out;
865
866 err = -ENOMEM;
867 manuf_sec = kmalloc(size, GFP_KERNEL);
868 if (!manuf_sec) {
869 ASD_DPRINTK("no mem for manuf sector\n");
870 goto out;
871 }
872
873 err = asd_read_flash_seg(asd_ha, (void *)manuf_sec, offs, size);
874 if (err) {
875 ASD_DPRINTK("couldn't read manuf sector at 0x%x, size 0x%x\n",
876 offs, size);
877 goto out2;
878 }
879
880 err = asd_validate_ms(manuf_sec);
881 if (err) {
882 ASD_DPRINTK("couldn't validate manuf sector\n");
883 goto out2;
884 }
885
886 err = asd_ms_get_sas_addr(asd_ha, manuf_sec);
887 if (err) {
888 ASD_DPRINTK("couldn't read the SAS_ADDR\n");
889 goto out2;
890 }
891 ASD_DPRINTK("manuf sect SAS_ADDR %llx\n",
892 SAS_ADDR(asd_ha->hw_prof.sas_addr));
893
894 err = asd_ms_get_pcba_sn(asd_ha, manuf_sec);
895 if (err) {
896 ASD_DPRINTK("couldn't read the PCBA SN\n");
897 goto out2;
898 }
899 ASD_DPRINTK("manuf sect PCBA SN %s\n", asd_ha->hw_prof.pcba_sn);
900
901 err = asd_ms_get_phy_params(asd_ha, manuf_sec);
902 if (err) {
903 ASD_DPRINTK("ms: couldn't get phy parameters\n");
904 goto out2;
905 }
906
907 err = asd_ms_get_connector_map(asd_ha, manuf_sec);
908 if (err) {
909 ASD_DPRINTK("ms: couldn't get connector map\n");
910 goto out2;
911 }
912
913 out2:
914 kfree(manuf_sec);
915 out:
916 return err;
917 }
918
asd_process_ctrla_phy_settings(struct asd_ha_struct * asd_ha,struct asd_ctrla_phy_settings * ps)919 static int asd_process_ctrla_phy_settings(struct asd_ha_struct *asd_ha,
920 struct asd_ctrla_phy_settings *ps)
921 {
922 int i;
923 for (i = 0; i < ps->num_phys; i++) {
924 struct asd_ctrla_phy_entry *pe = &ps->phy_ent[i];
925
926 if (!PHY_ENABLED(asd_ha, i))
927 continue;
928 if (*(u64 *)pe->sas_addr == 0) {
929 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
930 continue;
931 }
932 /* This is the SAS address which should be sent in IDENTIFY. */
933 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, pe->sas_addr,
934 SAS_ADDR_SIZE);
935 asd_ha->hw_prof.phy_desc[i].max_sas_lrate =
936 (pe->sas_link_rates & 0xF0) >> 4;
937 asd_ha->hw_prof.phy_desc[i].min_sas_lrate =
938 (pe->sas_link_rates & 0x0F);
939 asd_ha->hw_prof.phy_desc[i].max_sata_lrate =
940 (pe->sata_link_rates & 0xF0) >> 4;
941 asd_ha->hw_prof.phy_desc[i].min_sata_lrate =
942 (pe->sata_link_rates & 0x0F);
943 asd_ha->hw_prof.phy_desc[i].flags = pe->flags;
944 ASD_DPRINTK("ctrla: phy%d: sas_addr: %llx, sas rate:0x%x-0x%x,"
945 " sata rate:0x%x-0x%x, flags:0x%x\n",
946 i,
947 SAS_ADDR(asd_ha->hw_prof.phy_desc[i].sas_addr),
948 asd_ha->hw_prof.phy_desc[i].max_sas_lrate,
949 asd_ha->hw_prof.phy_desc[i].min_sas_lrate,
950 asd_ha->hw_prof.phy_desc[i].max_sata_lrate,
951 asd_ha->hw_prof.phy_desc[i].min_sata_lrate,
952 asd_ha->hw_prof.phy_desc[i].flags);
953 }
954
955 return 0;
956 }
957
958 /**
959 * asd_process_ctrl_a_user - process CTRL-A user settings
960 * @asd_ha: pointer to the host adapter structure
961 * @flash_dir: pointer to the flash directory
962 */
asd_process_ctrl_a_user(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)963 static int asd_process_ctrl_a_user(struct asd_ha_struct *asd_ha,
964 struct asd_flash_dir *flash_dir)
965 {
966 int err, i;
967 u32 offs, size;
968 struct asd_ll_el *el = NULL;
969 struct asd_ctrla_phy_settings *ps;
970 struct asd_ctrla_phy_settings dflt_ps;
971
972 err = asd_find_flash_de(flash_dir, FLASH_DE_CTRL_A_USER, &offs, &size);
973 if (err) {
974 ASD_DPRINTK("couldn't find CTRL-A user settings section\n");
975 ASD_DPRINTK("Creating default CTRL-A user settings section\n");
976
977 dflt_ps.id0 = 'h';
978 dflt_ps.num_phys = 8;
979 for (i =0; i < ASD_MAX_PHYS; i++) {
980 memcpy(dflt_ps.phy_ent[i].sas_addr,
981 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
982 dflt_ps.phy_ent[i].sas_link_rates = 0x98;
983 dflt_ps.phy_ent[i].flags = 0x0;
984 dflt_ps.phy_ent[i].sata_link_rates = 0x0;
985 }
986
987 size = sizeof(struct asd_ctrla_phy_settings);
988 ps = &dflt_ps;
989 goto out_process;
990 }
991
992 if (size == 0)
993 goto out;
994
995 err = -ENOMEM;
996 el = kmalloc(size, GFP_KERNEL);
997 if (!el) {
998 ASD_DPRINTK("no mem for ctrla user settings section\n");
999 goto out;
1000 }
1001
1002 err = asd_read_flash_seg(asd_ha, (void *)el, offs, size);
1003 if (err) {
1004 ASD_DPRINTK("couldn't read ctrla phy settings section\n");
1005 goto out2;
1006 }
1007
1008 err = -ENOENT;
1009 ps = asd_find_ll_by_id(el, 'h', 0xFF);
1010 if (!ps) {
1011 ASD_DPRINTK("couldn't find ctrla phy settings struct\n");
1012 goto out2;
1013 }
1014 out_process:
1015 err = asd_process_ctrla_phy_settings(asd_ha, ps);
1016 if (err) {
1017 ASD_DPRINTK("couldn't process ctrla phy settings\n");
1018 goto out2;
1019 }
1020 out2:
1021 kfree(el);
1022 out:
1023 return err;
1024 }
1025
1026 /**
1027 * asd_read_flash - read flash memory
1028 * @asd_ha: pointer to the host adapter structure
1029 */
asd_read_flash(struct asd_ha_struct * asd_ha)1030 int asd_read_flash(struct asd_ha_struct *asd_ha)
1031 {
1032 int err;
1033 struct asd_flash_dir *flash_dir;
1034
1035 err = asd_flash_getid(asd_ha);
1036 if (err)
1037 return err;
1038
1039 flash_dir = kmalloc(sizeof(*flash_dir), GFP_KERNEL);
1040 if (!flash_dir)
1041 return -ENOMEM;
1042
1043 err = -ENOENT;
1044 if (!asd_find_flash_dir(asd_ha, flash_dir)) {
1045 ASD_DPRINTK("couldn't find flash directory\n");
1046 goto out;
1047 }
1048
1049 if (le32_to_cpu(flash_dir->rev) != 2) {
1050 asd_printk("unsupported flash dir version:0x%x\n",
1051 le32_to_cpu(flash_dir->rev));
1052 goto out;
1053 }
1054
1055 err = asd_process_ms(asd_ha, flash_dir);
1056 if (err) {
1057 ASD_DPRINTK("couldn't process manuf sector settings\n");
1058 goto out;
1059 }
1060
1061 err = asd_process_ctrl_a_user(asd_ha, flash_dir);
1062 if (err) {
1063 ASD_DPRINTK("couldn't process CTRL-A user settings\n");
1064 goto out;
1065 }
1066
1067 out:
1068 kfree(flash_dir);
1069 return err;
1070 }
1071
1072 /**
1073 * asd_verify_flash_seg - verify data with flash memory
1074 * @asd_ha: pointer to the host adapter structure
1075 * @src: pointer to the source data to be verified
1076 * @dest_offset: offset from flash memory
1077 * @bytes_to_verify: total bytes to verify
1078 */
asd_verify_flash_seg(struct asd_ha_struct * asd_ha,const void * src,u32 dest_offset,u32 bytes_to_verify)1079 int asd_verify_flash_seg(struct asd_ha_struct *asd_ha,
1080 const void *src, u32 dest_offset, u32 bytes_to_verify)
1081 {
1082 const u8 *src_buf;
1083 u8 flash_char;
1084 int err;
1085 u32 nv_offset, reg, i;
1086
1087 reg = asd_ha->hw_prof.flash.bar;
1088 src_buf = NULL;
1089
1090 err = FLASH_OK;
1091 nv_offset = dest_offset;
1092 src_buf = (const u8 *)src;
1093 for (i = 0; i < bytes_to_verify; i++) {
1094 flash_char = asd_read_reg_byte(asd_ha, reg + nv_offset + i);
1095 if (flash_char != src_buf[i]) {
1096 err = FAIL_VERIFY;
1097 break;
1098 }
1099 }
1100 return err;
1101 }
1102
1103 /**
1104 * asd_write_flash_seg - write data into flash memory
1105 * @asd_ha: pointer to the host adapter structure
1106 * @src: pointer to the source data to be written
1107 * @dest_offset: offset from flash memory
1108 * @bytes_to_write: total bytes to write
1109 */
asd_write_flash_seg(struct asd_ha_struct * asd_ha,const void * src,u32 dest_offset,u32 bytes_to_write)1110 int asd_write_flash_seg(struct asd_ha_struct *asd_ha,
1111 const void *src, u32 dest_offset, u32 bytes_to_write)
1112 {
1113 const u8 *src_buf;
1114 u32 nv_offset, reg, i;
1115 int err;
1116
1117 reg = asd_ha->hw_prof.flash.bar;
1118 src_buf = NULL;
1119
1120 err = asd_check_flash_type(asd_ha);
1121 if (err) {
1122 ASD_DPRINTK("couldn't find the type of flash. err=%d\n", err);
1123 return err;
1124 }
1125
1126 nv_offset = dest_offset;
1127 err = asd_erase_nv_sector(asd_ha, nv_offset, bytes_to_write);
1128 if (err) {
1129 ASD_DPRINTK("Erase failed at offset:0x%x\n",
1130 nv_offset);
1131 return err;
1132 }
1133
1134 err = asd_reset_flash(asd_ha);
1135 if (err) {
1136 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1137 return err;
1138 }
1139
1140 src_buf = (const u8 *)src;
1141 for (i = 0; i < bytes_to_write; i++) {
1142 /* Setup program command sequence */
1143 switch (asd_ha->hw_prof.flash.method) {
1144 case FLASH_METHOD_A:
1145 {
1146 asd_write_reg_byte(asd_ha,
1147 (reg + 0xAAA), 0xAA);
1148 asd_write_reg_byte(asd_ha,
1149 (reg + 0x555), 0x55);
1150 asd_write_reg_byte(asd_ha,
1151 (reg + 0xAAA), 0xA0);
1152 asd_write_reg_byte(asd_ha,
1153 (reg + nv_offset + i),
1154 (*(src_buf + i)));
1155 break;
1156 }
1157 case FLASH_METHOD_B:
1158 {
1159 asd_write_reg_byte(asd_ha,
1160 (reg + 0x555), 0xAA);
1161 asd_write_reg_byte(asd_ha,
1162 (reg + 0x2AA), 0x55);
1163 asd_write_reg_byte(asd_ha,
1164 (reg + 0x555), 0xA0);
1165 asd_write_reg_byte(asd_ha,
1166 (reg + nv_offset + i),
1167 (*(src_buf + i)));
1168 break;
1169 }
1170 default:
1171 break;
1172 }
1173 if (asd_chk_write_status(asd_ha,
1174 (nv_offset + i), 0) != 0) {
1175 ASD_DPRINTK("aicx: Write failed at offset:0x%x\n",
1176 reg + nv_offset + i);
1177 return FAIL_WRITE_FLASH;
1178 }
1179 }
1180
1181 err = asd_reset_flash(asd_ha);
1182 if (err) {
1183 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1184 return err;
1185 }
1186 return 0;
1187 }
1188
asd_chk_write_status(struct asd_ha_struct * asd_ha,u32 sector_addr,u8 erase_flag)1189 int asd_chk_write_status(struct asd_ha_struct *asd_ha,
1190 u32 sector_addr, u8 erase_flag)
1191 {
1192 u32 reg;
1193 u32 loop_cnt;
1194 u8 nv_data1, nv_data2;
1195 u8 toggle_bit1;
1196
1197 /*
1198 * Read from DQ2 requires sector address
1199 * while it's dont care for DQ6
1200 */
1201 reg = asd_ha->hw_prof.flash.bar;
1202
1203 for (loop_cnt = 0; loop_cnt < 50000; loop_cnt++) {
1204 nv_data1 = asd_read_reg_byte(asd_ha, reg);
1205 nv_data2 = asd_read_reg_byte(asd_ha, reg);
1206
1207 toggle_bit1 = ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1208 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1209
1210 if (toggle_bit1 == 0) {
1211 return 0;
1212 } else {
1213 if (nv_data2 & FLASH_STATUS_BIT_MASK_DQ5) {
1214 nv_data1 = asd_read_reg_byte(asd_ha,
1215 reg);
1216 nv_data2 = asd_read_reg_byte(asd_ha,
1217 reg);
1218 toggle_bit1 =
1219 ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1220 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1221
1222 if (toggle_bit1 == 0)
1223 return 0;
1224 }
1225 }
1226
1227 /*
1228 * ERASE is a sector-by-sector operation and requires
1229 * more time to finish while WRITE is byte-byte-byte
1230 * operation and takes lesser time to finish.
1231 *
1232 * For some strange reason a reduced ERASE delay gives different
1233 * behaviour across different spirit boards. Hence we set
1234 * a optimum balance of 50mus for ERASE which works well
1235 * across all boards.
1236 */
1237 if (erase_flag) {
1238 udelay(FLASH_STATUS_ERASE_DELAY_COUNT);
1239 } else {
1240 udelay(FLASH_STATUS_WRITE_DELAY_COUNT);
1241 }
1242 }
1243 return -1;
1244 }
1245
1246 /**
1247 * asd_hwi_erase_nv_sector - Erase the flash memory sectors.
1248 * @asd_ha: pointer to the host adapter structure
1249 * @flash_addr: pointer to offset from flash memory
1250 * @size: total bytes to erase.
1251 */
asd_erase_nv_sector(struct asd_ha_struct * asd_ha,u32 flash_addr,u32 size)1252 int asd_erase_nv_sector(struct asd_ha_struct *asd_ha, u32 flash_addr, u32 size)
1253 {
1254 u32 reg;
1255 u32 sector_addr;
1256
1257 reg = asd_ha->hw_prof.flash.bar;
1258
1259 /* sector staring address */
1260 sector_addr = flash_addr & FLASH_SECTOR_SIZE_MASK;
1261
1262 /*
1263 * Erasing an flash sector needs to be done in six consecutive
1264 * write cyles.
1265 */
1266 while (sector_addr < flash_addr+size) {
1267 switch (asd_ha->hw_prof.flash.method) {
1268 case FLASH_METHOD_A:
1269 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1270 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1271 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0x80);
1272 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1273 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1274 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1275 break;
1276 case FLASH_METHOD_B:
1277 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1278 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1279 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x80);
1280 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1281 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1282 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1283 break;
1284 default:
1285 break;
1286 }
1287
1288 if (asd_chk_write_status(asd_ha, sector_addr, 1) != 0)
1289 return FAIL_ERASE_FLASH;
1290
1291 sector_addr += FLASH_SECTOR_SIZE;
1292 }
1293
1294 return 0;
1295 }
1296
asd_check_flash_type(struct asd_ha_struct * asd_ha)1297 int asd_check_flash_type(struct asd_ha_struct *asd_ha)
1298 {
1299 u8 manuf_id;
1300 u8 dev_id;
1301 u8 sec_prot;
1302 u32 inc;
1303 u32 reg;
1304 int err;
1305
1306 /* get Flash memory base address */
1307 reg = asd_ha->hw_prof.flash.bar;
1308
1309 /* Determine flash info */
1310 err = asd_reset_flash(asd_ha);
1311 if (err) {
1312 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1313 return err;
1314 }
1315
1316 asd_ha->hw_prof.flash.method = FLASH_METHOD_UNKNOWN;
1317 asd_ha->hw_prof.flash.manuf = FLASH_MANUF_ID_UNKNOWN;
1318 asd_ha->hw_prof.flash.dev_id = FLASH_DEV_ID_UNKNOWN;
1319
1320 /* Get flash info. This would most likely be AMD Am29LV family flash.
1321 * First try the sequence for word mode. It is the same as for
1322 * 008B (byte mode only), 160B (word mode) and 800D (word mode).
1323 */
1324 inc = asd_ha->hw_prof.flash.wide ? 2 : 1;
1325 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0xAA);
1326 asd_write_reg_byte(asd_ha, reg + 0x555, 0x55);
1327 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0x90);
1328 manuf_id = asd_read_reg_byte(asd_ha, reg);
1329 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1330 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1331 /* Get out of autoselect mode. */
1332 err = asd_reset_flash(asd_ha);
1333 if (err) {
1334 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1335 return err;
1336 }
1337 ASD_DPRINTK("Flash MethodA manuf_id(0x%x) dev_id(0x%x) "
1338 "sec_prot(0x%x)\n", manuf_id, dev_id, sec_prot);
1339 err = asd_reset_flash(asd_ha);
1340 if (err != 0)
1341 return err;
1342
1343 switch (manuf_id) {
1344 case FLASH_MANUF_ID_AMD:
1345 switch (sec_prot) {
1346 case FLASH_DEV_ID_AM29LV800DT:
1347 case FLASH_DEV_ID_AM29LV640MT:
1348 case FLASH_DEV_ID_AM29F800B:
1349 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1350 break;
1351 default:
1352 break;
1353 }
1354 break;
1355 case FLASH_MANUF_ID_ST:
1356 switch (sec_prot) {
1357 case FLASH_DEV_ID_STM29W800DT:
1358 case FLASH_DEV_ID_STM29LV640:
1359 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1360 break;
1361 default:
1362 break;
1363 }
1364 break;
1365 case FLASH_MANUF_ID_FUJITSU:
1366 switch (sec_prot) {
1367 case FLASH_DEV_ID_MBM29LV800TE:
1368 case FLASH_DEV_ID_MBM29DL800TA:
1369 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1370 break;
1371 }
1372 break;
1373 case FLASH_MANUF_ID_MACRONIX:
1374 switch (sec_prot) {
1375 case FLASH_DEV_ID_MX29LV800BT:
1376 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1377 break;
1378 }
1379 break;
1380 }
1381
1382 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN) {
1383 err = asd_reset_flash(asd_ha);
1384 if (err) {
1385 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1386 return err;
1387 }
1388
1389 /* Issue Unlock sequence for AM29LV008BT */
1390 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1391 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1392 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x90);
1393 manuf_id = asd_read_reg_byte(asd_ha, reg);
1394 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1395 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1396
1397 ASD_DPRINTK("Flash MethodB manuf_id(0x%x) dev_id(0x%x) sec_prot"
1398 "(0x%x)\n", manuf_id, dev_id, sec_prot);
1399
1400 err = asd_reset_flash(asd_ha);
1401 if (err != 0) {
1402 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1403 return err;
1404 }
1405
1406 switch (manuf_id) {
1407 case FLASH_MANUF_ID_AMD:
1408 switch (dev_id) {
1409 case FLASH_DEV_ID_AM29LV008BT:
1410 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1411 break;
1412 default:
1413 break;
1414 }
1415 break;
1416 case FLASH_MANUF_ID_ST:
1417 switch (dev_id) {
1418 case FLASH_DEV_ID_STM29008:
1419 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1420 break;
1421 default:
1422 break;
1423 }
1424 break;
1425 case FLASH_MANUF_ID_FUJITSU:
1426 switch (dev_id) {
1427 case FLASH_DEV_ID_MBM29LV008TA:
1428 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1429 break;
1430 }
1431 break;
1432 case FLASH_MANUF_ID_INTEL:
1433 switch (dev_id) {
1434 case FLASH_DEV_ID_I28LV00TAT:
1435 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1436 break;
1437 }
1438 break;
1439 case FLASH_MANUF_ID_MACRONIX:
1440 switch (dev_id) {
1441 case FLASH_DEV_ID_I28LV00TAT:
1442 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1443 break;
1444 }
1445 break;
1446 default:
1447 return FAIL_FIND_FLASH_ID;
1448 }
1449 }
1450
1451 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN)
1452 return FAIL_FIND_FLASH_ID;
1453
1454 asd_ha->hw_prof.flash.manuf = manuf_id;
1455 asd_ha->hw_prof.flash.dev_id = dev_id;
1456 asd_ha->hw_prof.flash.sec_prot = sec_prot;
1457 return 0;
1458 }
1459